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Objective: Tomeasure the low-carbon development level and digital transformation
degree of China’s manufacturing industry, and to examine the impact of digital
transformation on low-carbon development.

Methods: This paper uses Super Slack Based Measure (SBM) model and multi-
regional input-output model to measure the low-carbon development level and
digital transformation degree of 17 manufacturing industries in 30 provinces of China
from 2012 to 2018, and uses high-dimensional fixed effect model and mediation
model to study the impact of digital transformation on low-carbon development.

Results: 1) During the study period, China’s manufacturing industry showed an
upward trend in terms of low-carbon development level and digital
transformation, but there were significant regional and industrial disparities. 2)
Digital transformation can significantly promote the low-carbon development of
manufacturing industry, which is still valid in the robustness test. 3) For sub-
indicators, digital industrialization has the most obvious effect on the low-carbon
development of manufacturing industry, and the improvement of digital
development environment also has a positive impact on low-carbon
development. 4) The heterogeneity analysis indicate that digital transformation
has a greater impact on promoting low-carbon development of manufacturing in
underdeveloped regions, and the positive effect is obvious in medium-low-energy-
consuming industries, but not in high-energy-consuming industries. 5) The
mechanism test shows that technological innovation is a channel for digital
transformation to promote low-carbon development.

Value: This paper provides empirical evidence for the environmental impact of digital
transformation, and offers a scientific basis for relevant departments to formulate
low-carbon development policies from the perspective of digital transformation.
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1 Introduction

After more than 40 years of reform and opening up, China’s manufacturing industry has
achieved leapfrog development. However, due to the long-term extensive production mode
oriented by high energy consumption and high pollution in China’s traditional manufacturing
industry, environmental problems have also expanded rapidly with the development of traditional
manufacturing industry (Peng et al., 2022). According to data from CEADs, the energy
consumption of 30 manufacturing industries in China increased from 0.61 billion tons of
standard coal in 2000 to 2.3 billion tons of standard coal in 2019, an increase of nearly
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2.8 times in 20 years; at the same time, carbon emissions increased from
1.12 billion tons to 3.51 billion tons, an increase of 2.1 times in 20 years.
The continuous increase in energy consumption and carbon emissions
not only has a negative impact on the sustainable development of
China’s economy, but also seriously hinders China’s progress towards
its peak carbon and carbon neutrality goals (Ge et al., 2022). Therefore, it
is an urgent and practical issue to be studied how to break the crude
development mode of some industries and realize the low-carbon
development of China’s manufacturing industry.

At present, digital technologies represented by the Internet, artificial
intelligence and big data are deeply integrated with various fields of
economic and social development, gradually becoming a strong engine
for the transformation of new and old kinetic energy in China (Zhang C
et al., 2022). According to the “China Digital Economy Development
Report (2022)” released by the China Academy of Information and
Communications Technology, the scale of China’s digital economy
reached 7.1 trillion US dollars in 2021, accounting for 39.8% of Gross
Domestic Product (GDP), which shows that the digital economy has
changed from an important component of China’s economy to a key
leading force for economic development. In the critical period of China’s
economic transformation, the application of digital technology will
undoubtedly affect the mode of industrial production, and will also
have a profound impact on the industry’s energy demand and carbon
emissions (Ren et al., 2021;Wang J et al., 2022). From existing literature,
most scholars focus on the economic effects of digital transformation,
both exploring its important impact on the economic development of
countries or regions (Mićić, 2017; Pan et al., 2022; Wu and Yang, 2022)
and its key role in corporate development (Bhimani, 2015; Ballestar
et al., 2021; Gaglio et al., 2022; Zhang J et al., 2022). With the
development of digital economy and the tightening of resource and
environmental constraints, the environmental effects of digital
transformation have attracted the attention of scholars. Relevant
studies show that the development of regional digital economy has a
positive effect on reducing energy consumption (Ren et al., 2021),
improving green total factor productivity (Li and Liao, 2022; Lyu
et al., 2023), promoting clean energy development (Chen, 2022), and
promoting green development efficiency (Luo et al., 2022). Some
scholars have studied the impact of digital transformation on energy
efficiency (Zhang L et al., 2022), green technology innovation (El-Kassar
and Singh, 2019; Ning et al., 2022) and environmental management (Xia
et al., 2022) from the enterprise level. Their research also confirms that
digital transformation can promote green development. However, the
relationship between digital transformation and carbon emissions
remains controversial in academia. Most scholars (Ge et al., 2022;
Yu et al., 2022; Zha et al., 2022) believe that digital transformation
can help reduce carbon emissions. ZhangW et al. (2022) found that the
development of digital industries has squeezed out carbon-intensive
industries, optimized the industrial structure, and reduced carbon
emissions. Yu et al. (2022) believes that the application of digital
technology has greatly improved production conditions, optimized
factors other than energy input, and helped to reduce carbon
emissions. However, some scholars (Salahuddin and Alam, 2015;
Avom et al., 2020) believe that digital transformation will increase
the demand for energy sources such as electricity, which will lead to an
increase in carbon emissions.

Although scholars have conducted extensive research on the
economic and environmental effects of digital transformation from
a regional or corporate perspective, few studies have explored the
relationship between digital transformation and environmental

performance from a combined regional and industry perspective,
which hinders a comprehensive understanding of the impacts of
digital transformation. Therefore, this paper extends the existing
research as follows: 1) This paper explores the impact of digital
transformation on low-carbon development of manufacturing
industry from the perspective of sub-region and sub-industry. 2)
Using matching data to measure the low-carbon development level
of manufacturing industry in China’s provincial-level. This avoids
measurement errors caused by ignoring the heterogeneity of regions or
industries. 3) By combining the multi-regional input-output model
with the evaluation system of digital economy development level, the
measurement framework of the digital transformation of
manufacturing industry in various provinces of China is
constructed, which enriches the measurement research of digital
transformation.

2 Theoretical analysis

Digital transformation refers to the process by which enterprises
apply digital technologies such as networks, communications, and
computing to transform organizational structures and business
models to achieve workflow optimization, organizational efficiency
improvement, and value creation (Vial, 2019). As a revolution, digital
transformation may fundamentally change the structure and trading
mode of production factors, which will have an important impact on
production efficiency and ecological environment (Goldfarb et al.,
2015; Verhoef et al., 2019).

2.1 Direct mechanism

The deep integration of digital technologies such as big data and
traditional manufacturing industry can promote the low-carbon
development of manufacturing industry by eliminating the
information gap, achieving accurate matching of supply and
demand, and adapting to the market environment (Wu et al.,
2022). The acceleration of the digitization process has spawned a
variety of information service platforms, which have profoundly
changed the information search mode and resource allocation
mode of market participants. The digital platform gradually
reduces the information asymmetry in the field of resource
allocation by aggregating massive resource demand information,
which is conducive to the supply and demand sides to grasp each
other‘s real needs in an instant and efficient manner, thereby
improving resource utilization efficiency (Kaija et al., 2022).
Producers use data mining technology to analyze consumer
demand preferences, carry out targeted production activities, and
form a dynamic and accurate matching mechanism between supply
and demand, thereby reducing unnecessary waste in production.

Although the scale effect of digital transformation will lead to an
increase in energy demand (Moyer and Hughes, 2012; Lange et al.,
2020), the rapid penetration of digital technology profoundly affects
the supply-demand structure and utilization efficiency of energy
(Goldbach et al., 2018). The carbon reduction caused by the
adjustment of energy consumption structure, the matching of
energy supply-demand, and the improvement of energy efficiency
is greater than the carbon increase caused by the expansion of
production scale, which makes the “net” impact of digital
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transformation on carbon emissions show an inhibitory effect (Zhang
Z et al., 2022). From the perspective of structural adjustment, the
application of digital technology can strengthen the substitution role
of clean energy for fossil energy, reduce the dependence of the
industry on fossil energy. In addition, the application of digital
technology has laid a technical foundation for the research and
development and promotion of clean energy, which is conducive to
changing the production mode of the industry based on fossil energy
consumption. From the perspective of supply-demand matching,
digital transformation is conducive to improving the coordinated
and matching of energy supply side and demand side (Kaija et al.,
2022). The application of digital technology makes it easy to collect
and process information. Producers can use the information they
have to judge the supply and demand of energy to match supply and
demand (Goldbach et al., 2018). Improving energy efficiency is
another effective way to achieve carbon emission reduction (Yi
et al., 2022). On the one hand, the application of digital
technology and data resources has spawned new technologies and
formats related to energy production, helping to improve industrial
energy efficiency. On the other hand, digital transformation can
promote the penetration of digital technology into the enterprise’s
energy scheduling system, which will help realize the efficient
operation of procurement, storage and management of energy,
and then promote the low-carbon development of industry
(Zhang et al., 2023). Based on the above analysis, this paper
proposes the research hypothesis.

H1: The digital transformation has a positive effect on low-carbon
development in manufacturing.

2.2 Indirect mechanism

Technological innovation is an effective way to achieve economic
growth and protect the environment (Daron et al., 2012). The
improvement of technology is conducive to cleaner production for
enterprises, which has a positive effect on achieving carbon emission
reduction (Leung et al., 2014; Xu et al., 2021). In theory, using digital
technologies to improve production and management processes can
have a positive impact on innovation (Nambisan et al., 2019; Ning
et al., 2022). From Schumpeter’s explanation of innovation
(Schumpeter, 1934), the essence of innovation lies in the
recombination of elements. Digitization accelerates the construction
of modern information communication networks. Data, knowledge
and information, as the key innovation elements, are rapidly spread
and applied through communication network technology. It is more
convenient for enterprises to obtain heterogeneous innovation
elements and realize knowledge linkage than before. In addition,
the widespread application of digital technology facilitates the flow
of knowledge and information between internal and external
enterprises, which is conducive to breaking down invisible barriers
to innovation (Niu et al., 2023). Digital transformation not only
promotes the diffusion of innovation elements, but also gives birth
to more innovation elements. The application of digital technologies
such as big data and cloud computing enables the storage and analysis
of data, knowledge and information. The accumulation of innovative
resources provides favorable conditions for low-carbon technology
innovation. Based on the above analysis, this paper proposes the
research hypothesis.

H2: Digital transformation improves the low-carbon development
level of manufacturing industry by promoting the mechanism of
technological innovation.

3 Measurement of core variable

3.1 Low-carbon development level

The existing literature points out that the low-carbon production
efficiency calculated by taking carbon emissions as undesired
output, regional GDP as expected output, labor, capital and
energy as production factors can not only reflect the efficiency
of economic output, but also take into account the problem
of carbon emissions, which can better measure the extent to
which the development model meets the dual goals of economic
growth and energy conservation and emission reduction (Chen and
Golley, 2014).

3.1.1 Method
The traditional Data Envelopment Analysis (DEA) calculation

method does not consider the slack variables, and most of them are
angle and radial models. There are problems such as the
incomparability of decision making units on the efficiency Frontier
(Andersen and Petersen, 1993) and the same proportion of input or
output changes (Tone, 2001). Therefore, this paper selects the Super-
SBM model, which is improved by Tone on the basis of its non-radial
and non-angle SBM model (Tone, 2002), and fully takes into account
the scale reward problem, selecting the more realistic variable returns
to scale (VRS). In addition, the carbon emission constraint is treated as
undesirable output, and the Super-SBM model considering
undesirable output is constructed. The model relaxes the
constraints of the same proportion change of each factor and the
effective decision-making unit efficiency value #1, so that the
effective decision-making unit can be comparable in time.

Specifically, assuming that there are n effective decision making
units (DMU), each DMU has m input factors, and each DMU will
produce r1 expected output and r2 undesirable output. The
corresponding input factors, expected output and undesirable
output are expressed as: xik, yqk and btk, respectively. The
calculation model of the efficiency value ρ is expressed as follows:

ρ � min
1 + 1

m∑m
i�1

c−i
xik

1 − 1
r1+r2 ∑r1

q�1
c+q
yqk

+∑r2
t�1

c−t
btk

( )

s.t.

∑n
j�1,j ≠ k

xijλj − c−i #xik i � 1,/,m

∑n
j�1,j ≠ k

yqjλj + c+qPyqk q � 1,/, r1

∑n
j�1,j ≠ k

btjλj − c−t #btk t � 1,/, r2

∑n
j�1,j ≠ k

λj � 1, λP0 j � 1,/, n

c−i , c
+
q , c

−
t P0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
In the formula, c−i , c+q , c−t are the slack vectors of input factors,

expected output and undesirable output respectively; λ is the index
weight, when∑n

j�1,j ≠ k
λj � 1 and λP0, it is variable returns to scale; ρ

is low-carbon development level.
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3.1.2 Indicators and data
This paper uses gross industrial output as the expected output

index, carbon emissions as the unexpected output index; input
indicators are general, including capital, labor and energy
consumption. To estimate the total industrial output value data
from 2012 to 2018, the industrial sales output value, the current
year inventory and the previous year inventory are taken into account.
Then, according to the producer price index of industrial products
divided by provinces and industries in each year, the data was deflated
to the comparable industrial output value based on 2012 as the base
year. Capital investment is measured by the capital stock of the
manufacturing industry in each province. This year’s capital stock
is calculated according to the perpetual inventory method. The
composition of energy consumption includes 20 energy types such
as coal, oil, natural gas and electricity. Because the average low calorific
value of each type of energy is not the same, it can not be directly
added. Therefore, the reference coefficients of various types of energy
converted into standard coal provided by the “China Energy
Consumption Statistical Yearbook” are used to convert units of
different energy types into 10,000 tons of standard coal and add them.

The original data of expected output, capital input and labor input
required for the measurement of low-carbon development level of
manufacturing industry are from the “China Industrial Statistical
Yearbook”. The original data of unexpected output and energy
consumption are from the CEADs database. The price deflator data
is from the “China Price Statistical Yearbook”.

3.1.3 Results and analysis
This paper uses Matlab 2020b software to calculate the low-carbon

development level of 17 manufacturing industries in 30 provinces of
China from 2012 to 2018, and analyzes its evolution characteristics
from the national level, regional level and industry level. As shown in
Figure 1, from 2012 to 2018, the low-carbon development level of
manufacturing industry in China and its regions showed an upward
trend. According to the changing characteristics of low-carbon
development level of manufacturing industry, the research interval
can be divided into two stages. During the first stage from 2012 to
2015, the low-carbon development level of the manufacturing industry
increased at a relatively low rate, and the growth trend was not
obvious. The second stage is from 2016 to 2018. During this
period, the low-carbon development level of China’s manufacturing

industry showed a rapid upward trend, and the increase was obvious.
The reason for this change trend may be that 2012–2015 is the early
stage of China’s low-carbon transformation and development. Because
the economic development model has a certain path dependence
effect, the effect of low-carbon development in the short term is not
significant. In addition, China’s digital transformation during this
period is still in its infancy, and the digital economy and the real
economy have not achieved deep integration, which makes the low-
carbon development level of manufacturing industry grow more
slowly. With the deepening of the concept of low-carbon
development and the deep integration of digital economy and real
economy, the low-carbon transformation kinetic energy accumulated
in the early stage has been released, and the low-carbon development
level of manufacturing industry has been rapidly improved.

From the perspective of regional differences, the low-carbon
development level of manufacturing industry in the eastern and
central regions is relatively close, which is higher than the national
average; the level of low-carbon development in the western region has
greatly improved, but there is still a big gap with the eastern and
central regions. The low-carbon development level of manufacturing
in northeast is not only lower than the eastern and central regions, but
also gradually lags behind the western region, and the gap with other
regions gradually widened. This regional difference is highly
correlated with China’s economic development, industrial layout
and spatial distribution of resources.

Further, analyze the changes in the level of low-carbon
development of China’s manufacturing industry from an industry
perspective. Table 1 lists the calculation results for 2012, 2015, and
2018. On the whole, the low-carbon development level of each
manufacturing industry is on the rise. From the perspective of
industry differences, food and tobacco, communications electronic
equipment and electrical machinery and equipment in the three
industries of low-carbon development level in each year ranked
high, and Paper printing cultural education sports, metal smelting
and non-metallic products low-carbon development level ranked low.
It can be found that industries with high levels of low-carbon
development are mostly low-energy-consuming industries. These
industries for energy dependence is not strong, low-carbon
development action less resistance. Most of the industries with low
low-carbon development levels belong to traditional manufacturing
industries with high energy consumption and high pollution. Such

FIGURE 1
The evolution trend of the average value of low-carbon development of manufacturing industry in china and its four regions.
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industries have high demand for energy and many have overcapacity
problems, so the level of low-carbon development is low. This industry
difference shows that the traditional high-pollution and high-energy-
consuming manufacturing industry is still the key industry of China’s
low-carbon reform, and improving the low-carbon development level
of such industries plays a key role in achieving the “dual-carbon goals”
and promoting the high-quality development of the manufacturing
industry.

3.2 Digital transformation

From the literature on digital economymeasurement, most studies
measure the level of digital economy development at the national and
regional levels or the degree of digital transformation at the enterprise
level. Scholars usually use input-output tables or macroeconomic
indicators to measure the level of digital economic development
including national, provincial and urban dimensions (Balcerzak
and Pietrzak, 2017; Liu et al., 2022; Zhang C et al., 2022). Or use
text analysis to measure the degree of digital transformation at the
enterprise level (Feng et al., 2022), and a small number of studies have
measured the degree of digital transformation at the industry level.
These studies can reflect the development of digital economy or digital
transformation in China to some extent. However, measuring the
degree of digital transformation from the regional level or the industry
level alone will lead to deviations in the measurement of digital
transformation. Out of self-interest motivation, enterprises
exaggerate the disclosure of digital related words, which will lead to
distortion of digital measurement at the enterprise level. In view of

this, this paper constructs a new measurement model of digital
transformation degree.

3.2.1 Measurement model and data
The degree of digital transformation of manufacturing in different

regions depends not only on the intensity of industry digital input, but
also on the development of regional digital economy. Therefore,
drawing on the research ideas of Arnold et al. (Arnold et al.,
2016), using China’s multi-regional input-output model, combined
with the measurement system of digital economy development level of
each province, this paper constructs a framework for measuring the
digital transformation degree of manufacturing industry in different
provinces in China. The benchmark calculation formula is:

digitalijt � Idigitalijt × Rdigitalit

In the formula, digitalijt represents the degree of digital
transformation of i province and j industry in the t year;
Idigitalijt represents the digital input intensity of i province and j
industry in the t year; Rdigitalit represents the level of digital economy
development in province i in year t.

This paper uses input-output method to measure the digital input
intensity of manufacturing industry. Industry digital input intensity is
the proportion of industry digital intermediate input in total input.
Among them, the digital intermediate input part includes direct digital
intermediate input and complete digital intermediate input. In the case
of only considering direct digital intermediate input, the calculation
expression of digital input intensity is:

Idigitaldirectcj � Zcj/Xj

TABLE 1 Measurement results of low-carbon development level of manufacturing industry.

Industry code Abbreviation 2012 Rank 2015 Rank 2018 Rank

6 Food and tobacco 0.1960 3 0.2585 1 0.4549 1

7 Textile industry 0.0906 13 0.1121 12 0.3311 8

8 Manufacture of leather, fur, feather and related products 0.1040 11 0.1417 8 0.3237 9

9 Processing of timber and furniture 0.1215 9 0.1672 5 0.4353 2

10 Paper printing cultural education sports 0.0700 17 0.0953 17 0.1872 16

11 Petroleum processing 0.2913 1 0.1080 14 0.2093 14

12 Chemical products 0.1242 8 0.1381 10 0.2372 12

13 Non-metallic products 0.0861 15 0.1031 15 0.2091 15

14 Metal smelting 0.1572 6 0.0967 16 0.1866 17

15 Metal products 0.1269 7 0.1566 6 0.2766 10

16 General purpose machinery 0.1020 12 0.1238 11 0.2229 13

17 Special purpose machinery 0.1158 10 0.1386 9 0.2433 11

18 Transportation equipment 0.1596 4 0.2205 3 0.3694 6

19 Electrical machinery and equipment 0.2332 2 0.2094 4 0.3964 4

20 Communication electronic equipment 0.1581 5 0.2484 2 0.3985 3

21 Instrumentation 0.0843 16 0.1449 7 0.3851 5

22 Other manufactured goods 0.0880 14 0.1095 13 0.3379 7
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where Idigitaldirectcj represents the direct digital input intensity of
industry j;Zcj represents the intermediate input of digital industry c to
industry j; Xj represents the total input of industry j. The calculation
expression of complete digital input intensity is:

Idigitalcomplete
cj � Idigitaldirectcj +∑n

k�1
Idigitaldirectck Idigitaldirectkj

+∑n
s�1
∑n
k�1

Idigitaldirectcs Idigitaldirectsk Idigitaldirectkj +/

Where Idigitalcomplete
cj represents the full digital input intensity of

industry j; the first item on the right side of the equal sign is the direct
digital input intensity, and the subsequent items are the forward
indirect digital input intensity, that is, the n+1th item is the nth
indirect digital input intensity, which adds up to the complete digital
input intensity. Considering that complete digital intermediate input
can accurately measure the real situation of industry digitization, this
paper uses the digital input intensity under the measurement of
complete digital intermediate input to calculate the degree of
industry digital transformation, and uses the degree of digital
transformation obtained under the measurement of direct digital
intermediate input as a substitution variable for subsequent
robustness tests.

The data of digital input intensity are derived from China’s multi-
regional input-output table in 2012, 2015, and 2017 released by
CEADs database. China’s multi-regional input-output table
contains 31 provinces and 42 economic sectors. Some sectors

related to the digital economy only have some digital content, so
this paper constructs the digital industry stripping coefficient to
separate the digital content part. The digital industry stripping
coefficient is the proportion of digital output in the total output of
the industry containing digital content. The formula is expressed as:

δit � Xd
it/Xit

Among them, δit is the digital industry divestiture coefficient of
industry i in year t, Xd

it is the digital output part of industry i in year t,
and Xit is the total output of industry i in year t. Constrained by data
constraints, this paper uses industry operating income to characterize
total output to determine the digital industry stripping coefficient.
Considering the change of digital output and total output in the time
dimension, this paper determines the stripping coefficient of digital
industry in different years. Since the China multi-regional input-
output table is not continuous, this paper uses the digital industry
divestiture coefficient to obtain digital intermediate input data for
consecutive years from 2012 to 2018.

According to the definition of the core industries of the digital
economy in the “Statistical Classification of Digital Economy and Its
Core Industries (2021)”, this paper constructs a measurement system
for the development level of digital economy from three dimensions:
digital industrialization, industrial digitization and digital economic
development environment (Zhang J et al., 2022; Lyu et al., 2023), as
shown in Table 2. The marketization index data in the sample are
derived from the “China Provincial Marketization Index Report

TABLE 2 Measurement system of digital economy development level.

First grade indexes Second index Measurement index Unit Attribute

Digital
industrialization

Computer communications and
other electronic equipment manufacturing

Main business income CNY100 million +

Number of employees 10,000 +

Telecommunications broadcast television
and satellite transmission services

Total telecommunications business per capita CNY 10,000 +

Long-distance optical cable line length 10,000 km +

Mobile phone penetration rate % +

Internet and related services Internet penetration rate % +

Number of Internet broadband access ports Unit +

Number of websites per capita Unit +

Software and information
technology services

Per capita software business income CNY 10,000 +

Information technology service income per capita CNY 10,000 +

Industrial
digitalization

Digital application The proportion of enterprises with e-commerce transactions % +

E-commerce sales CNY100 million +

Per capita express business volume Piece +

Number of websites per 100 enterprises Unit +

Digital inclusive financial index — +

Digital economy
development environment

Innovation environment R&D expenditure intensity % +

Number of patent applications 10,000 piece +

Market circumstances Whether to issue policies in support of the ‘digital economy’ — +

Marketization index — +
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(2021)”, the Digital Inclusive Finance Index is derived from the
“Peking University Digital Inclusive Finance Index (2011–2020)”,
and other data are derived from the “China Statistical Yearbook”,
“China Information Yearbook” and the CSMAR digital economy
database. In order to avoid the subjectivity of the evaluation results
and fully reflect the original information of the data, the entropy
method is used to measure the level of digital economy development at
the provincial level.

3.2.2 Results and analysis
According to the measurement model constructed above, the

degree of digital transformation of manufacturing industry in
China’s provinces from 2012 to 2018 is measured. Figure 2 shows
the changes in the degree of digital transformation of manufacturing
industry in the whole country and its four major regions. Overall, from
2012 to 2018, the degree of digital transformation of manufacturing in
various regions of the country is on the rise. In terms of time nodes,
2012–2015 is a period of rapid growth of digital transformation of
manufacturing industry in various regions. This period is a period of
rapid integration of digital technology and real economy. The demand
for digital input in manufacturing industry is strong, and the degree of
digital transformation shows rapid growth. From 2016 to 2018, it was a
stage of fluctuating growth. During this period, the growth rate of
digital transformation of manufacturing industry slowed down, and it
decreased slightly in 2017. The reason for this trend may be that the
scale dividend in the early stage of digital transformation of
manufacturing industry gradually disappeared, the transformation
entered a mature stage of development, and the demand for digital
input was relatively stable.

From the perspective of regional differences, the eastern region has
the highest degree of digital transformation of manufacturing
industry, which has remained above the national average. The
degree of digital transformation of manufacturing industry in the
central, western and northeastern regions is similar and lower than the
national average. It is worth noting that the digital transformation gap
between the eastern and central regions and the western and
northeastern regions has been expanding year by year, which to
some extent reflects the “digital divide” phenomenon caused by
unbalanced regional development in the digital era.

Table 3 shows the average degree of digital transformation at the
two-digit industry level in 2012, 2015, and 2018. On the whole, from
2012 to 2018, the degree of digital transformation in China’s

manufacturing industries is on the rise. From the perspective of
industry differences, communication electronic equipment,
instrumentation and electrical machinery and equipment are the
industries with the highest degree of digital transformation, which
are mostly high-end manufacturing industries with low energy
consumption and obvious technical characteristics. Petroleum
processing, metal smelting, food and tobacco are industries with
low degree of digital transformation. Most of these industries are
traditional manufacturing industries. The traditional production
mode is relatively solid, the pace of digital transformation is
relatively slow, and the degree of transformation is low. This
industry difference shows that it is urgent to promote the digital
transformation of traditional manufacturing industry.

4 Empirical design

4.1 Empirical model

This paper uses high-dimensional panel data at the provincial and
industry levels in China from 2012 to 2018 to empirically study the
impact of digital transformation on low-carbon development of
manufacturing. The high-dimensional fixed effect model is
constructed as follows:

Lcpijt � α0 + α1Digitalijt + βControlijt + μi + μj + μt + εijt

Among them, Lcpijt is the level of low-carbon development,Digitalijt
is the degree of digital transformation, and Controlijt represents the
collection of control variables; μi、 μj and μt are province effect,
industry effect and time fixed effect respectively; εijt is random error
term; subscripts i, j and t represent province, industry, and year,
respectively. The model mainly focuses on the symbol, size and
significance level of the coefficient α1.

4.2 Variables

The explanatory variable is the level of low-carbon development in
manufacturing (Lcp). The core explanatory variable is the degree of
digital transformation in manufacturing (Digital). The mechanism
variable is the level of technological innovation (Innov), which is
measured by the proportion of industry patents in national patents.

FIGURE 2
Evolution trend of average degree of digital transformation of manufacturing industry in china and four regions.
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According to the existing research conclusions, this paper selects the
following control variables: Energy consumption structure (Es). The
energy consumption structure is measured using the proportion of
coal energy consumption in the manufacturing industry’s total energy
consumption. Production factor structure (Fe). Capital and labor are
the two most basic production factors in production activities.
Therefore, the ratio of capital stock to labor force is used to
measure production factor structure. R&D investment intensity
(Lnrd). R&D investment intensity is represented by the logarithm
of internal expenditure of research and experimental development
funds of industrial enterprises above designated size. It is generally
believed that green technology innovation is the basis for achieving
low-carbon production, and R&D investment, as an important source
of green technology innovation, should have a positive impact on
achieving low-carbon development. Environmental regulation
intensity (Ereg). The environmental regulation intensity index was
constructed by using the industrial wastewater discharge compliance
rate, industrial sulfur dioxide removal rate, industrial smoke (powder)
dust removal rate and solid waste comprehensive utilization rate. Level
of openness (Lnfdi). The opening level is measured by the logarithmic
form of the total amount of foreign capital actually utilized.
Government intervention (Gov). Considering that local fiscal
expenditure is an important index to reflect‘s participation in
economic activities, this paper uses the ratio of fiscal expenditure
deducting education expenditure to regional GDP as the proxy
variable of government intervention (Li and Lin, 2017).

4.3 Data sources

The sample period of this paper is 2012–2018, and 17 two-digit
manufacturing industries in 30 provinces in China are selected for the
study. The control variable data comes from “China Statistical
Yearbook”, “China Industrial Statistical Yearbook”, “China Economic
Census Yearbook”, “China Science and Technology Statistical
Yearbook”, provincial statistical yearbooks and CEADs database.
Variable data are provided in the Supplementary Table S1. The
descriptive statistics of the main variables are shown in Table 4.

TABLE 3 Measurement results of digital transformation degree of manufacturing industry.

Industry code Abbreviation 2012 Rank 2015 Rank 2018 Rank

6 Food and tobacco 0.0086 17 0.0197 17 0.0230 16

7 Textile industry 0.0090 16 0.0215 16 0.0269 14

8 Manufacture of leather, fur, feather and related products 0.0132 9 0.0262 13 0.0330 9

9 Processing of timber and furniture 0.0105 13 0.0239 15 0.0301 12

10 Paper printing cultural education sports 0.0120 12 0.0304 11 0.0318 11

11 Petroleum processing 0.0102 15 0.0250 14 0.0205 17

12 Chemical products 0.0134 8 0.0333 9 0.0340 8

13 Non-metallic products 0.0130 10 0.0344 8 0.0327 10

14 Metal smelting 0.0103 14 0.0301 12 0.0230 15

15 Metal products 0.0129 11 0.0327 10 0.0296 13

16 General purpose machinery 0.0199 4 0.0479 4 0.0469 5

17 Special purpose machinery 0.0182 6 0.0435 5 0.0471 4

18 Transportation equipment 0.0169 7 0.0380 7 0.0409 6

19 Electrical machinery and equipment 0.0234 3 0.0553 3 0.0607 3

20 Communication electronic equipment 0.0932 1 0.1761 1 0.2394 1

21 Instrumentation 0.0431 2 0.0926 2 0.1021 2

22 Other manufactured goods 0.0184 5 0.0390 6 0.0380 7

TABLE 4 Descriptive statistics of main variables.

Variables Obs Mean Std.Dev. Min Max

Lcp 3570 0.181 0.205 0.001 5.742

Digtial 3570 0.039 0.049 0.001 0.537

Es 3570 0.220 0.221 0.000 0.992

Fe 3570 0.020 0.082 0.000 1.861

Lnrd 3570 5.087 1.331 1.872 7.653

Ereg 3570 0.510 0.534 0.000 2.585

Lnfdi 3570 5.366 1.944 −2.345 7.722

Gov 3570 0.224 0.103 0.096 0.672
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5 Empirical results and analysis

5.1 Benchmark regression results

Considering that industry differences, regional differences and
time factors may have an impact on the estimation results, this paper
uses high-dimensional fixed effects model for parameter estimation.
The benchmark regression results are shown in Table 5. Among them,
column 1) is the estimation result without control variables, and the
estimation coefficient of the core explanatory variable is significantly
positive at the 5% level. Column 2) is the estimated result of adding
control variables. The estimated coefficient of digital transformation is
still significantly positive and can reject the null hypothesis at the 1%
level. The above results show that digital transformation can
significantly promote the low-carbon development level of
manufacturing industry. H1 of this paper is verified. Digital
transformation can strengthen the synergy between the upstream
and downstream of the industrial chain and reduce unnecessary
losses in the production process, which has a positive impact on
promoting low-carbon development.

The control variable symbol is consistent with expectations.
The impact coefficient of energy consumption structure on low-
carbon development was significantly negative at the level of 1%,
indicating that the excessive proportion of coal energy
consumption was not conducive to the improvement of low-
carbon development level of the manufacturing industry. The
structure of production factors has a significant role in
promoting the low-carbon development of manufacturing
industry. The regression coefficient of R&D investment is
positive, indicating that increasing R&D investment in
manufacturing can help its low-carbon development. The
impact of government intervention on low-carbon development
is negative, which may be because excessive government
intervention in the market harms the level playing field. The
regression coefficient of environmental regulation is positive,
indicating that environmental regulation can promote the low-
carbon development of manufacturing industry. The regression
coefficient of openness is negative, but the result is not significant,
indicating that foreign investment has not effectively promoted the
low-carbon development level of manufacturing industry.

TABLE 5 Results of benchmark regression and further analysisa.

Variables (1) (2) (3) (4) (5)

Digital 0.2382** 0.3084***

(2.2640) (2.9262)

Digital id 0.4001*** (3.2560)

Digital di 0.2067*** (2.6033)

Digital de 0.2079** (2.2106)

Es −0.0626*** −0.0629*** −0.0618*** −0.0617***

(−3.4748) (−3.4922) (−3.4336) (−3.4219)

Fe 0.1891*** 0.1907*** 0.1860*** 0.1868***

(4.9833) (5.0271) (4.9105) (4.9174)

Lnrd 0.0685*** 0.0686*** 0.0693*** 0.0678***

(3.3168) (3.3217) (3.3535) (3.2784)

Ereg −0.0538*** −0.0536*** −0.0533*** −0.0545***

(−2.8338) (−2.8289) (−2.8085) (−2.8710)

Lnfdi −0.0033 −0.0031 −0.0035 −0.0033

(−1.0209) (−0.9605) (−1.0796) (−1.0009)

Gov −0.5435*** −0.5460*** −0.5401*** −0.5517***

(-3.0520) (-3.0676) (-3.0308) (-3.0976)

Constant 0.1715*** −0.0027 −0.0040 −0.0055 0.0063

(34.0161) (−0.0238) (−0.0356) (−0.0487) (0.0558)

Province effect YES YES YES YES YES

Industry effect YES YES YES YES YES

Year effect YES YES YES YES YES

Adj.R2 0.2819 0.2954 0.2958 0.2950 0.2946

Obs 3570 3570 3570 3570 3570

aThe ***, **, and * in the table represent the significant levels of 1%, 5%, and 10%, respectively. The t statistic is in parentheses. The following table has the same meaning.
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5.2 Further analysis

Exploring the impact of sub-indicators of digital transformation
on the low-carbon development of manufacturing industry is of great
significance for optimizing the digital transformation strategy to give
full play to its low-carbon effect. This paper divides the development
level of regional digital economy into three dimensions: digital
industrialization (Digital id), industrial digitization (Digital di)
and digital development environment (Digital de), and constructs
sub-indicators of digital transformation based on this. The sub-
indicators of digital transformation were used as the explanatory
variables for regression, and the results were shown in columns
(3)–(5) in Table 5. It can be found that all sub-indicators of digital
transformation have a significant positive impact on the low-carbon
development of the manufacturing industry, but their impact is
different. Among them, the effect of digital industrialization on the
low-carbon development of manufacturing industry is the most
obvious. The promoting effect of industrial digitalization and
digital development environment on low-carbon development of
manufacturing industry is weaker than that of digital
industrialization. As the foundation of the development of the
digital economy, digital industrialization plays a supporting role in
the digital transformation of the manufacturing industry. At the
current stage, digital industrialization is developing faster and the
most mature, so its positive effect on promoting the low-carbon
development of manufacturing industry is strong. Industrial
digitalization also plays a positive role in promoting the low-
carbon development of the manufacturing industry, but due to cost
and technology constraints, the process of industrial digitalization lags
behind digital industrialization. The digital development environment
mainly affects the low-carbon development of the manufacturing
industry by promoting digital transformation, so its impact effect is
weaker than that of digital industrialization. Further analysis shows
that in order to give full play to the role of digital transformation in the
low-carbon development of the manufacturing industry, it is necessary
to accelerate the process of digital industrialization and industrial

digitization, and the importance of the digital development
environment cannot be ignored.

5.3 Robustness test

5.3.1 Replace the key variable measurement method
First, the SBM model is used to recalculate the low-carbon

development level of manufacturing industry. Second, the
measurement method of replacing the core explanatory variables.
The degree of digital transformation (Digitaldirect) measured by the
direct digital intermediate input method is used as the core
explanatory variable. The estimation results after replacing the
main variables are shown in columns (1)–(2) of Table 6.

5.3.2 Replace the measurement indicators of low-
carbon development level

The connotation of low-carbon development of manufacturing
industry is rich, and excessive reliance on single indicators will
inevitably make the research conclusion one-sided. Therefore,
drawing on the measurement of low-carbon development level in
existing literature, single-factor low-carbon production efficiency
(i.e., output per unit of carbon emissions) and carbon emission
intensity are used as indicators of low-carbon development level of
manufacturing industry to re-estimate the benchmark model (Kaya
and Yokobori, 1997). The results are shown in columns (3)–(4) of
Table 6.

5.3.3 Processing extreme values
OLS estimation method is susceptible to extreme values. If there

are extreme values in the data set, it will cause the regression curve to
shift in the direction of extreme values, making the estimated results
deviate from the real situation. Therefore, the bilateral extreme values
of all variables are indented according to the 5% and 95% quantiles,
respectively, and the parameters are re-estimated. The estimation
results are shown in column (5) of Table 6.

TABLE 6 Results of stability test.

Variables (1) (2) (3) (4) (5)

Lcp_sbm Lcp Lcp_cp Lcp_ct Lcp

Digital 0.2632*** 0.7034*** −0.8312*** 0.3084***

(3.1872) (5.2535) (−4.2942) (2.9262)

Digitaldirect 0.5154***

(2.6856)

Control variables YES YES YES YES YES

Province effect YES YES YES YES YES

Industry effect YES YES YES YES YES

Year effect YES YES YES YES YES

Adj.R2 0.3952 0.2951 0.1892 0.0921 0.2954

Obs 3570 3570 3570 3570 3570
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The above robustness test results show that the positive impact of
digital transformation on low-carbon development is still significant,
indicating that the core conclusions of this paper are robust.

5.4 Endogenous treatment

Effectively controlling endogeneity is key to accurately identifying
the causal relationship between digital transformation and low-carbon
development. First of all, this paper attempts to use digital
transformation lag phase I, lag phase II and lag phase III as the
instrumental variables of the current digital transformation. China’s
industrial digital transformation often has the characteristics of top-
down and step-by-step, so the current digital process is rooted in the
previous accumulation. At the same time, the current low-carbon
development level will not interfere with the previous digital process.
This satisfies the exogeneity and relevance criteria for instrumental
variable selection. Columns (1)–(3) in Table 7 show the estimation
results of two-stage least squares (2SLS). Anderson test and Cragg-
Donald test show that the model does not have the problem of
unidentifiable and weak instrumental variables, indicating that the
instrumental variables are effective. The regression coefficients of
digital transformation are significantly positive, indicating that
digital transformation can still effectively promote the low-carbon
development of manufacturing industry after dealing with potential
endogenous problems.

In addition, the instrumental variable construction method
proposed by Lewbel has been widely used in existing research
(Lewbel, 1997). Miruna (2022) used this idea to construct the
instrumental variables of Industry 4.0. Wang Q et al. (2022)

used this method to construct instrumental variables of the
degree of digitization at the provincial level in China. The above
research verifies the effectiveness of this instrumental variable
construction method. Therefore, this paper refers to Lewbel’s
idea, using the digital transformation variable and the
corresponding industry digital transformation mean difference
of three power as the instrumental variable of digital
transformation (Lewbel IV). The 2SLS estimation results are
shown in column (4) of Table 7. The Anderson test and the
Cragg-Donald test show that the instrumental variables are
valid. The estimated coefficients of the core explanatory
variables are in good agreement with the benchmark regression
results, which again shows that the digital transformation of the
manufacturing industry has a promoting effect on low-carbon
development.

Further, this paper uses the generalized moment estimation
method (GMM) to alleviate the endogenous bias caused by
problems such as two-way causality and missing variables.
Considering that the difference generalized moment estimation
method (DIF-GMM) still has the problem of weak instrumental
variables, and the two-step estimation is more effective than the
one-step estimation, this paper uses the two-step system
generalized moment estimation method (SYS-GMM) to deal with
endogeneity. The estimation results of the two-step SYS-GMM are
shown in column (5) of Table 7. Among them, the Arellano-Bond test
and the Hansen test show that the instrumental variables are valid and
that the model does not have over-identification problems and satisfies
the two-step SYS-GMM usage conditions (Arellano and Bover, 1995;
Blundell and Bond, 1998). From the estimation results, the coefficient
of the core explanatory variable is significantly positive at the 5% level.

TABLE 7 Results of endogenous treatment.

Variables IV-2SLS SYS-GMM

(1) (2) (3) (4) (5)

L1.Lcpa 0.7511***

(11.8342)

Digital 0.2611** 0.3840** 0.4557* 0.3474** 0.2112***

(2.0060) (2.1287) (1.8962) (2.4371) (3.2498)

Control variables YES YES YES YES YES

Province effect YES YES YES YES YES

Industry effect YES YES YES YES YES

Year effect YES YES YES YES YES

Anderson test 2392.0370*** 1358.9540*** 874.6510*** 1951.0610*** —

Cragg-Donald test 11000 {16.38}b 2844.4530 {16.38} 1489.089 {16.38} 4231.2750 {16.38} —

AR (1) test — — — — 0.029

AR (2) test — — — — 0.361

Hansen test — — — — 0.115

Adj.R2 0.0184 0.0173 0.0132 0.0202 —

Obs 3060 2550 2040 3570 3060

aL1. represents one period lagged variable.
bThe critical value of the Stock-Yogo test at the 10% level is within {}.
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The two-step SYS-GMM regression results are basically consistent
with the benchmark regression results, which verifies the robustness of
the basic conclusions of this paper.

5.5 Heterogeneity analysis

5.5.1 Heterogeneity of regional economic
development level

Heterogeneity analysis based on regional economic development
level. In order to explore the impact of digital transformation on the
low-carbon development of manufacturing industry in different
economic development levels. In this paper, the average per capita
GDP of each region is used as the standard, and the whole sample is
divided into developed regions and underdeveloped regions and
makes regression respectively. From the regression results in
Table 8, digital transformation has a significant positive impact on
the low-carbon development of the manufacturing industry, whether
in developed regions or underdeveloped regions, but the magnitude of
the impact is different. The impact of digital transformation in
underdeveloped areas on the low-carbon development of
manufacturing industry is higher than that in developed areas. This
may be due to the fact that the manufacturing industry in developed
regions is in a higher stage of development, the low-carbon production
level itself is high, and the role of digital empowerment in its low-
carbon development is relatively limited, while the low-carbon
production capacity in underdeveloped regions is relatively weak,
with greater room for improvement, and the effect of digital
empowerment is higher than that in developed regions.

5.5.2 Heterogeneity of industrial energy
consumption level

Heterogeneity analysis based on industry energy consumption
types. There are great differences in energy consumption among
different manufacturing industries. Therefore, according to the
“2010 National Economic and Social Development Statistical
Report”, this paper divides 17 manufacturing industries into high-
energy-consuming industry groups and medium-low-energy-
consuming industries groups for heterogeneity analysis. From the

results of Table 8, it can be found that digital transformation has a
positive impact on low-carbon development in both high-energy-
consuming industries and medium-low-energy-consuming industries,
but the regression results of high-energy-consuming industries are not
significant. There may be two reasons: First, the degree of digital
transformation of high-energy-consuming industries is relatively low,
and the energy-saving effect, technological innovation effect and
resource allocation optimization effect of digital transformation
have not yet been formed. Second, high-energy-consuming
industries are often traditional manufacturing sectors, many factors
restricting green development, may lead to the promotion of digital
transformation is offset.

5.6 Mechanism test

According to theoretical analysis, digital transformation
promotes low-carbon development of manufacturing industry
through technological innovation effect. This paper constructs a
mediation model to test this mechanism. The model is constructed
as follows:

TABLE 8 Results of heterogeneity analysis.

Variables (1) (2) (3) (4)

Developed
regions

Underdeveloped
regions

High-energy-consuming
industry

Medium-low-energy-consuming
industry

Digital 0.2827* 0.3298** 0.5272 0.2747**

(1.6688) (2.1533) (1.1357) (2.2727)

Control variables YES YES YES YES

Province effect YES YES YES YES

Industry effect YES YES YES YES

Year effect YES YES YES YES

Adj.R2 0.2815 0.3408 0.4893 0.2880

Obs 1564 2006 1050 2520

TABLE 9 Results of mechanism test.

Variables (1) (2)

Innov Lcp

Digital 0.021*** 0.2845***

(7.7192) (2.6775)

Innov — 1.112* (1.74)

Control variables YES YES

Province effect YES YES

Industry effect YES YES

Year effect YES YES

Adj.R2 0.9924 0.2960

Obs 3570 3570
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Innovijt � ρ0 + ρ1Digitalijt + δControlijt + μi + μj + μt + εijt

Lcpijt � α0 + α1Digitalijt + βControlijt + μi + μj + μt + εijt

Lcpijt � σ0 + σ1Digitalijt + γControlijt + μi + μj + μt + εijt

Among them, Innovijt represents the mechanism variable, and the
other variables mean the same as the benchmark model. The
mechanism test is divided into three steps: First, the core
explanatory variables and mechanism variables are regressed, and
the regression coefficient represents the impact of digital
transformation on technological innovation. Secondly, we will
return to digital transformation and low-carbon development.
Finally, digital transformation and technological innovation are
included in the regression equation to verify whether the digital
economy has an impact on low-carbon development through
technological innovation.

The mechanism test results are shown in Table 9, where column
1 shows that digital transformation has a significant role in promoting
technological innovation and passes the 1% significance test. Column
2 shows that both digital transformation and technological innovation
have significantly promoted low-carbon development and passed the
10% significance test. The above results show that digital
transformation promotes low-carbon development of
manufacturing industry through technological innovation effect.
H2 of this paper is verified. Low-carbon development is closely
related to technological innovation. Digital transformation can
promote low-carbon technology innovation by diffusing innovation
elements, which in turn can promote low-carbon development.

6 Conclusion

Using the matching data of China Industrial Economy Database,
CEADs Database and China‘s multi-regional input-output table, this
paper constructs a measurement framework for the low-carbon
development level and digital transformation degree of
17 manufacturing industries in 30 provinces in China, and
conducts an empirical study on the relationship between digital
transformation and low-carbon development from the perspective
of sub-regions and sub-industries. The results show that:

(1) The low-carbon development level of China‘s manufacturing
industry is increasing year by year, but the development gap
between regions and industries is large. At the regional level, the
development level of the eastern and central regions is higher, and
the development level of the western and northeastern regions is
lower. At the industry level, the development level of medium-
low-energy-consuming industries is higher, while that of high-
energy-consuming industries is lower.

(2) The degree of digital transformation of China‘s manufacturing
industry is on the rise, but there is an imbalance between regions
and industries. At the regional level, the eastern region has a
higher degree of transformation, while the central, western and
northeastern regions have lagged behind. At the industry level, the
high-end manufacturing industry has a higher degree of
transformation, while the traditional manufacturing industry
has a lower degree of transformation.

(3) The digital transformation of the manufacturing industry has a
significant role in promoting its low-carbon development, and this
conclusion still holds after the robustness tests such as changing

the measurement method of variables, replacing core variables,
dealing with extreme values and considering endogeneity.

(4) For sub-indicators, digital industrialization, industrial
digitization and digital development environment can
significantly promote the low-carbon development of
manufacturing industry. Among them, the impact of digital
industrialization is the most obvious.

(5) The impact of digital transformation of manufacturing on its low-
carbon development is heterogeneous across regions and
industries. The low-carbon effect of digital transformation in
underdeveloped areas is higher than that in developed areas.
The low-carbon effect of digital transformation in medium-
low-energy-consuming industries is obvious, but the low-
carbon effect of digital transformation in high-energy-
consuming industries has not appeared.

(6) The mechanism test results show that technological innovation is
an important channel for digital transformation to promote the
low-carbon development of the manufacturing industry.

The policy orientation of the research conclusion is clear. The
government should actively affirm the environmental performance of
digital transformation and create a good external environment for the
digital transformation of manufacturing industry. On the one hand,
the government should continue to increase investment in digital
infrastructure to provide support for the digital transformation of the
manufacturing industry. On the other hand, the government should
actively promote cooperation between enterprises and universities,
scientific research institutions and other institutions, establish a
technology exchange platform, open up digital technology
application channels, and accelerate the application of digital
technology. In addition, the differences in digital transformation in
different regions and industries should be taken seriously to avoid
further widening the gap. By formulating differentiated support
policies, providing policy support for backward areas can narrow
the development gap. At the same time, the construction of big data
platform can provide more adequate data resource services for
traditional manufacturing enterprises, which is conducive to the
digital transformation of enterprises.
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