AUTHOR=Zhai Mingjian , Zhou Xiang , Tao Zui , Lv Tingting , Zhang Hongming , Li Ruoxi , Huang Yuxuan TITLE=Retrieve of total suspended matter in typical lakes in China based on broad bandwidth satellite data: Random forest model with Forel-Ule Index JOURNAL=Frontiers in Environmental Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1132346 DOI=10.3389/fenvs.2023.1132346 ISSN=2296-665X ABSTRACT=
Total Suspended Matter is the core parameter of water color remote sensing and the important indicator for water quality evaluation of lakes. Rapid and high-precision monitoring of TSM is an important guarantee for water quality remote-sensing applications. China has launched many broad-bandwidth remote sensing satellites, all of which have similar bandwidth. The coordinated observation of multiple satellites can effectively meet the large-scale and high-frequency dynamic monitoring requirements of TSM concentration in lakes. This study proposed a machine-learning model to retrieve the TSM concentration from broad bandwidth satellites. The reliability and accuracy of various retrieve models (i.e., linear regression model, support vector regression model, random forest model, and back propagation neural networks model) were evaluated through the