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Water environment health assessment is one of the vital fields closely related to
the quality of human life. The change ofmaterial contained in water will lead to the
reflectance change of hyperspectral remote sensing data. According to this
phenomenon, the water quality parameters are calculated to achieve the
purpose of water quality monitoring. Series knowledge graphs in this field are
drawn after analyzing 564 publications from WOS (Web of Science) and EI (The
Engineering Index) databases since 1994 with the support of VOSviewer and
CiteSpace. Including statistics of documents publication time, contribution
analysis, the influence of publications and journals, and the influence of
funding institutions. It is concluded that the research trend of hyperspectral
water quality monitoring is the machine learning algorithm based on UAV
(Unmanned Aerial Vehicle) hyperspectral instrument data by analyzing scientific
research cooperation, keyword analysis, and research hotspots. Thewhole picture
of the research is obtained in this field from four subfields: application scenarios,
data sources, water quality parameters, and monitoring algorithms in this paper. It
is summarized that the miniaturization, integration, and intelligence of
hyperspectral sensors will be the research trend in the next 10 years or even
longer. The conclusions have significant reference values for this field.
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1 Introduction

Water is called the source of life, which makes protecting water resources, preventing
water pollution and rational using water resources hot issues of concern to all mankind (Hou
et al., 2022). In the summer of 2022, the water level of rivers dropped sharply, and the
residents had difficulty drinking water in many countries both in Europe and Asia, making
the public pay more attention to water resources (Zhang et al., 2022). Remote sensing
technology has been applied to water environment monitoring for more than 40 years
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(Mueksch, 1994). It is generally believed that remote sensing
technology can play a vital role in water boundary, water depth,
water temperature, and water quality evaluation (Leuven et al., 2002;
Calderón et al., 2013; Rotkiske and Jr, 2018).With the increase in the
number of bands and the optimization of the algorithm, more and
more water quality parameters can be quantified, especially in water
quality evaluation (Mbuh, 2018). Early water color remote sensing
was mainly used in a wide range of marine applications (Herut et al.,
1999; Wolny et al., 2020). While more and more advanced sensors
are recently applied to water quality monitoring with the
aggravation of inland water quality problems (Qian et al., 2017;
Cao et al., 2018; Niu et al., 2021; Lu et al., 2022).

The application scenario of remote sensing technology has
gradually transitioned from the ocean and river to the study of lakes
and urban water networks, which proves that remote sensing
technology has steadily developed from macroscopic observation to
microscopic monitoring (Delegido et al., 2014). Regarding monitoring
data sources, from satellite and airborne toUAV andwater surface buoy
data (Zhang et al., 2022). The data showed a change in law from
multispectral to hyperspectral integration. The water quality parameters
monitored by remote sensing technology gradually transition from
chlorophyll and cyanobacteria to calculate more than ten chemical
parameters (Govender et al., 2007). The application range is
progressively developed from optical parameters to non-optical
parameters. And the research of monitoring algorithms has made
rapid progress, from regression and correlation algorithms to
artificial intelligence and machine learning algorithms (Maier and
Keller, 2019; Sarigai et al., 2021). As a result, the efficiency and
accuracy of data calculation are constantly improving.

Although hyperspectral remote sensing technology is one of
the irreplaceable technologies for water quality monitoring and has
become the scientific community’s consensus, there is no mature
theory and method to replace the traditional chemical reagent
method completely, and many studies are still in the exploratory
stage. Therefore, it is of great significance for the follow-up
research to fully evaluate the application status of remote
sensing technology in the water environment (Lee et al., 2008;
Zhang et al., 2009; Harmel et al., 2012; Song et al., 2012). Some
publications on Hyperspectral water quality monitoring and
analysis have appeared in different disciplines since 1994
(Mueksch, 1994). It is not difficult to find that the existing
research mainly focuses on limited fields such as atmospheric
correction, data preprocessing, modeling algorithms, and
application case analysis through the investigation of
publications in this field (Salama and Monbaliu, 2002; Reuter
et al., 2017). There are few publications on application
scenarios, data sources, monitoring indicators, and algorithm
trends. Only Joyce et al. researched the publication’s analysis of
multisensor technology for water quality monitoring in catchment
areas through literature metrology analysis and knowledge
mapping analysis (O’Grady et al., 2021).

Other publications discuss single indicators, such as
chlorophyll and total phosphorus, but rarely involve a
systematic analysis of water quality parameters combined with
hyperspectral technology (Maier and Keller, 2019; Li et al., 2020).
In addition, there is almost no comprehensive study on the
development trend of water quality parameter calculation
methods. Considering that the data platform of Science

Network (WOS) is more scientific research papers, and the EI
data platform includes engineering application publications based
on summarizing previous studies, this paper searches the two data
platforms of WOS and EI to provide a more comprehensive
information. Therefore, this paper conducts a bibliometric
analysis on 564 selected publications, quantifies the literature
performance, and analyzes highly cited literature by using the
data analysis function of WOS and EI databases. Meanwhile, in
the knowledge map in the visual software of VOSviewer,
CiteSpace, and Excel, the knowledge transformation is carried
out on the data involved, the knowledge composition and
development trend in this field is clarified, the potential
research hotspots are explored, and the development direction
of future technology is predicted (Govender et al., 2007; O’Grady
et al., 2021). And the technical system of hyperspectral remote
sensing water quality monitoring is systematically summarized
from four subfields (scene, data source, parameter, and
algorithm). In the end, the paper discusses the Frontier
technologies such as miniaturization, intellectualization, and
interdisciplinary application potential of the instrument for
reference by production and scientific research institutions.

2 Data sources and methods

2.1 Data collation

The full name of WOS is Web of Science, which is Clarivate’s
product (formerly Thomson Reuters intellectual property and
Technology). WOS includes three famous Citation Index
Databases (SCI, SSCI, and A & HCI) and collects authoritative
and influential journals in various disciplines. WOS, as a document
retrieval tool due to its strict selection criteria and citation index
mechanism, has also become one of the essential basic evaluation
tools of bibliometrics and scientific metrology. WOS can retrieve
relevant papers in various ways, such as keywords, authors, topics,
DOI, etc. And it can enable authors or researchers to find the articles
and data efficiently. EI is the citation abbreviation of the Engineering
Index, a largescale comprehensive retrieval tool with the most
extended history, and was founded by the American Federation
of Engineers in 1884 (Palmer et al., 2015; Li et al., 2020). EI enjoys a
high reputation worldwide in the academic, engineering, and
information circles and is a critical retrieval tool commonly
recognized by scientific and technological circles (Aasen et al.,
2015). The content includes the research results of all
engineering disciplines and engineering activities.

According to the statement of “TS = (hyperspectral AND water
quality ANDmonitor)”, Retrieve relevant papers in theWOS and EI
databases. The data source is set to “search in web of science core
collection” in the WOS platform (Hilton et al., 2012). Then, select
the citation index as “Editions: All”, select the document field as
“Topic” and set the retrieval time as “Publication: All years
(1994–2022)”. Six hundred thirtytwo records were retrieved from
WOS. Select the retrieval time from “all years” to “till now”, and
404 records are extracted in the EI platform. Two hundred fiftyone
publications are retrieved by the two databases simultaneously, and
221 publications are irrelevant. Finally, 564 practical items were
obtained after selection.
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2.2 Data collation

The bibliometric analysis aims to summarize a series of results
by describing publications objectively, systematically, and
quantitatively. It is generally divided into four steps: sampling,
recording entries, cataloging, and metrics. The first three steps
are to record the titles, author, keywords, publication time, main
methods, quoted data, etc., of the publication through reasonable
rules to form standardized data. Then, the metrics are realized to
extract and analyze the hidden information in all publications,
which can provide a direction for future research. The above
work is more standardized and efficient with the support of
software represented by VOSviewer and CiteSpace (Govender
et al., 2007). VOSviewer is a free software based on Java
developed by the Centre for Science and Technology Studies
(CWTS) of Leiden University in the Netherlands in 2009 (Ben-
Dor et al., 2002). It is mainly adapted to the mock examination
undirected network analysis and focuses on the visualization of
scientific knowledge. CiteSpace, known as “citation space”, is a
citation visual analysis software that focuses on analyzing the
potential knowledge contained in scientific analysis and is
gradually developed under the background of scient metrics and
data visualization (O’Grady et al., 2021). This paper analyzes the
scientific research status and trend in the field of water quality
hyperspectral monitoring from four aspects with the support of the
above software. The research scheme includes word counting,
concept classification, spatial analysis, and semantic intensity
analysis.

3 Results

3.1 Statistics of documents publication time

It can be concluded that the water quality monitoring work
based on hyperspectral technology is generally divided into three
research stages according to the statistics of the number of

publications and citation frequency in the last 30 years
(Figure 1).

3.1.1 The first stage is the slow start stage
(1994–2009)

The satellite (Mueksch, 1994; Östlund et al., 2001; Duan et al.,
2009) and airborne hyperspectral (Barducci and Pippi, 1997; Herut
et al., 1999; Kallio et al., 2001) data are gradually applied from
exploration experiments, which are used to the evaluation of
nutrient elements in water, especially the calculation of
chlorophyll concentration (Flink et al., 2001). It has attracted
European scholars’ attention, particularly in assessing the
eutrophication of water. The atmospheric correction algorithm
suitable for water area is studied, and the concept of water
leaving reflectivity is proposed in hyperspectral preprocessing
(Salama and Monbaliu, 2002). The number of documents in this
stage has increased from 12 to more than 5. The main reason is that
the rapid development of airborne sensor technology has solved the
difficulties of hyperspectral data sources (Barducci and Pippi, 1997).
The number of citations reached 2,00,800, and the scope of research
ranged from eutrophication monitoring (Jiao et al., 2006),
hyperspectral data preprocessing (Kohler et al., 2004), and sensor
development (Lee et al., 2011) to water quality inversion model
realization (Song et al., 2005), and water quality monitoring (Kutser
et al., 2006). New concepts, such as the combined use of
hyperspectral and GIS technologies (Leuven et al., 2002) and the
comprehensive monitoring of multiscale remote sensing data
(Schmid et al., 2004), have been developed, especially after 2000.
It has been further integrated with environmental science (Xie et al.,
2006; Gong et al., 2008) and proposed the solution of coastal survey
(Hlaing et al., 2010) and quantitative hyperspectral (Tong et al.,
2010; Xiong et al., 2012) after 2007.

3.1.2 The second stage is rapid development
(2011–2017)

The research focuses on three cores: environmental pollution
monitoring, multisource data collaboration, and research on single

FIGURE 1
Time distribution of number of publication and citation frequency from 1994 to 2022.
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water quality parameter extraction with the continuous maturity of
sensor technology. Airborne and satellite hyperspectral remote
sensing data can be used to provide accurate records of water
quality changes in pollution monitoring, such as total nitrogen
concentration inversion (Pan et al., 2011), water bloom warning
(Song Y. et al., 2010), suspended matter concentration calculation
(Shen et al., 2011), seawater intrusion (SONG et al., 2011), and
organic matter calculation (Zhu and Yu, 2013). These publications
generally take a river or lake as an example of numerical analysis and
mapping and gradually introduce water quality hyperspectral
technology into environmental pollution monitoring. It is
generally concluded that hyperspectral technology can solve the
water pollution problems of departments, but not all in the
application process. Collaborative processing and comprehensive
application of multiple sensors have become significant
achievements in this research stage to improve data availability
further. Satellite hyperspectral and water surface in situ data
(Augusto-Silva et al., 2014; Keith et al., 2014), satellite
hyperspectral and airborne hyperspectral (Ahmed et al., 2011),
polarization technology and hyperspectral technology (Harmel
et al., 2012), hyperspectral and thermal infrared data (Calderón
et al., 2013), satellite hyperspectral and satellite multispectral data
(Chang et al., 2014), hyperspectral technology and fluorescence
technology (Chen et al., 2015), and other data collaborative
processing research (Beck et al., 2016; Reuter et al., 2017), which
makes more scholars in cross fields understand hyperspectral
technology, and try to get more innovative results after the
introduction. The number of published papers has increased to a
certain extent at this stage, but the frequency of citations has
increased significantly. The number of sources in 2013 and

2015 exceeded 1,300, reflecting the phenomenon of cross
integration in this field. The third research focus is on the
exploration of individual water quality indicators. A precise
spectral mechanism and calculation algorithm are given for
indicators such as total suspended solids (Haji Gholizadeh et al.,
2016), total phosphorus (Stal et al., 2016), chromogenic dissolved
organic matter (CDOM) (Chen et al., 2015), chlorophyll a (Hunter
et al., 2010), water color (Watanabe et al., 2016), and water acidity
(Qian et al., 2017). The research and development of small-scale
special instruments (Piegari et al., 2011) have been enlightened, and
relevant research has been gradually developed to verify the accuracy
of individual indicators.

3.1.3 The third stage is the multi fields application
stage (2018–2022)

The number of publications has increased steadily, from 48 in
2018 to 85 in 2021, and there is a high probability will exceed 100 in
2022. The research in the past 5 years has indicated two significant
characteristics. Firstly, the data sources are more abundant,
especially the rapid development of hyperspectral technology of
UAV, which has dramatically reduced the application threshold of
hyperspectral technology in the field of water quality monitoring;
Secondly, machine learning algorithm has become the mainstream
method to calculate water quality indicators. Hyperspectral data is
integrated into the cloud, facilitating data acquisition and rapid
calculation of results under this idea. The representative research
results of the former include, the realization method of UAV
hyperspectral push scan imager for ecological monitoring
(Arroyo-Mora et al., 2019; Becker et al., 2019; Buters et al.,
2019), the inversion of water quality parameters of typical river

FIGURE 2
National cooperation network knowledge graph.
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sections (LIN Jian-yuan et al.), water turbidity (Cao et al., 2018),
algae pigments (Pyo et al., 2022), and cyanobacteria assessment
(Moradinejad et al., 2019). UAV images in cities have been applied
to the monitoring of black and odorous water (Huang and Zheng,
2019), transparency (Giardino et al., 2019), and water depth (Liu

et al., 2020). The representative research achievements of the latter
include the construction of several basic platforms, including the
cloud network infrastructure (Mishra et al., 2018), the river system
monitoring and early warning system (Esse et al., 2018), the shallow
water color automatic observation system (Marcello et al., 2018),

FIGURE 3
Frequency diagram of keywords.

TABLE 1 Top 10 highfrequency keywords.

Number Keywords Count Year Number Keywords Count Year

1 Reflectance 182 2006 11 Imagery 55 2008

2 Water 154 2015 12 Optical 53 2018

3 Chlorophyll 142 2012 13 Spectral 50 2010

4 Hyperspectral 138 2015 14 Coastal 50 2012

5 Quality 97 2017 15 Content 50 2015

6 Waters 76 2006 16 Data 49 2016

7 Remote 71 2008 17 Retrieval 46 2015

8 Model 65 2016 18 Blooms 45 2017

9 Matter 63 2017 19 Color 44 2012

10 Lake 55 2017 20 Inland 44 2009
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and the water quality of vulnerable inland ecosystems (Eugenio
et al., 2019), which can monitor the global spread of harmful
cyanobacterial blooms. In the calculation of chlorophyll
concentration (Maier and Keller, 2019; Wang et al., 2020), total
nitrogen concentration (Li et al., 2020), water quality parameters of
urban rivers (Wei et al., 2019; 2020; Sarigai et al., 2021), river
turbidity (Hong et al., 2021), and estimation of inactive inland water
quality parameters (Niu et al., 2021) after integrating the machine
learning algorithm.

3.2 Analysis of scientific research
cooperation

Statistics on the number of books published by all countries can
reflect the significant international cooperation countries in water
quality hyperspectral research. The larger the circle, the greater the
number of publications (Figure 2). Discharge the number of

publications in a clockwise direction. The number of publications
in 18 countries exceeded 8. The country with the largest
international cooperation papers is China, with 157 publications.
The following four countries are the United States (133), Germany
(56), Italy (38), and the United Kingdom (33). According to the
2021 China Water Resources Bulletin, the total amount of water
resources in China in 2021 was 2963.82 billion cubic meters. As
stated by the US Environmental Protection Agency, the
United States has approximately 300,000 freshwater lakes,
5,200 rivers, and thousands of miles of coastline. Germany has
abundant groundwater and surface water resources, most of which
are used for water supply and agricultural irrigation. Italy has
abundant freshwater resources, including about 61,000 km of
rivers, lakes, and groundwater reserves. According to the UK
Environment Agency, the UK has some large reservoirs and
water supply systems to meet the country’s water demand, as
well as many small rivers and lakes. China and the United States
have coauthored publications with most countries, representing the

FIGURE 4
Analysis of pennant plot of water quality.
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highest level in water quality hyperspectral research. One notable
feature is that these two countries are the first to conduct relevant
research. The results of other countries are delayed for about 2 years
compared with China and the United States. The support for new
technologies and the spirit of exploring new fields are the main
reasons for the two countries’ outstanding development in this field.

3.3 Keyword analysis

Drawing the frequency diagram of keywords and calculating
their occurrence times after counting the keywords of all
publications (Figure 3). It is worth noting that this is a “cloud
words picture”, which is a visual highlight of the key words that
appear frequently in the paper. The more they appear, the larger
the font is displayed, the more prominent the keyword is. The
color here is only used to distinguish from adjacent words, and
has no representational meaning. The distribution of words is
random and has no direct relationship with the geographical

location of the response. The main research points and
technologies of hyperspectral water quality monitoring can be
obtained from the keywords (Table 1). The application scenario
of hyperspectral technology for water quality monitoring, the
organization format of hyperspectral data, the target of water
quality monitoring, and the main algorithm ideas can be learned
according to the top 20 words that appear most frequently.
Firstly, the keywords “Water”, “Quality”, “Waters”, “Lake”,
“Coastal” and “Inland” indicate that the application scenario
of hyperspectral technology has covered the main water types on
the Earth’s surface, including lakes, oceans, and rivers. The
scholars designed the technical process of each field and drew
valuable conclusions according to the needs of the application.
Secondly, the keywords such as “Reflection”, “Hyperspectral”,
“Remote”, “Imagery”, “Optical”, “Spectral”, “Data” indicate that
as passive remote sensing technology, the image data format is
mainly used in water quality monitoring application. Image data
is acquired primarily through the spectrometer mounted on three
platforms, such as satellite, airborne or UAV. In addition, the

TABLE 2 Keywords mutation analysis.

Keywords Strength Begin End Research hotspot period

Airborne 2.11 2009 2015

Model 2.01 2010 2012

Bloom 1.92 2010 2012

Water quality 2.98 2011 2012

Spectral reflectance 2.15 2011 2018

Turbid productive water 3.50 2013 2017

Infrared reflectance spectroscopy 2.74 2013 2015

Coastal water 2.26 2013 2014

Thematic mapper 1.92 2013 2016

Nitrogen 1.84 2013 2014

Water holding capacity 2.65 2015 2016

Inland water 2.50 2015 2016

Color 2.43 2015 2018

Least squares regression 2.09 2015 2017

Optical property 2.95 2016 2019

Spectroscopy 1.98 2016 2018

Atmospheric correction 3.53 2017 2018

Suspended particulate matter 2.09 2018 2020

Ocean color 2.09 2018 2020

Regression 2.98 2019 2020

Hyperspectral Imagery 2.43 2019 2022

UAV 1.91 2019 2022

River 4.18 2020 2022

Machine learning 3.49 2020 2022
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spectral range is visible to nearinfrared, which is the response
band of the main substances in the water (Zhang D. et al., 2021).
Thirdly, the keywords “Chlorophyll”, “Matter”, “Content”,
“Blooms”, and “Color” indicate the material information that
has been proved can be accurately extracted by hyperspectral
technology repeatedly. Chlorophyll content has been widely
studied as the most common substance in water. The study of
water bloom and color, closely related to chlorophyll
concentration, has also indirectly become a research hotspot
(Song K. et al., 2010). The former mainly focuses on the
distribution law in natural waters, while the latter focuses on
urban malodorous black river water research. In addition, the
research on total nitrogen, total phosphorus, ammonia nitrogen,
and other substances has also yielded many results that can be
popularized. Fourthly, the keywords “model” and “retrieval”
indicate that the algorithm of hyperspectral technology is still
based on inversion technology. Largearea information extraction
combines limited in-situ data and spectral data to establish a
correlation model has become a mainstream method (Wang
et al., 2005). The machine learning algorithm has become the
core of the new modeling algorithm and has received a lot of new
research in this process.

3.4 Analysis of Frontier trend

Draw a pennant plot with “water quality” as the goal, and
infer the research trend according to the keywords (Figure 4).
The idf value is an algorithm calculation result of tag words after
clustering, which is used to infer mainstream research methods.
The main contents of the literature are generated into cluster
labels, and the research intensity of each research field is obtained
after the weighted calculation. Usually, the idf is plotted after
calculating the logarithm (Jianguang et al., 2005; Yan et al., 2005;
Yan et al., 2006). Green, orange, and yellow in the figure,
respectively, represent the most important keywords, the key

keywords under study, and the trend distribution of follow-up
studies taking idf value as the evaluation index. Keywords with
higher idf values depend more on keywords with lower idf values.
It can be obtained from the figure that spectral reflectance is one
of the fundamental technologies for water quality monitoring,
and subsequent research is developed based on the optical
mechanism of water. It can be concluded from the orange area
that the current research mainly focuses on specific application
scenarios, including lakes, water colors, internal roads, and water
bodies. The essential research difficulties are leaf green
extraction, atmospheric correction, and inversion algorithm.
The follow-up research trend shows an explosive state, with
many keywords in the yellow area in the figure. In addition,
some more complex issues have been paid attention to, including
the research and development of optical instruments, the
extraction of micro materials, the application of reservoirs, the
application of UAV remote sensing, the development of
fluorescence technology, and the research of numerical
simulation technology (Lee et al., 2007). On the whole, the
pennant plot shows the divergent research rules of water
quality remote sensing monitoring from the spectroscopy
principle to the application of different scenarios and then to
the study of complex problems (Bresciani et al., 2017).

Burst chart can show themutation law of keywords in the field of
water quality hyperspectral monitoring (Table 2). The mutation
represents the whole process that the research frequency of scholars
began to increase over some time, and gradually tended to be stable
and cool with time. The red line in the figure represents the rise and
continuation of research. The results of calculating the top
24 keywords of the last 15 years indicate that.

(1) Data: Airborne sensors represented by CASI were the
primary data acquisition form from 2009 to 2015 on the
platform of hyperspectral sensors. Airborne sensors can
obtain hyperspectral data of thousands of square
kilometers within a few hours, making remarkable

FIGURE 5
Main application scenarios of hyperspectral water quality monitoring.
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TABLE 3 Typical cases of hyperspectral water quality monitoring scenarios.

Scenarios References Purpose Research idea Conclusion

Urban water Hou et al. (2022) Water quality parameters
estimation

Exploring the feasibility of using hyperspectral
monitoring technology instead of laboratory

physical and chemical index test and evaluates the
prediction effect of inversion model on water

quality change

Machine learning has obvious overall advantages,
making it more suitable for classified inversion
prediction of urban river water quality parameters

Wei et al. (2019) Monitoring the pollution
level of urban water

Research on the largescale monitoring of black-
odor water, especially the cases of using unmanned
aerial vehicle (UAV) to efficiently and accurately
monitor the spatial distribution of urban river

pollution

The technical effectiveness of using UAV
hyperspectral technology to monitor the
distribution of urban pollution sources is

confirmed

Lin et al., 2019 Retrieval of water quality
parameters

Came up with an improved algorithm suitable for
water of inland urban river network to obtain the

inherent optical parameters of water

The distribution of chlorophyll-a and suspended
solids obtained from the retrieval was consistent
with the characteristics and actual conditions of the

urban river network

Zhang et al. (2022) Monitoring water quality
parameters of urban rivers

A new monitoring mode is designed, which installs
the hyperspectral imager on the UAV and places a

buoy spectrometer on the river

Spatial–spectral differences should be fully
considered when comparing test data for

hyperspectral data combination of spectroscopy
and optical imaging

Lake Seidel et al. (2020) Estimating optically active
substances of underwater

Underwater hyperspectral imaging could thus
facilitate future water monitoring efforts through
the acquisition of consistent spectral reflectance
measurements or derived water quality parameters

along the water column

Improved the link between above surface proximal
and remote sensing observations and in-situ point-
based water probe measurements for ground

truthing

Elsayed et al.
(2021)

Assess some water quality
indicators of Qaroun lake

Using hyperspectral reflectance indices and partial
least square regression (PLSR) models to assess the

water quality of Qaroun Lake

Total dissolved solids (TDS), transparency, total
suspended solids (TSS), chlorophyll-a (Chl-a), and

total phosphorus (TP), can be monitored
accurately, timely, and nondestructively

Sharp et al. (2021) Quantifying the
cyanobacteria in eutrophic

lake

Evaluated a satellite remote sensing tool for
estimating coarse cyanobacteria distribution with
coincident, in situ measurements at varying scales

and resolutions

Satellite-based remote sensing tools are vital to
researchers and water managers as they provide
consistent, high-coverage data at a low cost and

sampling effort

Zhang et al.
(2021a)

Lake bathymetry by
spectral information

A multiband linear model with successive
projections algorithm was developed to retrieve the

bathymetry of Qinghai Lake

Bathymetry estimation obtained using remotely
sensed hyperspectral data is an effective detection

method and can provide largescale, rapid
monitoring data to the relevant decision-making

departments

Natural river Pyo et al. (2021) Cyanobacteria cell
prediction

A convolutional neural network model with a
convolutional block attention module was
developed to predict cyanobacterial cell

concentrations by using the observed cell data from
field monitoring, chlorophyll-a distribution map
from hyperspectral image sensing, and simulated
water quality outputs from a hydrodynamic model

A deep learning model with data assemblage is
practically feasible for predicting the presence of

harmful algae in inland water

Ahn et al. (2021) Predicting cyanobacterial
blooms

Presenting an optimal method of applying
hyperspectral images to establish the

Environmental Fluid Dynamics Code-National
Institute of Environment Research (EFDCNIER)

model initial conditions

Hyperspectral images allow detailed initial
conditions to be applied in the EFDCNIER, which

can reduce uncertainties in water quality
(cyanobacteria) modeling

Premkumar et al.
(2021)

Calculating the
chlorophyll-a
concentration

The calibrated results between the in-situ
chlorophyll*a and in-situ remote sensing

reflectance based on the development of an
empirical band ratio algorithm

The satellite-based approach provides a good
correlation with in-situ data, which was helped in
monitoring and retrieval of Chl-a concentration

Gu et al. (2020) River turbidity
measurement

Proposing a novel river turbidity measurement
model based on random forest ensemble

Experiments corroborate the superiority of
proposed model over state-of-the-art competitors

and its simplified counterparts

Ocean Arabi et al. (2020) Retrieval of water
constituent concentrations

From simulations with the newmodel, calledWater
Sea Bottom (WSB) model, it was observed that

bands 750 nm and 900 nm, is nearly insensitive to
the Water Constituent Concentrations (WCCs)

The application of proposed NIBEI on satellite
images requires only Top of Atmosphere (TOA)
radiances at 750 nm and 900 nm and does not
depend on atmospheric correction and ancillary

local input data

(Continued on following page)
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achievements in inland water and reservoir water quality
monitoring. However, the high data acquisition costs limit
this technology’s largescale promotion (Fenocchi et al.,
2015). A large number of micro spectrometers have been
studied from 2016 to 2019. Micro spectrometers have played
a good role in monitoring cities’ odorous water bodies and
coastal zones. Sensors mounted on UAVs can obtain
hyperspectral data flexibly and at a low cost, becoming the
most important data source with the promotion of UAV
technology from 2019 to 2022.

(2) Algorithm: attention was paid to modeling spectral data and
water quality parameters from 2010 to 2012. The traditional
algorithm represented by the expression of the little square was
studied from 2015 to 2020 to draw the thematic map of water
pollution. Algorithms that can solve large data volumes have
strong applicability and high computational efficiency and have
become research hotspots with the increase of data volume and
more and more hyperspectral water quality monitoring
scenarios. The machine learning algorithm is undoubtedly
the research hotspot in the last 3 years.

(3) Water quality parameters: people initially used hyperspectral
technology to monitor water blooms due to the problem of
water eutrophication from 2010 to 2012, and excellent
application results were achieved. Subsequently, the research
was transferred to calculating water quality parameters to obtain
the total phosphorus, total nitrogen, and other parameters
leading to water bloom (Villa et al., 2017). Therefore, the
total nitrogen, turbidity, and suspended solids have been
continuously emphasized from 2013 to 2020. As a result, a
series of achievements have been made in applying inland water
and ocean in this process. As a result, the research intensity of
rivers closely related to human production and life, whether it is
odorous water monitoring in cities or river pollution
monitoring in rural areas, has been continuously enhanced in
the last 3 years.

4 Discussion

The core elements of hyperspectral water quality monitoring can
be summarized into four points: scenarios, data sources, parameters,

and algorithms. Each scholar tries to provide innovative solutions in
four points. It can meet the application requirements through
complex combinations. For example, excellent accuracy might be
obtained by satellite, airborne or UAV platforms to calculate water
quality parameters and select various algorithms in a fixed scenario
(a reservoir). However, the error may be substantial with the same
solution applied in lakes when monitoring urban water quality
parameters, even if the data source, water, and algorithms are fixed.
Magnanimous research needs to be researched to solve these problems,
which is the difficulty of hyperspectral water qualitymonitoring and the
significance of this work.

4.1 Monitoring scenarios

The main application scenarios can be classified as urban water,
lake, natural river and ocean after the hyperspectral remote sensing
technology is introduced into the water quality monitoring demand
(Figure 5). The monitoring needs of urban water are concentrated
on the assessment of reservoir water quality (Song K. et al., 2010),
black-odor water management (Wei et al., 2019), sewage discharge
monitoring (Pascucci et al., 2012), and flood warning (Lin et al.,
2019). Hyperspectral data are acquired mainly by UAV and ground
sensors, which meet the requirements of information extraction at
the microscale. Lake’s monitoring needs are significantly different,
and the study core is the chlorophyll evaluation (Katlane et al.,
2020). In particular, a large number of studies have been carried out
on the rapid identification of cyanobacteria outbreaks because the
lake water body is close to the territory of human production and
living, and the water flow is relatively poor, which is prone to water
bloom (Pyo et al., 2021). The research on natural rivers is more
complicated than in the previous two scenarios. The critical point of
the study is how to make hyperspectral technology partially or
entirely replace the traditional in-situ assay method (Hong et al.,
2021). Although more than ten indicators are considered adequate,
the leading indicators reported in academic publications are total
phosphorus, total nitrogen, ammonia nitrogen, and dissolved
organic matter. The most complex application scenario is the
ocean. The water quality monitoring accuracy is insufficient only
through hyperspectral technology due to the interference of salinity
and sea waves. Lidar, fluorescence, and ultraviolet sensors are also

TABLE 3 (Continued) Typical cases of hyperspectral water quality monitoring scenarios.

Scenarios References Purpose Research idea Conclusion

Guillaume et al.
(2020)

Determine the seabed
composition

A subsurface mixing model is presented, based on a
recently proposed oceanic radiative transfer model
that accounts for seabed adjacency effects in the

water column

The algorithm is effective for the local analysis of
the benthic habitats

Harringmeyer
et al. (2021)

Detection and Sourcing of
CDOM

Developed a new fluorescence-based indicator of
effluent-derived chromophore-c dissolved organic
matter (CDOM) helped demonstrate the feasibility
of remotely detecting CDOM from wastewater

The UV-visible imaging spectrometers can
facilitate coastal CDOM-related water quality

monitoring and expand its range of applications

Ma et al. (2021) Inversion of ocean color
constituents

Observing the three constituents of ocean color
chlorophyll-a, suspended sediment concentration,
and chromophore-c dissolved organic matter to
indicate water eutrophication, and the inversion
model of three constituents of ocean color is

constructed

Airborne remote sensing has a very important role
in developing refined observations for specific
areas, and can more quickly and effectively

monitor the ecological environment and evaluate
pollution
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TABLE 4 Basic information of water quality hyperspectral monitoring sensors.

Platform References Sensors Wavelength range (μm) Spatial resolution (m) Country or region

Satellite Lu et al. (2022) ZY1-02D 0.40–2.50 30.00 China

Lee et al. (2011) COMIS 0.40–1.05 30.00 South Korea

Liu et al. (2020) GF5 0.40–2.50 30.00 China

Santini et al. (2010) PRISMA 0.40–2.50 30.00 Italy

Hafeez et al. (2021) Himawari8 0.46–1.61 500.00 Japan

Dall’Olmo et al. (2005) SeaWiFS 0.40–0.89 1100.00 United States

Chang et al. (2014) MODIS 0.62–14.39 250.00 United States

Zhang et al. (2021b) OHS 0.40–1.00 10.00 China

Hlaing et al. (2010) HICO 0.36–1.08 90.00 United States

Pan et al. (2011) HJ-1A 0.43–0.90 30.00 China

Palacios et al. (2015) HyspIRI 0.38–2.50 30.00 United States

Lee et al. (2007) CHRIS 0.40–1.05 17.00 European Union

Airborne Delegido et al. (2014) CASI 0.35–1.05 0.50 Canada

Simone et al. (2013) TASI-600 8.00–14.00 1.00 Canada

Mbuh (2018) ARCHER 0.40–2.50 1.00 United States

Blanco et al. (2003) AVIRIS 0.37–2.51 20.00 United States

Barducci and Pippi (1997) MIVIS 0.43–12.7 5.00 Italy

Riaza et al. (2015) HyMap 0.40–2.50 1.00 Australia

(Continued on following page)
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introduced to realize the joint monitoring of multiple sensors
(Gorkavyi et al., 2021). Good results have been achieved in
monitoring seawater conductivity, water depth, and algae.
Representative typical cases are listed in Table 3.

4.2 Monitoring data sources

The hyperspectral sensors mentioned in the publication can be
divided into three platforms: satellite, airborne, and UAV,

according to statistics. Most of the higher-solution
spectrometers are not specially designed for monitoring the
water environment except for a few sensors. Spectral resolution
refers to the ability of the sensor to distinguish different
wavelengths, usually expressed in microns (μm). The main
spectrum range is 0.401 μm and 0.402 μm, considering the
application needs of vegetation, rock mining, and cities. All
sensors covering a spectrum range of 0.400 μm can play a role
in water quality monitoring since it is the main spectral response
band of water quality parameters (Mielke et al., 2014). UAV

TABLE 4 (Continued) Basic information of water quality hyperspectral monitoring sensors.

Platform References Sensors Wavelength range (μm) Spatial resolution (m) Country or region

UAV Aasen et al. (2015) Cubert UHD185 0.45–0.95 0.45 Germany

Jianguang et al. (2005) Gaia-Skymini 0.40–1.00 0.25 China

Wenzl (2018) Hyspex 0.40–1.05 0.30 Norway

Zhang et al. (2022) Nano 0.40–1.00 0.25 United States

FIGURE 6
Thermodynamic diagram of parameters concerned in hyperspectral water quality monitoring.
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hyperspectral sensors can usually reach the submeter level, and
airborne sensors can get the meter level in spatial resolution. While
the highest answer of hyperspectral satellite data is the OHS sensor
of China Orbita company, which reaches 10 m. And the
mainstream spatial resolution of other satellite sensors is 30 m,
which is the result of balancing data transmission efficiency and
monitoring effect. Various countries are actively launching new
hyperspectral sensors, and there is a lot of research and
development of sensors on multiple platforms. Therefore, the
number of sensor classes is much more than those listed in Table 4.

4.3 Monitoring parameters

Hyperspectral water quality monitoring parameters can be
obtained by making statistics on the research objects of all

publications and drawing thermodynamic maps. The more the
color in the figure tends to be red, the higher the research
concentration. Four clusters can be formed like “islands”,
corresponding to the monitoring focus of different fields
(Figure 6). Firstly, research about geometrical optics of water
bodies. The research target generally has a significant characteristic
spectrum based on the analysis of the optical mechanism of water,
such as chlorophyll-a, phytoplankton, dissolved organic matter,
CDOM, turbidity, segments, and water color. These indicators can
significantly show different characteristics in the visible band with
additional water content, so they have been studied extensively.
Mature research technology, sufficient theoretical basis, and reliable
conclusions are the characteristics of these studies. Secondly, research
about water bloom outbreak monitoring. Focusing on monitoring
cyanobacteria, phycocyanin, algal and suspended sectors, and the
water quality changes in different seasons are focused. Multiperiod

TABLE 5 Typical cases of hyperspectral water quality monitoring parameters.

References Location Parameters Application Conclusion

Premkumar et al.
(2021)

Hooghly River, India Chlorophyll-a Using satlantic hyperspectral ocean color
radiometer and developing the regional
algorithm for retrieval for chlorophyll-a

concentration

The satellite-based approach provides a
good correlation with in-situ data

Wolny et al. (2020) Chesapeake Bay, United States of
America

Blooms using multispectral data products from the
Ocean and Land Color Imager (OLCI)
sensor on the Sentinel3 satellites and

identified based on in situ phytoplankton
data and ecological associations

Presenting a framework in which satellite
data products could aid resource managers

with monitoring water quality and
protecting shellfish resources

Niu et al. (2021) Guanhe River, China Total
phosphorus

Thematic maps of the water quality
classification results and water parameter
concentrations were generated and the

overall water quality and pollution sources
were analyzed

The deep learning-based regression
models show a good performance in the

feature extraction and image
understanding of high-dimensional data

Zhang et al. (2021a) Qinghai Lake, China Lake bathymetry A multiband linear model with successive
projections algorithm was developed to
retrieve the bathymetry of Qinghai Lake

Using remotely sensed hyperspectral data
is an effective detection method

FIGURE 7
Frequency and intensity of algorithm research.

Frontiers in Environmental Science frontiersin.org13

Ma et al. 10.3389/fenvs.2023.1133325

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325


remote sensing data is generally used to identify the dynamic changes
of water bloom in the water area. The rivers and lakes near the urban
are the main areas of study. The transparency and water depth of the
water area are evaluated. Thirdly, research about chemical parameters
of water quality. It belongs to the quantitative analysis of water quality
parameters. The indicators studied include carbon, fluorescence,
organic matter, particulate matter, total phosphorus, biomass,
vegetation indicators, pH, and temperature. The water-holding
capacity of the water body is evaluated to guide the development
of water quality based on the calculated content value. Fourthly,
research about water quality evaluation and management. The water
pollution investigation technology is studied under the premise of the
first three explorations, including organic carbon, acid mine drainage,
microplastics, and contamination. These pollutants have attracted
worldwide attention, and hyperspectral technology is becoming one of
the effective technologies (Table 5).

4.4 Monitoring algorithms

The algorithms used in all publications are counted to obtain the
most commonly used algorithms (Figure 7). The research generally
requires a lot of preprocessing and pre-analysis of spectral data,
“classification”, “atmospheric correction”, “spectral indexes” and
“radial transfer” have appeared in abundant publications to illustrate
this point. Cause accurate spectral identification and atmospheric
correction can ensure the correctness of spectral data and provide
data sets for water quality parameter modeling. After spectral
preprocessing, the algorithms for calculating water quality
parameters can be divided into regression and machine learning
methods. The most commonly used regression methods are
semiempirical models based on limited in-situ data. “Partial least
squares”, “multiple linear regression”, “principal component
analysis”, and “random forest” are all commonly used methods. The
keywords that appear most frequently in machine learning methods
include “neural network”, “artificial intelligence”, and “deep learning”.
In recent years, machine learning is the most studied method. In
addition, the terms of “calibration”, “visualization”, “prediction”, and

“verification” also show that scholars attach importance to the accuracy
of the algorithm (Table 6).

5 Conclusion

Spectrum refers to the pattern of dichroic light arranged
according to the wavelength or frequency after being separated
by the dispersion system (Tong et al., 2010; Wang et al., 2020). It can
reflect the diagnostic absorption difference caused by the internal
electronic transition and molecular vibration of matter, and it
represents the intrinsic characteristics of objects. There were
4,852 satellites in orbit according to the USC (Union of
concerned scientists) satellite database up to 30 March 2022.
Three thousand one hundred thirty-four communication
satellites (64%), 1,050 Earth observation satellites (21%),
411 technical experimental satellites (8%), 154 navigation and
positioning satellites (3%), 124 Earth science satellites (2.5%),
and 76 space observation satellites (1.5%) among them. Among
the 1,050 Earth observation satellites, 32 are hyperspectral
satellites, accounting for less than 4%. At present, the
technical advantages have not been fully brought into play,
and the application potential of hyperspectral satellites is huge
(Xiong et al., 2012). There are two difficulties in the hyperspectral
technology for water quality monitoring. Firstly, water’s material
composition is complex, making it difficult to determine the
transmission mechanism of spectral data. There are complex
interaction processes such as superposition or subtraction among
water quality parameters, and the interference of waves makes
the extraction conclusions based on hyperspectral data lacking
exact mechanism (Sarigai et al., 2021). This limits the model’s
generalizability, making it challenging to form industrial
technical standards. Secondly, traditional data processing and
analysis techniques take weeks to reach a conclusion because
hyperspectral data is a high-dimensional matrix with tremendous
data volume, leading to the result that it cannot meet the real-
time demand of water quality monitoring obviously (Rotkiske
and Jr, 2018). Scholars have introduced machine learning

TABLE 6 Typical cases of hyperspectral water quality monitoring algorithms.

References Research
content

Model
used

Method Conclusion

Hou et al. (2022) Water quality
parameters
estimation

Partial least
squares

Introducing partial least squares to calculate the
turbidity, suspended substance, chemical oxygen

demand, NH4N, total nitrogen, and total phosphorus
models

Machine learning has obvious overall advantages,
making it more suitable for classified inversion

prediction of urban river water quality parameters

Wenzl (2018) Dissolved organic
matter

Multiple linear
regression

Facilitating the remote sensing of chromophore-c
dissolved organic matter in optically complex waters to

improve the coastal water quality monitoring

Optimal performance was reached when combining
365nm, 400nm, and 700 nm as predictors of in a

multiple linear regression

Pyo et al. (2022) Pigments Neural network Based on the reflectance and absorption coefficient
spectral inputs, a one-dimensional convolutional

neural network (1DCNN) was developed to estimate
the concentrations of the major and minor pigments

The model provided explicit algal biomass
information using the estimated major pigments and
implicit taxonomical information using accessory

pigments such as green algae, diatoms, and
cyanobacteria

Hong et al.
(2021)

Harmful algal blooms Deep learning Appling a deep neural network model to monitor the
vertical distribution of Chlorophyll-a, phycocyanin,
and turbidity using drone-borne hyperspectral

imagery, in-situ measurement, and meteoroidal data

The explainable deep learning model has the potential
to show influential features that contribute to
describing the vertical profile phenomena
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algorithms, which can quickly calculate the water quality
parameters concerned under the support of tag data, and have
achieved initial success.

There are three development directions of hyperspectral
technology for water quality monitoring under the guidance of
difficulties. (1) the miniaturization of spectral instruments provides
technical support for portable water quality monitoring. In 2015,
Texas Instruments (TI) announced at Pittcon that it had added a new
member to its near infrared (NIR) chipset product portfolio the
industry’s first fully programmable micro electro mechanical
system (MEMS) chipset, which supports ultraportable spectral
analysis in the wavelength range of 700–2500 nm. In 2022,
Shenzhen Hyper-Nano officially mass-produced the first
generation of micro hyperspectral imaging MEMS chip, which is
only one-thousandth of the volume of traditional products. There was
a strong demand for miniaturization, portability, and onsite spectral
instruments in the late last century to adapt to the global development
situation, and the trend of miniaturization of spectral instruments has
emerged. The research and development of miniaturized spectral
instruments have become the focus of various countries’ scientific and
technological departments and industrial departments. With the
support of a microchip set, Tianjin Progoo Information
Technology Co., Ltd. has developed a series of water quality
monitoring hyperspectral products. The development of water
quality monitoring technology urgently requires portable
spectrometers for rapid onsite monitoring, which will obviously
become the research and development focus of countries
worldwide in the next few years. (2) Research on highly integrated
technology of spectral technology and modern science. The
achievements of modern science and technology in highly
integrated device technology (such as chip technology), sensors,
micro devices, and silicon technology are changing with each
passing day. Modern information theory, mathematical processing
methods, and computing software systems are also developing. These
achievements will soon be absorbed into the continuous development
process of new optical spectrum instruments. The spectrum
instrument industry will continue to develop high-precision,
multifunctional largescale spectrum analysis and detection
instruments or corresponding systems to meet the analysis and
detection requirements in modern aerospace, environmental and
ecological protection, and global infectious disease control. More
and more new practical spectrum instruments or systems that can
work on the site, production lines, battlefields, unattended, and
networked will appear, becoming online measurement and control.
It is an indispensable analysis and detection means in environmental
monitoring and other fields. The spectrum instrument must be out of
the laboratory equipment, capable of withstanding the harsh working
environment of the field and the area (including space) and the robust,
chaotic, and changeable interference, unattended, long-term work
away from the power grid, automatic monitoring, automatic
adjustment of the best working state, and automatic network
exchange of information. Therefore, largescale precision research
and practical level spectrometers or systems for onsite and online
measurement and control will be valued and significantly developed
in the next 10 or 20 years. (3) The application of spectrum technology
in water quality monitoring is a challenging broad band. In the future,
the spectrum instrument will continue to develop in the direction of
broadening and transferring the application area. It will expand from

the traditional water quality indicator monitoring to the fields directly
related to water safety, such as over-standard alarm, multi equipment
linkage, water resource evaluation, pollution early warning and so on.
The application of spectral water quality detection will be constantly
updated under great development in many fields. The vast number of
spectral analysis users will develop various new spectral analysis
methods and put forward new application requirements and
development requirements for new spectral instruments. We will
be faced with an unprecedented situation of continuous development
in which the spectral instrument industry continues to obtain new
application results in all aspects of water qualitymonitoring. In brief, a
more compact and stable instrument, coupled with a wide range of
algorithms and more applications, will become the research trend in
the future field of hyperspectral water quality monitoring.

Hyperspectral water quality monitoring is a technical process for
measuring the types, concentrations, and changing trends of
pollutants in water bodies to evaluate water quality. The
monitoring scope includes natural water bodies at risk of
pollution and having been polluted, as well as artificial water
bodies discharged by industry, agriculture, and commerce
(Fenocchi et al., 2015). Traditional water quality monitoring
requires in-situ sampling, laboratory analysis, and rectification
reports. The accuracy is guaranteed, but there are certain
limitations, such as the event belongs to post-event monitoring,
the spatial belongs to local monitoring, and the time belongs to
cross-section monitoring (Mbuh, 2018). Modern hyperspectral
technology can make up for these shortcomings partially.
According to the research results in the past 30 years, it is
indicated that the use of UAV technology to monitor the water
quality of rivers has become a research hotspot through the analysis
of all keywords, and the machine learning algorithm is the most
concerning water quality parameter calculation method.

The research progress and trends in the four key subfields of
hyperspectral water quality monitoring, including scene, data
source, parameters, and algorithm, are sorted out on this basis.
The difficulties encountered in each subfield and potential solutions
are described and discussed. In conclusion, many studies have
proved the method’s feasibility and reliability in hyperspectral
water quality monitoring. As a result, it will become one of the
mainstream technologies in the field of water quality monitoring
with the continuous reduction of hardware cost and the constant
iteration of the information extraction algorithm.

Author contributions

DZ: conceptualization, methodology, software, validation,
formal analysis, investigation, data curation, writing original
draft, and writing review and editing. XL, YH, LZ:
conceptualization, methodology, validation, formal analysis,
investigation, data curation, writing original draft, writing
review, editing, project administration, and funding
acquisition. ZZ, XS, ZL: Software, validation, formal analysis,
investigation, and resources. WG: Methodology, software,
resources, and editing, supervision, formal analysis,
investigation, and data curation. All authors listed have made
a substantial, direct, and intellectual contribution to the work and
approved it for publication.

Frontiers in Environmental Science frontiersin.org15

Ma et al. 10.3389/fenvs.2023.1133325

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325


Funding

This research was funded by the National Natural Science
Foundation of China (No. 41830108), the Innovation Team of
XPCC’s Key Area (No. 2018CB004), Guangdong Yuehai Water
Investment Co., Ltd. Multi Parameter Integrated Water Pollution
Online Monitoring Technology and Demonstration Application
Unveiling Project (No. JS-21-TJ-011), and the Major Projects of
High-Resolution Earth Observation (No. 30-H30C01-9004-
19/21).

Acknowledgments

We would like to thank the editors and reviewers for their
valuable opinions and suggestions that improved this research.

Conflict of interest

DZ, YH, LZ, XS, and ZL were employed by the Tianjin Progoo
Information Technology Co. Ltd. LZ was employed by the Xinjiang

Production and Construction Corps. WG was employed by the
Shenzhen Intelligence. Ally Technology Co. Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133325/
full#supplementary-material

References

Aasen, H., Burkart, A., Bolten, A., and Bareth, G. (2015). Generating 3D hyperspectral
information with lightweight UAV snapshot cameras for vegetation monitoring: From
camera calibration to quality assurance. ISPRS J. Photogrammetry Remote Sens. 108,
245–259. doi:10.1016/j.isprsjprs.2015.08.002

Ahmed, S., Harmel, T., Gilerson, A., Hlaing, S., Tonizzo, A., Davis, C., et al. (2011).
“Hyperspectral and multispectral above-water radiometric measurements to monitor
satellite data quality over coastal area,” in Ocean Sensing and Monitoring III (SPIE),
9–20. doi:10.1117/12.884674

Ahn, J. M., Kim, B., Jong, J., Nam, G., Park, L. J., Park, S., et al. (2021). Predicting
cyanobacterial blooms using hyperspectral images in a regulated river. Sensors 21, 530.
doi:10.3390/s21020530

Arabi, B., Salama, M. S., van der Wal, D., Pitarch, J., and Verhoef, W. (2020). The
impact of sea bottom effects on the retrieval of water constituent concentrations from
MERIS and OLCI images in shallow tidal waters supported by radiative transfer
modeling. Remote Sens. Environ. 237, 111596. doi:10.1016/j.rse.2019.111596

Arroyo-Mora, J. P., Kalacska, M., Inamdar, D., Soffer, R., Lucanus, O., Gorman, J.,
et al. (2019). Implementation of a UAV–hyperspectral pushbroom imager for ecological
monitoring. Drones 3, 12. doi:10.3390/drones3010012

Augusto-Silva, P. B., Ogashawara, I., Barbosa, C. C. F., De Carvalho, L. A. S., Jorge, D.
S. F., Fornari, C. I., et al. (2014). Analysis of MERIS reflectance algorithms for estimating
chlorophyll-a concentration in a Brazilian reservoir. Remote Sens. 6, 11689–11707.
doi:10.3390/rs61211689

Barducci, A., and Pippi, I. (1997). “Environmental monitoring of the Venice lagoon
using MIVIS data,” in IGARSS’97. 1997 IEEE International Geoscience and Remote
Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable
Development, 888–890. doi:10.1109/IGARSS.1997.615288

Beck, R., Zhan, S., Liu, H., Tong, S., Yang, B., Xu, M., et al. (2016). Comparison of
satellite reflectance algorithms for estimating chlorophyll-a in a temperate
reservoir using coincident hyperspectral aircraft imagery and dense coincident
surface observations. Remote Sens. Environ. 178, 15–30. doi:10.1016/j.rse.2016.
03.002

Becker, R. H., Sayers, M., Dehm, D., Shuchman, R., Quintero, K., Bosse, K., et al.
(2019). Unmanned aerial system based spectroradiometer for monitoring harmful algal
blooms: A new paradigm in water quality monitoring. J. Gt. Lakes. Res. 45, 444–453.
doi:10.1016/j.jglr.2019.03.006

Ben-Dor, E., Patkin, K., Banin, A., and Karnieli, A. (2002). Mapping of several soil
properties using DAIS-7915 hyperspectral scanner data - a case study over clayey soils
in Israel. Int. J. Remote Sens. 23, 1043–1062. doi:10.1080/01431160010006962

Blanco, A., Roper, W. E., and Gomez, R. B. (2003). “Surface-water quality assessment
using hyperspectral imagery,” in Geo-Spatial and Temporal Image and Data
Exploitation III (SPIE), 178–188. doi:10.1117/12.502418

Bresciani, M., Giardino, C., Lauceri, R., Matta, E., Cazzaniga, I., Pinardi, M., et al.
(2017). Earth observation for monitoring and mapping of cyanobacteria blooms. Case
studies on five Italian lakes. J. Limnol. 76. doi:10.4081/jlimnol.2016.1565

Buters, T. M., Bateman, P.W., Robinson, T., Belton, D., Dixon, K.W., and Cross, A. T.
(2019). Methodological ambiguity and inconsistency constrain unmanned aerial
vehicles as A silver bullet for monitoring ecological restoration. Remote Sens. 11,
1180. doi:10.3390/rs11101180

Calderón, R., Navas-Cortés, J. A., Lucena, C., and Zarco-Tejada, P. J. (2013). High-
resolution airborne hyperspectral and thermal imagery for early detection of
Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral
indices. Remote Sens. Environ. 139, 231–245. doi:10.1016/j.rse.2013.07.031

Cao, Y., Ye, Y., Zhao, H., Jiang, Y., Wang, H., Shang, Y., et al. (2018). Remote
sensing of water quality based on HJ-1A HSI imagery with modified discrete binary
particle swarm optimization-partial least squares (MDBPSO-PLS) in inland
waters: A case in weishan lake. Ecol. Inf. 44, 21–32. doi:10.1016/j.ecoinf.2018.
01.004

Chang, N.-B., Vannah, B., and Jeffrey Yang, Y. (2014). Comparative sensor fusion
between hyperspectral and multispectral satellite sensors for monitoring microcystin
distribution in lake erie. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7,
2426–2442. doi:10.1109/JSTARS.2014.2329913

Chen, P., Pan, D., Mao, Z., and Tao, B. (2015). Detection of water quality parameters
in Hangzhou Bay using a portable laser fluorometer. Mar. Pollut. Bull. 93, 163–171.
doi:10.1016/j.marpolbul.2015.01.023

Dall’Olmo, G., Gitelson, A. A., Rundquist, D. C., Leavitt, B., Barrow, T., and Holz, J. C.
(2005). Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll
concentration in turbid productive waters using red and near-infrared bands. Remote
Sens. Environ. 96, 176–187. doi:10.1016/j.rse.2005.02.007

Delegido, J., Van Wittenberghe, S., Verrelst, J., Ortiz, V., Veroustraete, F., Valcke, R.,
et al. (2014). Chlorophyll content mapping of urban vegetation in the city of Valencia
based on the hyperspectral NAOC index. Ecol. Indic. 40, 34–42. doi:10.1016/j.ecolind.
2014.01.002

Duan, H., Ma, R., Zhang, Y., and Zhang, B. (2009). Fluorescence peak shift
corresponding to high chlorophyll concentrations in inland water. Spectrosc. Spectr.
Analysis 29, 161–164. doi:10.3964/j.issn.1000-0593(2009)01-0161-04

Elsayed, S., Gad, M., Farouk, M., Saleh, A. H., Hussein, H., Elmetwalli, A. H., et al.
(2021). Using optimized two and three-band spectral indices andmultivariate models to
assess some water quality indicators of qaroun lake in Egypt. Sustainability 13, 10408.
doi:10.3390/su131810408

Esse, C., Fustos, I., González, K., Aguayo, C., Encina-Montoya, F., Figueroa, D.,
et al. (2018). Spectral characterization of didymosphenia geminata under
laboratory conditions: Bases for a monitoring and early warning system in

Frontiers in Environmental Science frontiersin.org16

Ma et al. 10.3389/fenvs.2023.1133325

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133325/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1133325/full#supplementary-material
https://doi.org/10.1016/j.isprsjprs.2015.08.002
https://doi.org/10.1117/12.884674
https://doi.org/10.3390/s21020530
https://doi.org/10.1016/j.rse.2019.111596
https://doi.org/10.3390/drones3010012
https://doi.org/10.3390/rs61211689
https://doi.org/10.1109/IGARSS.1997.615288
https://doi.org/10.1016/j.rse.2016.03.002
https://doi.org/10.1016/j.rse.2016.03.002
https://doi.org/10.1016/j.jglr.2019.03.006
https://doi.org/10.1080/01431160010006962
https://doi.org/10.1117/12.502418
https://doi.org/10.4081/jlimnol.2016.1565
https://doi.org/10.3390/rs11101180
https://doi.org/10.1016/j.rse.2013.07.031
https://doi.org/10.1016/j.ecoinf.2018.01.004
https://doi.org/10.1016/j.ecoinf.2018.01.004
https://doi.org/10.1109/JSTARS.2014.2329913
https://doi.org/10.1016/j.marpolbul.2015.01.023
https://doi.org/10.1016/j.rse.2005.02.007
https://doi.org/10.1016/j.ecolind.2014.01.002
https://doi.org/10.1016/j.ecolind.2014.01.002
https://doi.org/10.3964/j.issn.1000-0593(2009)01-0161-04
https://doi.org/10.3390/su131810408
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325


river systems of south central Chile. Manag. Biol. Invasions 9, 85–90. doi:10.3391/
mbi.2018.9.2.02

Eugenio, F., Alfaro, M., Martin, J., and Marcello, J. (2019). “Multiplatform earth
observation systems for the monitoring and conservation of vulnerable natural
ecosystems,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote
Sensing Symposium, 8230–8233. doi:10.1109/IGARSS.2019.8900425

Fenocchi, A., Pinardi, M., Sibilla, S., Giardino, C., Bartoli, M., and Bresciani, M.
(2015). “Assessment of potential algal blooms in a shallow fluvial lake through
hydrodynamic modelling and remote-sensed images,” in 18th International
Workshop on Physical Processes in Natural Waters, Landau in der Pfalz, Germany.

Flink, P., Lindell, L. T., and Östlund, C. (2001). Statistical analysis of hyperspectral
data from two Swedish lakes. Sci. Total Environ. 268, 155–169. doi:10.1016/S0048-
9697(00)00686-0

Giardino, C., Brando, V. E., Gege, P., Pinnel, N., Hochberg, E., Knaeps, E., et al. (2019).
Imaging spectrometry of inland and coastal waters: State of the art, achievements and
perspectives. Surv. Geophys 40, 401–429. doi:10.1007/s10712-018-9476-0

Gong, S.-Q., Huang, J.-Z., Li, Y.-M., Lu, W.-N., Wang, H.-J., andWang, G.-X. (2008).
Preliminary exploring of hyperspectral remote sensing experiment for nitrogen and
phosphorus in water. Guang Pu Xue Yu Guang Pu Fen Xi 28, 839–842.

Gorkavyi, N., Fasnacht, Z., Haffner, D., Marchenko, S., Joiner, J., and Vasilkov, A.
(2021). Detection of anomalies in the UV–vis reflectances from the ozone monitoring
instrument. Atmos. Meas. Tech. 14, 961–974. doi:10.5194/amt-14-961-2021

Govender, M., Chetty, K., and Bulcock, H. (2007). A review of hyperspectral remote
sensing and its application in vegetation and water resource studies. Water sa. 33,
145–151. doi:10.4314/wsa.v33i2.49049

Gu, K., Zhang, Y., and Qiao, J. (2020). Random forest ensemble for river turbidity
measurement from space remote sensing data. IEEE Trans. Instrum. Meas. 69,
9028–9036. doi:10.1109/TIM.2020.2998615

Guillaume, M., Minghelli, A., Deville, Y., Chami, M., Juste, L., Lenot, X., et al. (2020).
Mapping benthic habitats by extending non-negative matrix factorization to address the
water column and seabed adjacency effects.Remote Sens. 12, 2072. doi:10.3390/rs12132072

Hafeez, S., Wong, M. S., Abbas, S., and Jiang, G. (2021). Assessing the potential of
geostationary himawari-8 for mapping surface total suspended solids and its diurnal
changes. Remote Sens. 13, 336. doi:10.3390/rs13030336

Haji Gholizadeh, M., Melesse, A. M., and Reddi, L. (2016). Spaceborne and airborne
sensors in water quality assessment. Int. J. Remote Sens. 37, 3143–3180. doi:10.1080/
01431161.2016.1190477

Harmel, T., Gilerson, A., Tonizzo, A., Chowdhary, J., Weidemann, A., Arnone, R.,
et al. (2012). Polarization impacts on the water-leaving radiance retrieval from above-
water radiometric measurements. Appl. Opt. AO 51, 8324–8340. doi:10.1364/AO.51.
008324

Harringmeyer, J. P., Kaiser, K., Thompson, D. R., Gierach, M. M., Cash, C. L., and
Fichot, C. G. (2021). Detection and sourcing of CDOM in urban coastal waters with
UV-visible imaging spectroscopy. Front. Environ. Sci. 9. doi:10.3389/fenvs.2021.647966

Herut, B., Tibor, G., Yacobi, Y. Z., and Kress, N. (1999). Synoptic measurements of
chlorophyll-a and suspended particulate matter in a transitional zone from polluted to
clean seawater utilizing airborne remote sensing and ground measurements, haifa bay
(SE mediterranean). Mar. Pollut. Bull. 38, 762–772. doi:10.1016/S0025-326X(99)
00038-7

Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy-Peyret, C., et al.
(2012). Hyperspectral earth observation from IASI: Five years of accomplishments. Bull.
Am. Meteorological Soc. 93, 347–370. doi:10.1175/BAMS-D-11-00027.1

Hlaing, S., Harmel, T., Ibrahim, A., Ioannou, I., Tonizzo, A., Gilerson, A., et al. (2010).
“Validation of ocean color satellite sensors using coastal observational platform in Long
Island Sound,” in Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2010
(SPIE), 37–44. doi:10.1117/12.865123

Hong, S. M., Baek, S.-S., Yun, D., Kwon, Y.-H., Duan, H., Pyo, J., et al. (2021).
Monitoring the vertical distribution of HABs using hyperspectral imagery and deep
learning models. Sci. Total Environ. 794, 148592. doi:10.1016/j.scitotenv.2021.148592

Hou, Y., Zhang, A., Lv, R., Zhao, S., Ma, J., Zhang, H., et al. (2022). A study on water
quality parameters estimation for urban rivers based on ground hyperspectral remote
sensing technology. Environ. Sci. Pollut. Res. 29, 63640–63654. doi:10.1007/s11356-022-
20293-z

Huang, Z., and Zheng, J. (2019). “Extraction of black and odorous water based on
aerial hyperspectral CASI image,” in IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, 6907–6910. doi:10.1109/IGARSS.2019.
8898314

Hunter, P. D., Tyler, A. N., Carvalho, L., Codd, G. A., and Maberly, S. C. (2010).
Hyperspectral remote sensing of cyanobacterial pigments as indicators for cell
populations and toxins in eutrophic lakes. Remote Sens. Environ. 114, 2705–2718.
doi:10.1016/j.rse.2010.06.006

Jianguang, W., Qing, X., Qinhuo, L., and Yi, Z. (2005). “Extraction of
chlorophyll-a concentration based on spectral unmixing model using field
hyperspectral data in Taihu Lake,” in Proceedings. 2005 IEEE International
Geoscience and Remote Sensing Symposium, 2005. IGARSS ’05, 5703–5705.
doi:10.1109/IGARSS.2005.1526072

Jiao, H. B., Zha, Y., Gao, J., Li, Y. M.,Wei, Y. C., and Huang, J. Z. (2006). Estimation of
chlorophyll-a concentration in Lake Tai, China using in situ hyperspectral data. Int.
J. Remote Sens. 27, 4267–4276. doi:10.1080/01431160600702434

Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsäläinen, J., et al.
(2001). Retrieval of water quality from airborne imaging spectrometry of various lake
types in different seasons. Sci. Total Environ. 268, 59–77. doi:10.1016/S0048-9697(00)
00685-9

Katlane, R., Dupouy, C., Berges, J. C., and Mannai, A. (2020). “Estimation of
chlorophyll-A concentration in estuarine water of kneiss archipelago gulf of gabes
using sentinel 2A and Eo1 data,” in 2020 Mediterranean and Middle-East Geoscience
and Remote Sensing Symposium (M2GARSS), 180–183. doi:10.1109/M2GARSS47143.
2020.9105257

Keith, D. J., Schaeffer, B. A., Lunetta, R. S., Gould, R. W., Rocha, K., and Cobb, D. J.
(2014). Remote sensing of selected water-quality indicators with the hyperspectral
imager for the coastal ocean (HICO) sensor. Int. J. Remote Sens. 35, 2927–2962. doi:10.
1080/01431161.2014.894663

Kohler, D. D. R., Bissett, W. P., Steward, R. G., and Davis, C. O. (2004). New approach
for the radiometric calibration of spectral imaging systems. Opt. Express, OE 12,
2463–2477. doi:10.1364/OPEX.12.002463

Kutser, T., Metsamaa, L., Strömbeck, N., and Vahtmäe, E. (2006). Monitoring
cyanobacterial blooms by satellite remote sensing. Estuar. Coast. Shelf Sci. 67,
303–312. doi:10.1016/j.ecss.2005.11.024

Lee, J.-H., Jang, T.-S., Yang, H.-S., and Rhee, S.-W. (2008). Optical design of A
compact imaging spectrometer for STSAT3. J. Opt. Soc. Korea, JOSK 12, 262–268.
doi:10.3807/josk.2008.12.4.262

Lee, J. H., Kang, K. I., and Park, J. H. (2011). A very compact imaging spectrometer for
the micro-satellite STSAT3. Int. J. Remote Sens. 32, 3935–3946. doi:10.1080/
01431161003801328

Lee, J. H., Lee, C. W., Kang, K. I., Jang, T. S., Yang, H. S., Han, W., et al. (2007). “A
compact imaging spectrometer (COMIS) for the microsatellite STSAT3,” in
Sensors, Systems, and Next-Generation Satellites XI (SPIE), 333–340. doi:10.
1117/12.747737

Leuven, R. S. E. W., Poudevigne, I., and Teeuw, R. M. (2002). Remote sensing and
geographic information systems as emerging tools for riverine habitat and landscape
evaluation: From concepts to models. Backhuys Publishers, 217–239.

Li, W., Dou, Z., Cui, L., Wang, R., Zhao, Z., Cui, S., et al. (2020). Suitability of
hyperspectral data for monitoring nitrogen and phosphorus content in constructed
wetlands. Remote Sens. Lett. 11, 495–504. doi:10.1080/2150704X.2020.1734247

Lin, J.-y., Zhang, C.-xing, and You, H.-jian (2019). Retrieval of water quality
parameters of urban river network using hyperspectral date based on inherent
optical parameters. Spectrosc. Spectr. Analysis 39, 3761–3768. doi:10.3964/j.issn.1000-
0593(2019)12-3761-08

Liu, Y., Xiao, C., Li, J., Zhang, F., and Wang, S. (2020). Secchi disk depth estimation
fromChina’s new generation of GF-5 hyperspectral observations using a semi-analytical
scheme. Remote Sens. 12, 1849. doi:10.3390/rs12111849

Lu, L., Gong, Z., Liang, Y., and Liang, S. (2022). Retrieval of chlorophyll-a
concentrations of class II water bodies of inland lakes and reservoirs based on ZY1-
02d satellite hyperspectral data. Remote Sens. 14, 1842. doi:10.3390/rs14081842

Ma, S., Zhang, X., Huang, G., Xiong, Y., Lu, Y., Han, Y., et al. (2021). Inversion of
ocean color constituents in the sea area around Dajin island based on CASI aerial
hyperspectral data. Proc. SPIE 11763, 117637Z. doi:10.1117/12.2587496

Maier, P. M., and Keller, S. (2019). “Application of different simulated spectral data
and machine learning to estimate the chlorophyll A concentration of several inland
waters,” in 2019 10th Workshop on Hyperspectral Imaging and Signal Processing:
Evolution in Remote Sensing (WHISPERS), 1–5. doi:10.1109/WHISPERS.2019.
8921073

Marcello, J., Eugenio, F., Martín, J., and Marqués, F. (2018). Seabed mapping in
coastal shallow waters using high resolution multispectral and hyperspectral imagery.
Remote Sens. 10, 1208. doi:10.3390/rs10081208

Mbuh, M. J. (2018). Optimization of airborne real-time cueing hyperspectral
enhanced reconnaissance (ARCHER) imagery, in situ data with chemometrics to
evaluate nutrients in the shenandoah river, Virginia. Geocarto Int. 33, 1326–1349.
doi:10.1080/10106049.2017.1343395

Mielke, C., Boesche, N. K., Rogass, C., Kaufmann, H., Gauert, C., and De Wit, M.
(2014). Spaceborne mine waste mineralogy monitoring in south Africa, applications for
modern push-broom missions: Hyperion/OLI and EnMAP/sentinel-2. Remote Sens. 6,
6790–6816. doi:10.3390/rs6086790

Mishra, D., Ramaswamy, L., Kumar, A., Bhandarkar, S., Kumar, V., and Narumalani,
S. (2018). “A multi-cloud cyber infrastructure for monitoring global proliferation of
cyanobacterial harmful algal blooms,” in IGARSS 2018 - 2018 IEEE International
Geoscience and Remote Sensing Symposium, 9272–9275. doi:10.1109/IGARSS.2018.
8519144

Moradinejad, S., Glover, C. M., Mailly, J., Seighalani, T. Z., Peldszus, S., Barbeau, B.,
et al. (2019). Using advanced spectroscopy and organic matter characterization to
evaluate the impact of oxidation on cyanobacteria. Toxins 11, 278. doi:10.3390/
toxins11050278

Frontiers in Environmental Science frontiersin.org17

Ma et al. 10.3389/fenvs.2023.1133325

https://doi.org/10.3391/mbi.2018.9.2.02
https://doi.org/10.3391/mbi.2018.9.2.02
https://doi.org/10.1109/IGARSS.2019.8900425
https://doi.org/10.1016/S0048-9697(00)00686-0
https://doi.org/10.1016/S0048-9697(00)00686-0
https://doi.org/10.1007/s10712-018-9476-0
https://doi.org/10.5194/amt-14-961-2021
https://doi.org/10.4314/wsa.v33i2.49049
https://doi.org/10.1109/TIM.2020.2998615
https://doi.org/10.3390/rs12132072
https://doi.org/10.3390/rs13030336
https://doi.org/10.1080/01431161.2016.1190477
https://doi.org/10.1080/01431161.2016.1190477
https://doi.org/10.1364/AO.51.008324
https://doi.org/10.1364/AO.51.008324
https://doi.org/10.3389/fenvs.2021.647966
https://doi.org/10.1016/S0025-326X(99)00038-7
https://doi.org/10.1016/S0025-326X(99)00038-7
https://doi.org/10.1175/BAMS-D-11-00027.1
https://doi.org/10.1117/12.865123
https://doi.org/10.1016/j.scitotenv.2021.148592
https://doi.org/10.1007/s11356-022-20293-z
https://doi.org/10.1007/s11356-022-20293-z
https://doi.org/10.1109/IGARSS.2019.8898314
https://doi.org/10.1109/IGARSS.2019.8898314
https://doi.org/10.1016/j.rse.2010.06.006
https://doi.org/10.1109/IGARSS.2005.1526072
https://doi.org/10.1080/01431160600702434
https://doi.org/10.1016/S0048-9697(00)00685-9
https://doi.org/10.1016/S0048-9697(00)00685-9
https://doi.org/10.1109/M2GARSS47143.2020.9105257
https://doi.org/10.1109/M2GARSS47143.2020.9105257
https://doi.org/10.1080/01431161.2014.894663
https://doi.org/10.1080/01431161.2014.894663
https://doi.org/10.1364/OPEX.12.002463
https://doi.org/10.1016/j.ecss.2005.11.024
https://doi.org/10.3807/josk.2008.12.4.262
https://doi.org/10.1080/01431161003801328
https://doi.org/10.1080/01431161003801328
https://doi.org/10.1117/12.747737
https://doi.org/10.1117/12.747737
https://doi.org/10.1080/2150704X.2020.1734247
https://doi.org/10.3964/j.issn.1000-0593(2019)12-3761-08
https://doi.org/10.3964/j.issn.1000-0593(2019)12-3761-08
https://doi.org/10.3390/rs12111849
https://doi.org/10.3390/rs14081842
https://doi.org/10.1117/12.2587496
https://doi.org/10.1109/WHISPERS.2019.8921073
https://doi.org/10.1109/WHISPERS.2019.8921073
https://doi.org/10.3390/rs10081208
https://doi.org/10.1080/10106049.2017.1343395
https://doi.org/10.3390/rs6086790
https://doi.org/10.1109/IGARSS.2018.8519144
https://doi.org/10.1109/IGARSS.2018.8519144
https://doi.org/10.3390/toxins11050278
https://doi.org/10.3390/toxins11050278
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325


Mueksch, M. C. (1994). “Airborne hyperspectral algorithms to determine trophical
and morphological status of lakes, rivers, and coastal waters,” in Algorithms for
Multispectral and Hyperspectral Imagery (SPIE), 104–115. doi:10.1117/12.179771

Niu, C., Tan, K., Jia, X., and Wang, X. (2021). Deep learning based regression for
optically inactive inland water quality parameter estimation using airborne
hyperspectral imagery. Environ. Pollut. 286, 117534. doi:10.1016/j.envpol.2021.
117534

O’Grady, J., Zhang, D., O’Connor, N., and Regan, F. (2021). A comprehensive review
of catchment water quality monitoring using a tiered framework of integrated sensing
technologies. Sci. Total Environ. 765, 142766. doi:10.1016/j.scitotenv.2020.142766

Östlund, C., Flink, P., Strömbeck, N., Pierson, D., and Lindell, T. (2001). Mapping of the
water quality of lake erken, Sweden, from imaging spectrometry and landsat thematic
mapper. Sci. Total Environ. 268, 139–154. doi:10.1016/S0048-9697(00)00683-5

Palacios, S. L., Kudela, R. M., Guild, L. S., Negrey, K. H., Torres-Perez, J., and
Broughton, J. (2015). Remote sensing of phytoplankton functional types in the coastal
ocean from the HyspIRI Preparatory Flight Campaign. Remote Sens. Environ. 167,
269–280. doi:10.1016/j.rse.2015.05.014

Palmer, S. C. J., Kutser, T., and Hunter, P. D. (2015). Remote sensing of inland waters:
Challenges, progress and future directions. Remote Sens. Environ. 157, 1–8. doi:10.1016/
j.rse.2014.09.021

Pan, B., Yi, W., Wang, X., Qin, H., Wang, J., and Qiao, Y. (2011). Inversion of the lake
total nitrogen concentration by multiple regression kriging model based on
hyperspectral data of HJ-1A. Guang pu xue yu guang pu fen xi = Guang pu 31,
1884–1888. doi:10.3964/j.issn.1000-0593(2011)07-1884-05

Pascucci, S., Belviso, C., Cavalli, R. M., Palombo, A., Pignatti, S., and Santini, F.
(2012). Using imaging spectroscopy to map red mud dust waste: The Podgorica
Aluminum Complex case study. Remote Sens. Environ. 123, 139–154. doi:10.1016/j.
rse.2012.03.017

Piegari, A., Sytchkova, A., Bulir, J., Dami,M., Aroldi, G., andHarnisch, B. (2011). “Compact
imaging spectrometer with visible-infrared variable filters for Earth and planet observation,”
in Optical Complex Systems: OCS11 (SPIE), 320–327. doi:10.1117/12.897433

Premkumar, R., Venkatachalapathy, R., and Visweswaran, S. (2021). Bio-optical
studies on chlorophyll-a concentration in Hooghly River, India.Mater. Today Proc. 47,
488–492. doi:10.1016/j.matpr.2021.05.034

Pyo, J., Cho, K. H., Kim, K., Baek, S.-S., Nam, G., and Park, S. (2021).
Cyanobacteria cell prediction using interpretable deep learning model with
observed, numerical, and sensing data assemblage. Water Res. 203, 117483.
doi:10.1016/j.watres.2021.117483

Pyo, J., Hong, S. M., Jang, J., Park, S., Park, J., Noh, J. H., et al. (2022). Drone-borne
sensing of major and accessory pigments in algae using deep learning modeling.
GIScience Remote Sens. 59, 310–332. doi:10.1080/15481603.2022.2027120

Qian, S.-E., Bergeron, M., Djazovski, O., Maszkiewicz, M., Girard, R., Kappus, M.,
et al. (2017). “A spaceborne coastal and inland water color hyperspectral imager,” in
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
447–450. doi:10.1109/IGARSS.2017.8126990

Reuter, M., Buchwitz, M., Schneising, O., Noël, S., Bovensmann, H., and Burrows, J. P.
(2017). A fast atmospheric trace gas retrieval for hyperspectral instruments
approximating multiple scattering—Part 2: Application to XCO2 retrievals from
OCO-2. Remote Sens. 9, 1102. doi:10.3390/rs9111102

Riaza, A., Buzzi, J., García-Meléndez, E., Carrère, V., Sarmiento, A., and Müller, A.
(2015). Monitoring acidic water in a polluted river with hyperspectral remote sensing
(HyMap). Hydrological Sci. J. 60, 1064–1077. doi:10.1080/02626667.2014.899704

Rotkiske, T. A., and Jr, C. R. B. (2018). “Influence of bottom depths and bottom types
on water surface reflectance,” in Remote Sensing of the Ocean, Sea Ice, Coastal Waters,
and Large Water Regions 2018 (SPIE), 72–82. doi:10.1117/12.2515669

Salama, S., and Monbaliu, J. (2002). “Atmospheric correction algorithm for CHRIS
images application to CASI,” in Imaging Spectrometry VIII (SPIE), 120–131. doi:10.
1117/12.451618

Santini, F., Alberotanza, L., Cavalli, R. M., and Pignatti, S. (2010). A two-step
optimization procedure for assessing water constituent concentrations by
hyperspectral remote sensing techniques: An application to the highly turbid Venice
lagoon waters. Remote Sens. Environ. 114, 887–898. doi:10.1016/j.rse.2009.12.001

Sarigai, Y. J., Zhou, A., Han, L., Li, Y., and Xie, Y. (2021). Monitoring urban black-
odorous water by using hyperspectral data and machine learning. Environ. Pollut. 269,
116166. doi:10.1016/j.envpol.2020.116166

Schmid, T., Koch, M., and Gumuzzio, J. (2004). “Application of spectroscopial,
hyperspectral and multispectral data to study wetlands in semi-arid environments
(Central Spain),” in IGARSS 2004. 2004 IEEE International Geoscience and Remote
Sensing Symposium, 1563–1564. doi:10.1109/IGARSS.2004.1370612

Seidel, M., Hutengs, C., Oertel, F., Schwefel, D., Jung, A., and Vohland, M. (2020).
Underwater use of a hyperspectral camera to estimate optically active substances in the
water column of freshwater lakes. Remote Sens. 12, 1745. doi:10.3390/rs12111745

Sharp, S. L., Forrest, A. L., Bouma-Gregson, K., Jin, Y., Cortés, A., and Schladow, S. G.
(2021). Quantifying scales of spatial variability of cyanobacteria in a large, eutrophic
lake using multiplatform remote sensing tools. Front. Environ. Sci. 9. doi:10.3389/fenvs.
2021.612934

Shen, Q., Zhang, B., Li, J., Wu, Y., Wu, Y., Zhang, H., et al. (2011). “Retrieval total
suspended substance concentration of Three Gorges based on CHRIS/PROBA remote
sensing images,” in 2011 IEEE International Geoscience and Remote Sensing
Symposium, 1736–1739. doi:10.1109/IGARSS.2011.6049454

Simone, P., Angelo, P., Nicola, P., Stefano, P., Federico, S., and Lorenzo, F. (2013).
“Karst water resources detection through airborne thermal data: MIVIS and TASI-600
imagery,” in 2013 IEEE International Geoscience and Remote Sensing Symposium -
IGARSS, 4550–4553. doi:10.1109/IGARSS.2013.6723848

Song, K., Dongmei, L., Liu, D., Wang, Z., Li, L., Zhang, B., et al. (2010). “Retrival of
total suspended matter (TSM) using remotely sensed images in Shitoukoumen
Reservior, Northeast China,” in 2010 IEEE International Geoscience and Remote
Sensing Symposium, 405–408. doi:10.1109/IGARSS.2010.5652728

Song, K., Li, L., Li, S., Tedesco, L., Hall, B., and Li, L. (2012). Hyperspectral remote
sensing of total phosphorus (TP) in three central Indiana water supply reservoirs.Water
Air Soil Pollut. 223, 1481–1502. doi:10.1007/s11270-011-0959-6

Song, K., Zhang, B., Duan, H., and Wang, Z. (2005). “Establishing a ann model with
in-situ hyperspectral data for estimation chlorophyll-a concentrations in Nanhu Lake of
Changchun, China,” in Proceedings. 2005 IEEE International Geoscience and Remote
Sensing Symposium, 2005. IGARSS ’05, 5343–5346. doi:10.1109/IGARSS.2005.1525944

Song, Y., Song, X., Guo, Q., and Tang, L. (2011). Remote sensing monitoring and pre-
alarming of algal blooms in taihu lake. Spectrosc. Spectr. Analysis 31, 753–757. doi:10.
3964/j.issn.1000-0593(2011)03-0753-05

Song, Y., Song, X., Jiang, H., Guo, Z., and Guo, Q. (2010). Quantitative remote sensing
retrieval for algae in inland waters. Spectrosc. Spectr. Analysis 30, 1075–1079. doi:10.
3964/j.issn.1000-0593(2010)04-1075-05

Stal, C., De Maeyer, P., De Schrijver, A., Paelinck, M., Goossens, R., and De Wulf, A.
(2016). “Estimating grondwater nutrients using hyperspectral satellite imagery in the
flemish meuse-valley,” in 2016 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 3114–3117. doi:10.1109/IGARSS.2016.7729805

Tong, X., Xie, H., Qiu, Y., Zhang, H., Song, L., Zhang, Y., et al. (2010). Quantitative
monitoring of inland water using remote sensing of the upper reaches of the Huangpu
River, China. Int. J. Remote Sens. 31, 2471–2492. doi:10.1080/01431160902994440

Villa, P., Pinardi, M., Tóth, V. R., Hunter, P. D., Bolpagni, R., and Bresciani, M.
(2017). Remote sensing of macrophyte morphological traits: Implications for the
management of shallow lakes. J. Limnol. 76. doi:10.4081/jlimnol.2017.1629

Wang, J., Shi, T., Yu, D., Teng, D., Ge, X., Zhang, Z., et al. (2020). Ensemble
machine-learning-based framework for estimating total nitrogen concentration in
water using drone-borne hyperspectral imagery of emergent plants: A case study in
an arid oasis, NW China. Environ. Pollut. 266, 115412. doi:10.1016/j.envpol.2020.
115412

Wang, S., Yan, F., Zhou, Y., Zhu, L., Wang, L., and Jiao, Y. (2005). “Water quality
monitoring using hyperspectral remote sensing data in Taihu Lake China,” in
Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium,
2005. IGARSS ’05, 4553–4556. doi:10.1109/IGARSS.2005.1526679

Watanabe, S., Vincent, W. F., Reuter, J., Hook, S. J., and Schladow, S. G. (2016). A
quantitative blueness index for oligotrophic waters: Application to Lake Tahoe,
California–Nevada. Limnol. Oceanogr. Methods 14, 100–109. doi:10.1002/lom3.10074

Wei, L., Huang, C., Wang, Z., Wang, Z., Zhou, X., and Cao, L. (2019). Monitoring of
urban black-odor water based on nemerow index and gradient boosting decision tree
regression using UAV-borne hyperspectral imagery. Remote Sens. 11, 2402. doi:10.
3390/rs11202402

Wei, L., Wang, Z., Huang, C., Zhang, Y., Wang, Z., Xia, H., et al. (2020). Transparency
estimation of narrow rivers by UAV-borne hyperspectral remote sensing imagery. IEEE
Access 8, 168137–168153. doi:10.1109/ACCESS.2020.3023690

Wenzl, M. (2018). Bathymetry estimates and bottom classification using
hyperspectral data in the baltic sea. Available at: https://elib.dlr.de/126033/(Accessed
December 28, 2022).

Wolny, J. L., Tomlinson, M. C., Schollaert Uz, S., Egerton, T. A., McKay, J. R.,
Meredith, A., et al. (2020). Current and future remote sensing of harmful algal blooms in
the chesapeake bay to support the shellfish industry. Front. Mar. Sci. 7. doi:10.3389/
fmars.2020.00337

Xie, H., Tong, X. H., Qiu, Y. L., Zhang, H. E., Zhao, J. F., Huan, X. I. E., et al.
(2006). Monitoring model and temporal-spatial changes of dissolved oxygen based
on remote sensing: A case study in huangpu river. Spectrosc. Spectr. Anal. 27,
1574–1579.

Xiong, Y. J., Qiu, G. Y., Chen, X. H., Tan, S. L., and Feng, H. X. (2012). “Hyperspectral
characteristics of seawater intrusion in Pearl River Delta, China based on laboratory
experiments,” in 2012 IEEE International Geoscience and Remote Sensing Symposium,
4825–4828. doi:10.1109/IGARSS.2012.6352533

Yan, F. L., Wang, S. X., Zhou, Y., Xiao, Q., and Jiao, Y. Q. (2006). Monitoring the water
quality of taihu lake by using hyperion hyperspectral data. J. Infrared Millim. Waves 25,
460–464.

Yan, F., Wang, S., Zhou, Y., Zhu, L., Wang, L., and Jiao, Y. (2005). “Inherent optical
properties and hyperspectral remote sensing in Taihu Lake China,” in Proceedings.
2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS
’05, 3579–3582. doi:10.1109/IGARSS.2005.1526621

Frontiers in Environmental Science frontiersin.org18

Ma et al. 10.3389/fenvs.2023.1133325

https://doi.org/10.1117/12.179771
https://doi.org/10.1016/j.envpol.2021.117534
https://doi.org/10.1016/j.envpol.2021.117534
https://doi.org/10.1016/j.scitotenv.2020.142766
https://doi.org/10.1016/S0048-9697(00)00683-5
https://doi.org/10.1016/j.rse.2015.05.014
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.3964/j.issn.1000-0593(2011)07-1884-05
https://doi.org/10.1016/j.rse.2012.03.017
https://doi.org/10.1016/j.rse.2012.03.017
https://doi.org/10.1117/12.897433
https://doi.org/10.1016/j.matpr.2021.05.034
https://doi.org/10.1016/j.watres.2021.117483
https://doi.org/10.1080/15481603.2022.2027120
https://doi.org/10.1109/IGARSS.2017.8126990
https://doi.org/10.3390/rs9111102
https://doi.org/10.1080/02626667.2014.899704
https://doi.org/10.1117/12.2515669
https://doi.org/10.1117/12.451618
https://doi.org/10.1117/12.451618
https://doi.org/10.1016/j.rse.2009.12.001
https://doi.org/10.1016/j.envpol.2020.116166
https://doi.org/10.1109/IGARSS.2004.1370612
https://doi.org/10.3390/rs12111745
https://doi.org/10.3389/fenvs.2021.612934
https://doi.org/10.3389/fenvs.2021.612934
https://doi.org/10.1109/IGARSS.2011.6049454
https://doi.org/10.1109/IGARSS.2013.6723848
https://doi.org/10.1109/IGARSS.2010.5652728
https://doi.org/10.1007/s11270-011-0959-6
https://doi.org/10.1109/IGARSS.2005.1525944
https://doi.org/10.3964/j.issn.1000-0593(2011)03-0753-05
https://doi.org/10.3964/j.issn.1000-0593(2011)03-0753-05
https://doi.org/10.3964/j.issn.1000-0593(2010)04-1075-05
https://doi.org/10.3964/j.issn.1000-0593(2010)04-1075-05
https://doi.org/10.1109/IGARSS.2016.7729805
https://doi.org/10.1080/01431160902994440
https://doi.org/10.4081/jlimnol.2017.1629
https://doi.org/10.1016/j.envpol.2020.115412
https://doi.org/10.1016/j.envpol.2020.115412
https://doi.org/10.1109/IGARSS.2005.1526679
https://doi.org/10.1002/lom3.10074
https://doi.org/10.3390/rs11202402
https://doi.org/10.3390/rs11202402
https://doi.org/10.1109/ACCESS.2020.3023690
https://elib.dlr.de/126033/
https://doi.org/10.3389/fmars.2020.00337
https://doi.org/10.3389/fmars.2020.00337
https://doi.org/10.1109/IGARSS.2012.6352533
https://doi.org/10.1109/IGARSS.2005.1526621
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325


Zhang, B., Zhang, H., Li, J.-S., Guo, W. S., Xia, S. L., Shi, Q., et al. (2009). On-flight
calibration and atmospheric correction over city water for wide-field -of-view
Hypersepctral Imager. Jt. Urban Remote Sens. Event 30, 1–5. doi:10.1109/URS.2009.
5137556

Zhang, D., Guo, Q., Cao, L., Zhou, G., Zhang, G., and Zhan, J. (2021a). A multiband
model with successive projections algorithm for bathymetry estimation based on
remotely sensed hyperspectral data in qinghai lake. IEEE J. Sel. Top. Appl. Earth
Observations Remote Sens. 14, 6871–6881. doi:10.1109/JSTARS.2021.3093624

Zhang, D., Zhang, L., Sun, X., Gao, Y., Lan, Z., Wang, Y., et al. (2022). A new
method for calculating water quality parameters by integrating space–ground

hyperspectral data and spectral-in situ assay data. Remote Sens. 14, 3652.
doi:10.3390/rs14153652

Zhang, R., Zheng, Z., Liu, G., Du, C., Du, C., Lei, S., et al. (2021b). Simulation and
assessment of the capabilities of Orbita hyperspectral (OHS) imagery for remotely
monitoring chlorophyll-a in eutrophic plateau lakes. Remote Sens. 13, 2821. doi:10.
3390/rs13142821

Zhu, W., and Yu, Q. (2013). Inversion of chromophoric dissolved organic
matter from EO-1 hyperion imagery for turbid estuarine and coastal waters.
IEEE Trans. Geoscience Remote Sens. 51, 3286–3298. doi:10.1109/TGRS.2012.
2224117

Frontiers in Environmental Science frontiersin.org19

Ma et al. 10.3389/fenvs.2023.1133325

https://doi.org/10.1109/URS.2009.5137556
https://doi.org/10.1109/URS.2009.5137556
https://doi.org/10.1109/JSTARS.2021.3093624
https://doi.org/10.3390/rs14153652
https://doi.org/10.3390/rs13142821
https://doi.org/10.3390/rs13142821
https://doi.org/10.1109/TGRS.2012.2224117
https://doi.org/10.1109/TGRS.2012.2224117
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1133325

	Hyperspectral remote sensing technology for water quality monitoring: knowledge graph analysis and Frontier trend
	1 Introduction
	2 Data sources and methods
	2.1 Data collation
	2.2 Data collation

	3 Results
	3.1 Statistics of documents publication time
	3.1.1 The first stage is the slow start stage (1994–2009)
	3.1.2 The second stage is rapid development (2011–2017)
	3.1.3 The third stage is the multi fields application stage (2018–2022)

	3.2 Analysis of scientific research cooperation
	3.3 Keyword analysis
	3.4 Analysis of Frontier trend

	4 Discussion
	4.1 Monitoring scenarios
	4.2 Monitoring data sources
	4.3 Monitoring parameters
	4.4 Monitoring algorithms

	5 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


