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Ammonia (NH3) emissions from intensive anthropogenic activities is an important
component in the global nitrogen cycle that has triggered large negative impacts
on air quality and ecosystems worldwide. An accurate spatially explicit high
resolution NH3 emission inventory is essential for modeling atmospheric
aerosol pollution and nitrogen deposition. However, existing NH3 emission
inventories in China are still subject to several uncertainties. In this review we
firstly summarize the widely used methods for the estimate of NH3 emissions and
discuss their advantages and major limitations. Secondly, we present aggregated
data from tenNH3 emission inventories to assess the trends in total anthropogenic
NH3 emissions in China over the period 1980–2019. Almost emission estimates
reported that NH3 emissions in China have doubled in the last four decades. We
find a substantial differences in annual total NH3 emissions, spatial distributions
and seasonal variations among selected datasets. In 2012, themedian emission (Tg
yr−1) and associated minimum-maximum ranges are 12.4 (8.5_17.2) for total
emission, 9.9 (8.1_13.8) for agriculture, 0.3 (0.2_1.0) for industry, 0.4 (0.2_1.1) for
residential and 0.1 (0.1_0.3) for transport and other emission of 1.5 (0.3_2.6). In
general, peak emissions occur in summer but in different months, the higher NH3

emission intensities are concentrated in the NCP area, and in eastern and south-
central China but distinct regional discrepancy among selected datasets. Finally,
we made an analysis of the reasons and levels of difference in NH3 emission
estimates with recommendations for improvement of China’s NH3 emission
inventory.
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1 Introduction

Atmospheric ammonia (NH3), as an important component of reactive nitrogen (Nr),
plays a key role in atmospheric chemistry and the global nitrogen cycle (Erisman et al., 2008;
Fowler et al., 2013). As the most abundant alkalinity gas in the atmosphere, NH3 can readily
react with both H2SO4 and HNO3 to form ammonium sulfate and ammonium nitrate (Xu
et al., 2017b; Xu et al., 2022). These secondary ammonium inorganic aerosols account for

OPEN ACCESS

EDITED BY

Lei Liu,
Lanzhou University, China

REVIEWED BY

Yuanhong Zhao,
Ocean University of China, China
Yuepeng Pan,
Institute of Atmospheric Physics (CAS),
China

*CORRESPONDENCE

Miaomiao Cheng,
chengmm@craes.org.cn

Wen Xu,
wenxu@cau.edu.cn

SPECIALTY SECTION

This article was submitted to Atmosphere
and Climate,
a section of the journal
Frontiers in Environmental Science

RECEIVED 29 December 2022
ACCEPTED 09 February 2023
PUBLISHED 02 March 2023

CITATION

Chen J, Cheng M, Krol M, de Vries W,
Zhu Q, Liu X, Zhang F and Xu W (2023),
Trends in anthropogenic ammonia
emissions in China since 1980: A review
of approaches and estimations.
Front. Environ. Sci. 11:1133753.
doi: 10.3389/fenvs.2023.1133753

COPYRIGHT

© 2023 Chen, Cheng, Krol, de Vries, Zhu,
Liu, Zhang and Xu. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Review
PUBLISHED 02 March 2023
DOI 10.3389/fenvs.2023.1133753

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133753/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133753/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133753/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133753/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1133753&domain=pdf&date_stamp=2023-03-02
mailto:chengmm@craes.org.cn
mailto:chengmm@craes.org.cn
mailto:wenxu@cau.edu.cn
mailto:wenxu@cau.edu.cn
https://doi.org/10.3389/fenvs.2023.1133753
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1133753


20%–60% of PM2.5 in China (Ye et al., 2011; Huang et al., 2014),
which are responsible for serious air pollution in the past 2 decades
(Meng et al., 2022). Moreover, substantial NH3 emission led to
excessive Nr deposition, resulting in a series of environmental issues
including biological diversity reduction and soil acidification, and
degradation of water bodies by runoff (Liu et al., 2011; Xu et al.,
2015b; Xu et al., 2018).

The Haber–Bosch process converts atmospheric inert N2 to
biologically available nitrogen. At the end of the 20th century, about
50% of the world population was fed by food production derived
from chemical nitrogen (N) fertilizer inputs (Erisman et al., 2008).
However, the increased N fertilizer input caused a decline in the
nitrogen use efficiency, enhancing N surpluses (inputs minus crop N
removal), resulting in N loss in the form of gas emissions, including
NH3 and of nitrate to water. Global agricultural NH3 emissions
increased by 78% since 1980 (Liu et al., 2022a). Livestock manure
and synthetic fertilizers represent the two most important
contributors of NH3 emissions, and together they represent more
than 70% of the global emissions and even 80% of NH3 emissions in
Asia (Bouwman et al., 2002; Streets et al., 2003).

China is recognized as a global hotpot of NH3 emission owing to
agricultural intensification since 1980 with related strongly
enhanced N fertilizer applications (Warner et al., 2016; Zhan

et al., 2021). An accurate NH3 emission inventory is important
to guide nitrogen management for improving air quality. Numerous
studies have been published, including NH3 emission estimates in
China with a bottom-upmethod, focusing on agriculture systems. In
addition, improved methods have been developed to estimate
emissions by a top-down approach. For example, inverse
modeling has been used to constrain NH3 emissions, this
approach improves a priori bottom-up emissions by assimilating
satellite observation or surface monitoring network datasets (Cao
et al., 2020; Chen et al., 2021; Marais et al., 2021). However, recent
estimates of total NH3 emissions for China differ by more than a
factor of two, due to using different methods, considering different
emission factors and emission sources (Kong et al., 2019). This
uncertainty can be even much larger at regional scale due to large
differences in the spatio-temporal distributions of the emissions
(Zhang et al., 2018).

In this review, we compared ten existing long-term NH3

emission budgets for China (Table 1). We analyzed
characteristics of NH3 emissions in China from several of the
state-of-the-art published datasets, covering the period 1980_

2019, and present the trends of NH3 emission over the past few
decades. In addition, we present their estimates for the spatial
distributions over China for the base year 2015 and the monthly

TABLE 1 Summary of the inventories used in this study.

Inventory Method Area Spatial
resolution

Research
period

Temporal
resolution

Emission sources
(Supplementary

Table S4)

Characteristic

MEIC v1.3 Emission
factor

China 0.1 ° × 0.1 ° 2008_2017 Monthly Agriculture, Industry, Energy,
Residential, Traffic

Multi-source big data integration;
The long historical data sets of
activity data and emission factors
were developed by collecting
international and national statistics
and related proxy data. Data sets of
gridded emission are obtained; The
effect of control technologies is
considered in the methods

REAS v3.2.1 Emission
factor

Asia 0.25 ° × 0.25 ° 1950_2015 Monthly Agriculture, Industry, Energy,
Residential, Traffic

EDGAR v6.1 Emission
factor

Global 0.1 ° × 0.1 ° 1970_2018 Monthly Agriculture, Industry, Energy,
Residential, Traffic

CEDS Emission
factor

Global 0.5 ° × 0.5 ° 1970_2017 Monthly Agriculture, Industry, Energy,
Residential, Traffic and Other

Emission sources are classified by
fuel types, the effect of control
technologies is not included; others
as above

Kang et al.
(2016)

Emission
factor

China 1 km × 1 km 1980_2012 Monthly Agriculture, Industry,
Residential, Traffic and Other,

Energy is not included

Corrected agricultural emission
factors by considering several
influencing factors; various types of
subsystems were included

Fu et al. (2020) Process-
based model

China 1 km × 1 km 1980_2016 Yearly Agriculture, Industry, Residential
and Other. Energy and Traffic are

not included

Zhang et al.
(2017)

Process-
based model

China Provincial 2000_2015 Yearly Agriculture, Industry, Energy,
Residential, Traffic and Other

Ma, (2020) Emission
factor

China 1 km × 1 km 1978_2017 Yearly Agriculture, Industry,
Residential, Traffic and Other.

Energy is not included

Dong et al.
(2010)

Emission
factor

China 1 km × 1 km 1994_2006 Yearly Agriculture, Industry,
Residential. Energy and Traffic

are not included

Emission factors were not corrected,
only the agricultural system and the
human metabolism were considered

Liu et al.
(2022b)

Top-down China 0.1 ° × 0.1 ° 2008_2019 Monthly REAS-v2 Satellite-based surface NH3

concentrations were estimated. The
mass balance method was used to
inverse NH3 emissions. Monthly
spatial distribution was performed
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variations, considering the period included by each model. The
primary objective is to clarify the differences among the various
published NH3 emission estimates for China. We finalize the paper
with recommendations for future steps in developing improved NH3

emission inventories.

2 Methods on estimation of NH3
emissions

Multiple publications have reported NH3 emission inventories
for China. The methods are usually divided into two different
approaches, known generally as bottom-up and top-down
methods, where bottom_up approaches can be further subdivided
in empirical bottom-up approaches and process-based model
bottom-up approaches, as described below.

2.1 Bottom-up empirical model approach

In the empirical bottom-up method, emissions of NH3 are
calculated using statistical compilations of the products of the
activity data (the sources) and their corresponding condition-
specific emission factors (Zheng et al., 2021). This statistical
bottom-up method is also sometimes referred to as an emission
factor method, and uses the following general equation:

E NH3( ) � ∑
i

∑
p

∑
m

Ai,p,m × EFi,p,m( )

where E(NH3) is the estimated annual total NH3 emissions over
some area (e.g., using provincial boundaries summed at the national
scale of the country. i, p, and m represent the source type, the study
area in China, and the month, respectively. Ai,p,m is the activity data
for each specific category, and EFi,p,m is the corresponding emission
factors (Huang et al., 2012; Kang et al., 2016).

Agricultural activities represent the largest contributor of
NH3 emissions in China, and recent reports confirm that
agricultural activities account for more than 80% of total NH3

emissions nationally (Zhang et al., 2011; Huang et al., 2012; Xu
et al., 2016). Cropland ecosystems are an important source of
atmospheric NH3 because of extensive nitrogen fertilizer
applications, which lead to substantial NH3 volatilization.
Earlier research has pointed out that NH3 volatilization rates
from fertilizer application strongly depend on fertilizer types,
rates, and application method (Huang et al., 2012). In addition,
emissions depend on prevailing environmental conditions, such
as soil properties and meteorological conditions (temperature,
wind speed and precipitation) (Li et al., 2021). The adjusted EFs
are then a function of the above parameters for specific
conditions (Huang et al., 2012), as shown in the following
equation:

EFi � EF0i × CFpH × CFrate × CFT × CFmethod

where EFi is the emission factor for a specific condition. EF0i is the
reference emission factor associated with fertilizer type i, and CF are
the correction factors for each variable, such as pH, application rate,
temperature and fertilization methods, including basal dressing and
top dressing (Huang et al., 2012). These parameters used to adjust

EFs are derived from peer-reviewed literatures, which is uniform
European EFs or referring to existing native measurements.

Ammoniacal nitrogen (TAN) in livestock waste can be
hydrolyzed to ammonium and subsequent NH3 volatilization to
the surrounding air, or lost through other pathways during various
stages of manure management such as storage and spreading,
represents another important source of emission that must be
included in ammonia inventories. Most of the earlier studies
calculated NH3 emission from livestock waste as a product of
domestic animal quantities multiply by an approximate annual
EF per animal (Buijsman et al., 1987). More recent researches
improved estimates using emission factors based on distinct
phases of manure management for different livestock categories,
including manure housing, storage, spreading and grazing stage
(Dong et al., 2010; Zhang et al., 2010). Other studies compiled recent
inventories of optimized NH3 emission using a mass-flow approach,
which regards domestic animals in several typical categories, and
distinguishes emissions from animals raised by completely different
agricultural practices, including free-range, intensive and grazing
systems (Li et al., 2021). For each of livestock system, TAN inputted
into manure management is the product of the daily amount of
urine and excrement produced (kg (day capita)−1, N content (%),
and TAN content (%).The livestock NH3 emissions are estimated by
multiplying TAN at four different stages of manure management:
outdoor, manure housing, storage, and spreading onto farmland
with the corresponding EFs (Huang et al., 2012; Kang et al., 2016).
The EFs from each livestock waste management are affected by
many additional factors. For example, NH3 emissions from the
housing stage depends on factors such as housing conditions,
humidity, temperature, from spreading stage depends on
practices such as basal or deep application.

2.2 Bottom-up process-based model
approach

Although improved estimation methods with correction
emission factor can reduce uncertainties, there remain several
uncertainties. For example, due to a lack of well-defined EFs, the
parameters applied in one study conducted under one set of
environmental conditions are likely not fit to be directly
deployed in a subsequent inventory or study under different
conditions. For domestic animals, the potential EFs of each
source cannot be exactly determined as conditions vary widely
over time and distance (Wang et al., 2021). To narrow the gap
between different methods of NH3 emission estimates and the real
emission, process-based models (e.g., DNDC, CHANS) have been
introduced. These process-based models capture spatio-temporal
variations of NH3 emissions by incorporating input-output
processes and the interactions between subsystems (Fu et al.,
2015; Xu et al., 2018).

The basic principle of process-based models is the use of a
mass balance of model inputs and outputs of the system,
quantifying all relevant Nr flows and their interactions with
the linkages among air, soil and water subsystems (Gu et al.,
2012; Luo et al., 2018). For calculation of atmospheric NH3,
studies mainly focus on the NH3 subsystem, since the process-
based modes consider all significant N outputs, including gas
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emissions (N2O, NO, NH3), dissolved soil N and crop uptake in
response all relevant cropland N inputs (organic manure, N
deposition, nitrogen fixation, crop residues and synthetic N
fertilizer). The resulting total NH3 emissions are then
calculated as the product of NH3 concentration in the soil
liquid phase and the parameterized emission coefficients
(Yang et al., 2022).

In summary, NH3 emissions calculated by a process-based
model approach is a product of corresponding parameterization
factors. The model needs a corrected the EFs by considering relevant
environmental conditions to accurately assess the emission of the
main contributors to NH3 emissions.

2.3 Inverse modeling

An inversion approach also provides insights into the spatial and
temporal patterns of NH3 emissions. Inverse modeling starts from
an a priori bottom-up emission estimates, and refines it by
assimilating observation datasets to obtain a posteriori emissions.
This method is also referred to as a top-down method.

The current inverse estimates use either simple mass-balance
methods or more complicated data assimilation schemes, such as a
Kalman filter and variational data-assimilation. Such methods start
with a model simulation that uses a priori emissions and translates
these emissions into “simulated observations”. Thus, atmospheric
chemistry transport models are an indispensable tool. The Model-3
atmospheric model represented by the Community Multiscale Air
Quality Modeling System (CMAQ) and GEOS-Chem model have
been widely used to simulate air pollutant concentrations (Pleim and
Ran, 2011; Chen et al., 2021; Marais et al., 2021). Next, the mismatch
between simulated and true observations is used to define a cost-
function that is subsequently minimized. In the case of NH3, the
observation datasets used in the inversion can be either from surface
monitoring of NHX or satellite observations of NH3 column
concentrations.

There are some existing studies that optimized NH3 emissions in
China using datasets from surface monitoring networks. NH3

emissions in China were constrained by assimilating NH3 surface
observations using an ensemble Kalman filter (Kong et al., 2019).
This method is formulated as follows:

x � cT , ET( )T

xa � xb + PbHT HPbHT + R( )−1 y0 −Hxb( )

where x represents the augmented state. In this state, c and E
represent the vectors of monthly NH3 concentrations and
emissions, respectively. b is the background state (a priori),
and a is the update state (a posteriori). Pb background error
covariance matrix that is flow dependent and represented by an
ensemble [50 in Kong et al. (2019)]. y0 represents the vector of the
observations with an error covariance matrix of R. H is the linear
observational operator that maps the m-dimensional state vector
x to a p- (number of observations) dimensional observational
vector Hxb.

Paulot et al. (2014) improved the NH3 emissions in China for
2005–2008 by minimizing a cost function using variational data-
assimilation. NH4

+ wet deposition flux measurements from a

monitoring network were used to constrain NH3 emissions. The
cost function (J) defined as

J � 1
2

ysim − yobs( )TS−1obs ysim − yobs(( ) + 1
2
ηTS−1a η

where yobs and ysim represent the vector of observed monthly wet
deposition fluxes of NH4

+ and the collocated model values. Sobs and
Sa represent the error covariance matrix of the observation system
and that of the emissions. The second (background) term in the cost
function represents the costs that are related with deviations from
the a priori emissions. In their formulation, η is a vector of log-
normal scaling factors with elements ηi � ln (E/Ea),where E and Ea
are the corresponding optimized and a prioriNH3 emissions for grid
square i (Paulot et al., 2014).

Recent advancement in satellite remote sensing techniques
enables the observation of atmospheric NH3 vertical columns
accurately across time and space. Several studies reported
observations of the spatio-temporal distribution of NH3 by
utilizing the NH3 column density retrieved from the
Tropospheric Emission Spectrometer (TES) (Beer et al., 2008;
Shephard et al., 2015), the Cross-track Infrared Sounder (CrIS)
(Shephard and Cady-Pereira, 2015), the Atmospheric Infrared
Sounder (AIRS) (Warner et al., 2016; Warner et al., 2017) and
the Infrared Atmospheric Sounding Interferometer (IASI) (Van
Damme et al., 2020; Chen et al., 2021; Luo et al., 2022).

Inverse modeling techniques assimilating these satellite
observations have provided unique opportunities to improve NH3

emission estimates with high spatial and temporal resolution using
continuous, near real-time, large-scale measurement (Chen et al., 2021).
This top-down method has been applied to derive NH3 emissions in
other countries and at the global scale (Cao et al., 2020; Chen et al., 2021;
Luo et al., 2022; van derGraaf et al., 2022), but such inversion studies are
still very limited in China. Zhang et al. (2018) optimized Chinese NH3

emissions by assimilating TES satellite observations of NH3 column
concentration for March–October 2008. A state-of-the-art study
reported long-term IASI-derived NH3 emission in China by the
mass-balance method (Liu et al., 2022b). This mass-balance method
was used to exploit the ratio of NH3 emissions to NH3 concentrations.
The satellite-derived monthly top-down NH3 emissions (Esat) are
derived as follows:

Esat � Ωsat ×
Emodel

Ωmodel

where Ωsat represents either satellite observations of NH3 monthly
columns or surface NH3 concentrations derived from satellite
columns; Emodel are the monthly NH3 emissions used in model,
and Ωmodel represents either the monthly NH3 columns or surface
concentration during the satellite overpass simulated by ATM.

Besides, some research validated the inverse model results by
combining data from monitoring networks with aircraft remote
sensing NH3 observations (Shephard et al., 2015; Sun et al., 2015).

3 Characteristics on NH3 emission in
China

We collected ten NH3 emission estimates for China for this
review with detailed information on each inventory listed in Table 1.
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These long-term studies provided an annual trend in NH3 emission,
such that we can further survey the impact of policies and
regulations on NH3 emissions. Some of these are publicly
available datasets [(MEICv1.3), (REASv3.2), (EDGARv5.0) and
(CEDS_2020_v1.0)], except for some existing literatures we
referred, thus we analyze their spatial and temporal distributions
by simply downloading gridded monthly data and take out gridded
NH3 emission in China from some global datasets. These estimates
covered comprehensive anthropogenic sources, and do not focus
just on the agricultural system. In addition, some datasets offered

separate NH3 emission estimates by sector. This allows an analysis of
the contributions of different sectors to the total NH3 emission.

3.1 Annual trends

Results of interannual variation of NH3 emission for the past few
decades in China derived in the ten investigated different studies are
given in Figure 1 and Table 1. According to these studies, the
national annual emission has roughly doubled since the 1980 from
6.4 (5.2–8.5) Tg yr−1 to 14.0 (9.8–20.8) Tg yr−1 (median, minimum-
maximum value) in 2015 (Figure 1, Supplementary Table S1). From
an overall perspective, the emission trends can roughly be divided in
two stages. From 1980 to 1996, the emissions increased steadily by
approximately 5.2 (1.9–6.2) Tg yr−1, with a rapid annual growth rate
of about 2.1% yr−1. This is due to an increased synthetic fertilizer
application and the fast increase in livestock production, which
increased in that time period by a factor of 2 (Kang et al., 2016; Fu
et al., 2020; Yu et al., 2020).

NH3 emissions experienced a temporary slow-down in
1997 and then began to fluctuate with slower growth rates in
later years. The emission decline in 1997 can be attributed to the
Asia financial crisis which caused a significant reduction in both
the livestock and fertilizer industries. From 1998 to 2015,
emissions increased by about 1.9 (0.7–2.3) Tg yr−1. A gradual
decline in the growth rate of emissions starting in 1998 is likely
due to a variety of national strategies and government policies
aimed at mitigating NH3 emissions (Ma, 2020). In that period,
various emission reduction policies were introduced, such as the
corrected air quality standard, national action plan on air
pollution control, fertilization recommendation and shut

FIGURE 1
Comparison of ammonia emissions in China from ten published results and datasets.

FIGURE 2
The range of differences in ammonia emission from different
sectors in 2012 from eight different studies.
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down of small thermal power plants. Encouraged by the Chinese
government, a plan on zero increase in fertilizer use was raised in
2015 (Liu et al., 2020). Under the government’s initiative and the
effects of a growing market economy, traditional free-range
systems for the livestock industry were gradually replaced by
large-scale intensive methods, and significant changes in
farming practices were implemented. Another influence is in
the replacement of ammonium bicarbonate (ABC) with urea,
and since NH3 volatilization from ABC is more than two-fold
that from urea, a measurable decline in emissions followed
(Kang et al., 2016). It should also be noted that changes in
the proportions of livestock categories occurred. For example,
the class proportion of intensively reared animals for beef cattle,
pigs and laying hens significantly increased (Kang et al., 2016).
These changes explain why fertilizer production and annual
population of poultry have both doubled after 1998 without a
corresponding increase in national NH3 emissions.

Contrary to slower growth rates in NH3 emission based on
bottom-up methods, Liu et al. (2022a) suggested a rapid growth rate
in NH3 emission from 2009 to 2015, with a peak in 2015, using a top-
down approach. This increase is drivenmainly by observed increases
of IASI NH3 column concentrations. This observed increase in NH3

columns over China is likely largely due to a decrease in SO2

emissions in China since 2013 because of air pollution control
measures, reducing the transformation of alkaline NH3 to
(NH4)2SO4 (Luo et al., 2022).

NH3 emissions in existing databases show visible differences
both in terms of total annual emissions and long-term trends. The
levels of NH3 emission in the same years are widely different
depending on the methods used to obtain the estimates (Figure 1
and Supplementary Table S1). Some results showed gradual
stabilization of emissions, while others observed a consistent and
stable growth pattern. Such large variations are primarily caused by
the following reasons:

1) Agricultural activities represent the largest contributor of NH3

emissions in China, and the range of variation in agriculture
emission mainly determines the differences in the estimates of
total NH3 emission (Figure 2 and Supplementary Table S3). The
activity level of specific sources and emission factors (EFs) are the
two principal factors directly affecting NH3 emission estimates,
most of these results are based on bottom-up methods. The
activity data of agriculture such as fertilizer consumption and
livestock numbers are comparable, because data sources in most
previous studies cited the same statistical yearbook of each
province. The discrepancies are thus mainly a result of
inconsistent EFs applied in different inventories, especially
some studies use uniform European EFs without adjust by
parameters for specific conditions.

In this review, we included studies that mostly employed constant
European-based EFs without considering specific agricultural practices
and local environmental factors. It should be noted that many recent
studies in China to derived emission factors (functions) for fertilizer and
manure application as a function of management (e.g. fertilizer type,
fertilization method), crop type, livestock type, climate (rainfall,
temperature) and/or soil properties (e.g. SOC, clay, pH, CEC, bulk
density) such as (Huang et al., 2012; Xu et al., 2015a; Zhou et al., 2015;

Xu et al., 2016; Xu et al., 2017a; Wang et al., 2018; Zhang et al., 2018).
Considering high volatilization of ABC compared to urea, and
interannual variation of synthetic fertilizer types, means some
previous studies adopted much lower EFs than those who adjusted
for the local environmental conditions, or thosewho estimated emission
from livestock manure employing a mass-flow approach (Huang et al.,
2012; Kang et al., 2016). The corrected EFs differed by more than a
factor of two when the full range of influences is considered. For
instance, the final corrected EFs used in Zhang et al. (2017) are
approximately 16.6% higher than in other studies.

2) The source categories included in the compiled inventories are
not identical (Supplementary Table S4). Notably, the non-
agriculture sectors were usually not considered in some

FIGURE 3
The seasonal variations of NH3 emissions (Tg/month) in China
from six different studies. (Monthly emissions were collected from the
most recent year available for each dataset).

FIGURE 4
The seasonal pattern of major emission sources in China (Tg/
month). (The data source is only from REAS because fertilizer and
livestock manure are merged as agriculture in other datasets.)
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compiled ammonia inventories, mainly because of their
relatively small contribution to total emissions. Consequently,
several inventories reported that cropland and livestock
emissions gradually stabilized since the beginning of the 21st
century, but total emissions still show a steady growth because of
miscellaneous non-agricultural sources that rose sharply during
this period (Fu et al., 2020; Ma, 2020). The emissions from traffic,
waste disposal and residential sectors are expected to be
dominant in urban and industrial areas, where contributions
from the agricultural sector are relatively small (Chang et al.,
2019; Fu et al., 2020; Feng et al., 2022). Overlooking these non-
agriculture sectors explains thus further the differences in trends
and the large range in NH3 emission estimates.

3) The definition of the emission categories and the inclusion of
subcategories is inconsistent and sometimes unclear. These
discrepancies are not only reflected in categorization of
sources, but also in terms of subcategories for each category.
Cropland fertilization is included in most estimates. In the
study of Kang et al. (2016), however, only synthetic fertilizer
applications were calculated, while others reported the
subcategories “synthetic fertilizer” and “organic fertilizer”
(manure spreading) separately (Fu et al., 2020; Kurokawa
and Ohara, 2020; Ma, 2020). Moreover, the “agricultural
soil”, “N-fixing crop” and “crop residue compost”
subcategories were counted as part of the agricultural system
in some studies (Supplementary Table S4) (Kang et al., 2016;
Zhang et al., 2017; Ma, 2020). Similar issues exist with other
sources, such as residential and biomass burning. The inclusion
or exclusion of a subcategory may lead to greater uncertainty in
NH3 emission, thereby increasing the difficulty of comparing
different published results.

3.2 Seasonal variation

Figure 3 shows that the inventories report substantial seasonal
variations of NH3 emissions from six existing studies. The tendency
of monthly emissions to rise from January to July and then decline
agrees with the temperature patterns and the timing of known
agricultural practices. In general, peak emissions occur from June to
August, and the highest and lowest monthly emissions were
recorded as 1.1 (0.7–3.2) Tg/month in July and 0.7 (0.5–1.4) Tg/
month in January. Emissions in summer are approximately two
times as high as in winter. These features coincide with seasonal
distributions based on studies using an inversion model approach
(Paulot et al., 2014; Kong et al., 2019; Evangeliou et al., 2021). The
satellite-based monthly spatial distribution in China from (Liu et al.,
2022b) show that high NH3 emissions in North China Plain (NCP)
occur in June and July.

The seasonal variation of NH3 emission is mainly dominated by
agriculture activities and temperature, especially synthetic fertilizer
application (Figure 4). In China, the spring farming begins in April,
and the NH3 emissions continuously increase due to intensive
fertilizer application coupled with higher temperatures in the
following 1–2 months. Some summer plants such as maize are
usually seeded in June with base and topdressing fertilization of
other plants. Associated cropland emissions thus peak during June
and August (Huang et al., 2012; Kang et al., 2016). From autumn

onwards, most of the crops are harvested, which leads to an overall
decline of emissions. Conversely, less NH3 volatilization related to
lower temperatures and rare cultivation occurs during the winter.
The NH3 emission from livestock manure shows a minor seasonal
pattern, mainly dominated by seasonal temperature patterns
(Figure 4) (Zhang et al., 2018; Li et al., 2021). As with NH3

emissions from livestock and fertilizer applications, the NH3

emissions from biomass burning or forest fires also show a
distinct seasonal distribution. However, these effects do not
significant influence the temporal disparities of total emissions in
these studies due to their relatively small overall contributions (Kang
et al., 2016).

Apart from the obvious seasonal variations, some modelling
studies report significantly different monthly emissions. For
example, the emission peaks often occur in different months. In
particular, Paulot et al. (2014) used a new agricultural emissions
inventory (MASAGE_NH3) to suggest that the largest emissions
occurred in April and July due to the timing of fertilizer practices.
This phenomenon is consistent with some earlier studies that
focused on cropland fertilization only (Zhang et al., 2011; Wang
et al., 2021). Others studies reported peak NH3 emissions that
occurred in May and September due to inaccurate grasp of the
timing of fertilizer application (Cao et al., 2011; Hoesly et al., 2018).
The seasonal distribution from CEDS show a more uniform
emission peak compared to other studies. In CEDS studies,
regional procedures and practices of agriculture fertilization were
ignored, leading to large variation in monthly emissions. Crop types
are another confounding factor. There is considerable spatial
heterogeneity in crop-categories in China, with maize mainly in
the north and rice mainly in the south. Moreover, even within a
single crop type category, variations exist. For example, maize crops
include spring maize and summermaize. Spring maize is fertilized in
March-April but the optimal date of summer maize fertilization is
much later, from June to August depending on the region (Li et al.,
2021). The actual farming conditions drive these differences in the
fertilization dates of different provinces. In most previous studies,
fertilization dates are fixed to a specific month without considering
spatial heterogeneity, and they ignore the different crop types and
agricultural practices on the ground. However, recent studies
consider quite some variations (e.g. Li et al. (2021)), thus
explaining differences in the temporal variation.

3.3 Spatial distribution

The spatial patterns of NH3 emission data are compared for the
year 2015, being available from four gridded datasets revealing a
large spatial variability over China (Figure 5). The highest NH3

emission intensities are concentrated in the NCP area, and in eastern
and south-central China, due to intensive agricultural practices in
the provinces of Shandong, Hebei and Henan. Although six
provinces (Shandong, Henan, Hebei, Tianjin, Jiangsu and Anhui)
account for only 8% of mainland China, they contribute almost 30%
of the total NH3 emission in China. The high emission intensity in
the NCP is associated with a rapid growth rate in fertilization and
livestock practices in that region. In addition, predominately
alkaline soil properties in NCP further result in higher NH3

volatilization (Zhang et al., 2010; Fu et al., 2020). The Beijing-
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Tianjin-Hebei region shows remarkable NH3 emissions, dominated
by non-agriculture sources consistent with the result of satellite
remote sensing observations (Van Damme et al., 2015; Liu et al.,
2017).

The intensive agriculture of the Sichuan Basin plays a significant
role in high NH3 emission in southwest China, with the highest
observed growth rates of ~2.3% yr−1 (Table 2). The emission
contribution from Sichuan accounts for 6.5% of the national total
emission, mainly caused by fertilizer application and livestock,
which jointly contribute 87% for this major regional emitter
(Huang et al., 2012). In contrast, the regions with low NH3

emission are primarily located across northwest and northeast
China. These regions are characterized by dry climates with

infrequent application of synthetic fertilizer, lower population
densities and less overall industrial activity (Ma, 2020).

Some studies show a higher emission intensity in NCP, eastern
and Sichuan basin compared to other regions (MEIC and REAS).
This is similar to spatial distribution derived by IASI, and satellite-
based studies also show a high spatial variation and hotspot areas
(Chen et al., 2020; Liu et al., 2022b). Other datasets show a more
uniform distribution in most areas in China (EDGAR and CEDS).
The major reason of this discrepancy is again that inconsistent EFs
of agricultural activities are applied in different inventories. The
neglected non-agriculture sectors and subcategories are also
explanations for discrepancies in the spatial distribution of NH3

emissions in the different inventories.

4 Summary and recommendations

Increased anthropogenic activities in China have driven a two-
fold rise in NH3 emission to the atmosphere over the past few
decades (Figure 1). Cropland and livestock emissions represent the
largest contributors in China, accounting for approximately 80% of
total emission (Figure 2). Non-agriculture sources, such as human
excrement, waste treatment, traffic and NH3 escape, contribute
much less to the emissions. Although slowing, the growth rate in
NH3 emission from agriculture and non-agriculture sources has
increased rapidly over the recent decades (Ma, 2020). Emission
hotspots are located in the North China Plain, theMiddle and Lower
Yangtze River delta of economic development, and the Sichuan
Basin (Figure 5). Seasonally, the peak NH3 emissions is predicted in

FIGURE 5
Spatial distribution of gridded NH3 emissions in 2015 from China.

TABLE 2 The average annual growth of NH3 emission in six different regions
from 1980 to 2010. (Detailed information of regions is in Supplementary
Table S2.)

Datasets 1980 (Tg yr−1) 2010 (Tg yr−1) Rate %

China 6.4 (4.7–8.5) 11.6 (9.5–14) 1.8

NCP 0.9 (0.7–1.7) 1.8 (1.8–2.5) 2.2

NE 0.7 (0.4–0.8) 1.1 (0.6–1.4) 1.7

EC 1.2 (1.2–1.9) 1.6 (1.0–3.0) 1.0

SCC 1.4 (0.9–1.8) 1.9 (1.5–4.0) 0.9

SW 1.2 (1.1–1.7) 2.5 (2.0–2.5) 2.3

NW 0.9 (0.5–1.5) 1.6 (1.3–2.2) 2.0
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summer, consistent with agricultural practices and changes in
temperature (Figure 3 and Figure 4).

Several differences are identified in the estimates of country
totals, spatial distribution and monthly variation in NH3 emission
by the various studies. The differences are mainly caused by the wide
range of EFs used by different studies, and the neglect of some or all
non-agricultural sources (Xu et al., 2016; Kong et al., 2019).
Additionally. Some studies ignored the actual agricultural
practices and existing spatial heterogeneity of agricultural
activities (Li et al., 2021). Several prevailing inventories only had
coarse temporal and spatial resolutions. The NH3 emission estimates
are often accomplished at provincial scales and then allocated to
coarse spatial grids with the consequent loss of detailed point
sources (Dong et al., 2010; Fu et al., 2020). Based on the insights
from our comparison of NH3 emission estimates, we offer the
following five recommendations.

First, we should establish a logical and clear scheme for NH3

emission calculations, including major emission sectors and
categories. A standardized classification of subcategories needs
to clarify important concepts to reduce bias in emission
estimates. This can be accomplished, by incorporating energy,
power, fuel combustion source contributions, and by including
other conditions (Xian et al., 2019). The classification of
subcategories will form a consistent basis for comparison of
different results. Clear definitions of each sector and all the
subcategories will reduce biases in the future. The neglect of
some sources leads to biases in emission estimates, especially as
the importance of non-agricultural sources will gradually
increase in the future (Chen et al., 2022).

Second, we need to improve the accuracy of primary
parameters that drive NH3 emissions, such as cropland
fertilization, livestock excretion and their corresponding
emission factors. We recommend replacement of uniform
European EFs with locally-measured-field EFs (Zhang et al.,
2018). Specify the factors that should be considered for EFs
correction and use a standard and transparent method to apply
these corrections.

Third, we noticed that data downloaded from the same data
sources at different times varied significantly. Clear documentation
of data collected and the use of the most up-to-date statistics are
essential, especially when there are major corrections later applied to
the records (Zheng et al., 2021).

Fourth, there are both bottom-up and top-down methods of
pollutant estimates, and each approach possesses specific strengths
and weaknesses based on different assumptions. We recommend
developing NH3 emission estimates with different approaches and
comparing the results to further improve our understanding of NH3

emission and the main uncertainties. An ideal approach is to
combine bottom-up with top-down inversion methods (Paulot
et al., 2014; Zhang et al., 2017).

Finally, the quality, accuracy, temporal resolution and timeliness
of national statistics should be continuously improved through the
design of better data-collection methods (farm surveys and
censuses). The numbers of different types of livestock directly

impact the accuracy and usefulness of NH3 emission estimates,
but the necessary input data are often lacking or incomplete in some
regions (Zhang et al., 2018). The statistical activity data are at the
annual scale at present, and significant reduction in the uncertainties
of seasonal and spatial estimates can be obtained if monthly statistics
are employed. A final issue is that relevant statistics are often
published with substantial time lags because of the time and
resources needed to collect and process the input data. This
situation leads to the use of suboptimal data from previous years
for current year model simulations and NH3 estimates (Zhang et al.,
2021).
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