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Total Suspended Matter is the core parameter of water color remote sensing and the
important indicator for water quality evaluation of lakes. Rapid and high-precision
monitoring of TSM is an important guarantee for water quality remote-sensing
applications. China has launched many broad-bandwidth remote sensing
satellites, all of which have similar bandwidth. The coordinated observation of
multiple satellites can effectively meet the large-scale and high-frequency
dynamic monitoring requirements of TSM concentration in lakes. This study
proposed a machine-learning model to retrieve the TSM concentration from
broad bandwidth satellites. The reliability and accuracy of various retrieve models
(i.e., linear regressionmodel, support vector regressionmodel, random forest model,
and back propagation neural networks model) were evaluated through the in-situ
datasets of TSM concentration in lakes. The RF model was selected as the retrieved
model of TSM concentration using broad bandwidth satellites. The results showed
that 1) Compared with four machine learning models, the RF model can provide
better performance (R2 � 0.88, Mean Absolute Percentage Error (MAPE) = 22.5%).
Similarly, compared with the documented six TSM retrieve model, the RF retrieve
model also has substantial advantages. 2) the Forel-Ule Index (FUI) can effectively
enhance the precision and accuracy of the TSM retrieve model. 3) The RF model has
good generalization ability and accuracy in the validation datasets (Lake Chagan:
MAPE = 3.7%, Lake Changdang: MAPE = 4.3%). 4) The RF model was applied to the
broad bandwidth satellites retrieve of TSM concentrations in Lake Bosten, Lake
Chagan, and Lake Changdang, and the MAPEs were 5.3%, 8.1%, and 12.1%,
respectively. This study showed that the RF model could effectively improve the
retrieve performance and generalization ability of the broad bandwidth satellite’s
TSM concentration, which meets the accuracy requirements of high-frequency
dynamic monitoring of TSM concentration.
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1 Introduction

Lakes and rivers worldwide have undergone tremendous changes due
to climate change and human activities. Relevant studies have shown that
in 68% of the world, the lakes are deteriorating at an accelerated rate lake,
the lakes are declining at an accelerated rate with the increase of algal
bloom intensity in summer (Ho et al., 2019).Many lakes have experienced
problems such as water quality deterioration, eutrophication, ecological
damage, and the disappearance of critical aquatic organisms, which have
greatly affected the environmental environment of lakes (Wang and Xie,
2018; Bonansea et al., 2019; Aires et al., 2020). The dynamic monitoring
and evaluation of water quality need to be further strengthened. TSM is a
general term for organic suspended matter and inorganic suspended
matter, mainly including plankton, animal and plant remains,
phytoplankton non-pigmented cell matter, and suspended sediment,
which is a key parameter for evaluating water quality (Bilotta and
Brazier, 2008; Eleveld et al., 2008; Uddin et al., 2012). TSM
concentration will directly affect the ability of light to pass through the
water, resulting in reduced water transparency and water light
transmittance, thereby affecting the productivity of phytoplankton and
the living conditions of aquatic animals and plants (Doxaran et al., 2014;
Gernez et al., 2014; Cao et al., 2017). Therefore, it is of great significance to
study the dynamic change characteristics of the TSM concentration for a
deep understanding of the dynamic change process of the water and an
accurate evaluation of the ecological change of the water (Zhang et al.,
2022).

The traditional measurement method of TSM concentration usually
involves on-site sampling and routine drying, baking, and weighing in the
laboratory for measurement. However, the on-site sampling method can
only cover same lakes, and the water quality of most lakes cannot be
obtained. Remote sensing has many characteristics, such as large-scale,
multi-scale, and long-term sequence, and can monitor TSM
concentration in lakes (Dörnhöfer and Oppelt, 2016). Remote sensing
satellites currently used for monitoring TSM concentration include the
Moderate resolution Imaging Spectroradiometer (MODIS, 250 m, the
Medium Resolution Imaging Spectrometer (MERIS, 300 m), and the
Ocean and Land Color Instrument (OLCI, 300 m) (Miller and McKee,
2004; Nechad et al., 2010; Xi and Zhang, 2011; Zhang et al., 2014;
Pahlevan et al., 2020). These sensors are widely used in marine water
monitoring and have achieved many research results (Ouillon et al., 2008;
Siswanto et al., 2011; Konik et al., 2020). However, the low spatial
resolution of these satellites dramatically limits their application to
small and medium-sized lakes and reservoirs. In fact, according to the
statistics of the Chinese lake dataset provided by the Institute of Tibetan
Plateau Research (ITP), Chinese Academy of Sciences (CAS), among the
3,612 lakes in China in 2020, there are 142 large lakes on the 100 km2, and
550 medium-sized lakes, and 2,920 small lakes less than 10 km2 (Zhang
et al., 2019). Small and medium-sized lakes account for 96% of the total
number of lakes in China and are an important part of China’s inland
waters and contain a wide range of water biological and optical
characteristics. Therefore, monitoring small and medium lakes is
significant to China’s inland water.

Monitoring TSM concentration in small and medium-sized lakes
requires high (<30 m) spatial resolution sensors to obtain satisfactory
observation results, such as Landsat, Sentinel-2 A/B, Gaofen series
satellites, etc. (Ciancia et al., 2020; Du et al., 2020; Saberioon et al.,
2020; Zeng et al., 2020; Guo et al., 2022). High-resolution remote
sensing satellites to monitor the TSM concentration face the problems
of satellite space coverage and monitoring timeliness. For example, the

revisit period of Sentinel-2 is five days, and Landsat is 16 days. In
actual monitoring, the effective observation capability of the satellites
is further reduced due to the influence of cloud and gas occlusion (Li
and Roy, 2017). This will significantly limit the research on the
dynamic change characteristics of TSM concentration in lakes. In
terms of application requirements, more and more remote sensing
observations of lakes no longer focus on the changes of a single lake.
Regional lake monitoring and even national and global lake dynamic
monitoring have become the key research directions of remote sensing
satellites. An effective way to solve this problem is to increase the
frequency of Earth observations through multi-source remote sensing
data and obtain lake observation datasets under cloudless weather as
much as possible. In the past ten years, China has successively
launched more than ten remote sensing satellites carrying high-
resolution sensors, such as GaoFen-1/B/C/D, GF-2, GF-6, HJ-2A,
HJ-2B, etc. (Chen et al., 2022). These satellites are broad bandwidth
satellites with blue (0.45–0.52 μm), green (0.52–0.59 μm), red
(0.63–0.69 μm), and near-infrared (0.77–0.89 μm) four-channel
sensors. These sensors have a high degree of consistency in the
bandwidth, which can provide a good data guarantee for the multi-
source data retrieval of the TSM concentration.

Most documented TSM retrieval algorithms are developed for
MODIS, Sentinel 2-3, and Landsat (Xing et al., 2013; Ali and Ortiz,
2016). These algorithms mostly use multiple different infrared bands and
their combinations to retrieve the TSM concentration (Zheng et al., 2015).
China’s broad bandwidth satellites have a high spatial resolution
(2–16 m), but their spectral resolution is relatively low, and there is
only one band in the near-infrared band. Compared with Sentinel 2 and
Landsat sensors, China’s broad bandwidth satellites have certain
deficiencies in the near-infrared band. Therefore, the retrieval
algorithm of TSM concentration using multiple near-infrared bands
cannot be applied to the retrieval of broad-bandwidth satellites. Several
algorithms for the TSM concentration in lakes based on broad bandwidth
satellites mainly include single-band algorithms, multi-band algorithms,
and semi-analytical models (Zhang et al., 2008; Xu et al., 2020; Liu et al.,
2021; Tan et al., 2022). These algorithms have been studied in a few lakes
and estuaries in China, and most of them are applied to single lakes for
validation. The local calibration of remote sensing retrievedmodels is vital
for ensuring the model is robust. Therefore, if the monitoring of the TSM
concentration of multiple lakes is carried out in a large area, it is necessary
to use a sufficient number of in-situ datasets to further verify the
applicability of the above empirical model. However, it is unrealistic to
measure the TSM concentration in many small and medium-sized lakes
in a large area. Therefore, Establishing a high-precision and applicable
TSM retrieval model are important issues facing the retrieval of TSM
concentration in lakes using broad bandwidth satellites.

In recent years, machine learning algorithms have proven to have
strong feature recognition and learning capabilities and have been used to
study marine, coastal, and inland water environments. Models such as
support vector machines, random forests, deep neural networks, and
density neural networks are used to invert various water parameters such
as absorption coefficient, water chlorophyll concentration, suspended
solids concentration, and cyanobacterial concentration (Chen et al., 2015;
Reichstein et al., 2019; Pahlevan et al., 2020; Leong et al., 2021;Wang et al.,
2022a; Guo et al., 2022; LIU et al., 2022). Machine learning can use
complex networks and structures to capture the data-rich features of input
data and obtain explicit relationships with output variables (Pyo et al.,
2019). Therefore, themachine learningmethod can effectively capture the
spectral characteristics of different water bodies. It can also
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comprehensively analyze the potential relationship between spectral
characteristics and water quality parameters. It provides good technical
support for broad bandwidth satellites to carry out large-scale and long-
term TSM concentration retrieval.

This study proposed a machine learning algorithm for the TSM
concentration retrieval in lakes, focusing on using broad bandwidth
satellite datasets to carry out the TSM concentration retrieval in
different types of lakes on a large scale to solve the applicability of
existingmodels. The research structure is as follows: First, the study area is
outlined, and then the acquisition and preprocessing methods of in-situ
data and broad bandwidth satellite data are introduced. Secondly, prepare
the training and verification datasets, evaluate the effectiveness of the four
machine learning models, and add the FUI to evaluate the effectiveness of
FUI. Then, the machine learning model has applied to retrieve the TSM
concentration in several typical lakes to assess the applicability of the
machine learning model. Finally, the strengths and limitations of the
model and future research directions are discussed.

2 Data

2.1 Study area

15 cruises in-situ data were collected in typical lakes in China in
this study. The sampling locations are shown in Figure 1. The principle
of selecting lakes in this study is the area, salinity, spatial distribution

and temporal distribution of lakes. In terms of lake area, 7 lakes are
larger than 1,000 km2, 5 lakes between 100 km2 and 1,000 km2, and
3 lakes smaller than 100 km2. From the salinity of the lake, Qinghai
Lake and Bosten Lake are salt water lakes, and the other lakes are
freshwater lakes. In terms of spatial distribution, these lakes are
distributed in five major regions of China, namely, Northeast,
Northwest, Central, South and Southwest. And it covers the eastern
China from high latitude to low latitude. From the time distribution of
the data, the collection time of these sample points is from March to
December. Water quality samples in different seasons are taken from
some typical lakes, as shown in Table 1. In addition, limited by the
number of sampling points, this paper adopts reasonable sampling
principles in different lakes to improve the spatial representation.

2.2 Broad bandwidth satellite

The remote sensing images of broad bandwidth satellites are from
the China Centre for Resources Satellite Data and Application (https://
data.cresda.cn/). The remote sensing images come from 8 sensors of
7 satellites, including GF1-PMS, GF1-WFV, GF1B-PMS, GF1C-PMS,
GF1D-PMS, GF6-PMS, HJ2A-CCD, and HJ2B-CCD. Their band
setting is the same: blue/band 1, green/band 2, red/band 3, and
near-infrared/band 4, four spectral bands. The spectral response
functions of each sensor are highly similar (Figures 2, 3). The
networked joint observation of multiple sensors can meet the

FIGURE 1
Location of lake sites being sampled.

Frontiers in Environmental Science frontiersin.org03

Zhai et al. 10.3389/fenvs.2023.1132346

https://data.cresda.cn/
https://data.cresda.cn/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1132346


requirements of daily full-coverage observation of the whole of China,
which is suitable for the dynamic monitoring of lakes in China. Twenty-
two broad bandwidth remote sensing images matching the field
sampling data were downloaded. The time window is within 1 day

of the on-site sampling time. The Second Simulation of a Satellite Signal
in the Solar Spectrum vector code (6sV) was used to complete the
atmospheric correction of each satellite data, which was used in
producing remote sensing products for the TSM concentration in lakes.

TABLE 1 Name, location, time, sampling number, and satellite synchronous image of lakes across China used in the present study.

Lake Location Time N Remote sensing image

Lake Ballet Swan 115.72°N, 41.71°E 2020-09-26 14 GF1B-PMS

Lake Nanyi 118.93°N, 31.08°E 2020-10-23 14 GF6-PMS

2022-08-01 12 HJ2B-CCD

2022-08-02 12 HJ2A-CCD

Lake Taihu 120.26°N, 31.25°E 2020-12-12 12 GF1C-PMS

Lake Dianchi 102.69°N, 24.83°E 2021-11-19 13 GF1D-PMS

2022-12-15 15 GF1B-PMS

Bamengwan 110.83°N, 19.62°E 2021-03-30 11 GF1B-PMS

Lake Khanka 132.36°N, 45.27°E 2021-06-23 30 GF1C-PMS

Lake Chagan 124.26°N, 45.31°E 2021-05-26 20 GF1-WFV

2021-07-18 20 GF1-WFV

2021-08-31 20 HJ2A-CCD

2021-09-01 20 HJ2A-CCD

2021-09-07 20 GF1-WFV

Lake Bosten 86.89°N, 41.96°E 2021-09-15 18 GF1B-PMS

Lake Qinghai 100.14°N, 36.88°E 2022-07-07 16 GF1D-PMS

Lake Poyang 116.13°N, 29.57°E 2022-08-13 9 GF1C-PMS

Lake Hulun 117.59°N, 49.29°E 2022-09-08 25 HJ2B-CCD

Lake Ge 119.79°N, 31.58°E 2022-10-12 13 HJ2B-CCD

Lake Hung-tse 118.59°N, 33.26°E 2022-10-23 15 GF1D-PMS

Lake Changdang 119.54°N, 31.61°E 2022-11-02 14 GF1-PMS

Lake Gaoyou 119.29°N, 32.86°E 202211-07 13 GF1C-PMS

FIGURE 2
The spectral response functions of each sensor (A) and the simulation results of a single spectrum under different spectral response functions (B).
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2.3 In Situ data

The in-situ data include the water spectrum data and the TSM
concentration data in lakes. The determination of the TSM
concentration adopts the laboratory measurement method, and the
process of drying, roasting, and weighing is carried out in the
laboratory. The water spectral data are measured by the water
spectrometer model RAMSES produced by the German TRIOS
company, and the measurement method is the water surface
measurement method.

The in-situ spectral data of the lakes is equivalent to the water
remote sensing reflectance through the integral band operation
(Martins et al., 2017). As shown in Formula 1:

Rrs γi( ) � ∑n
j�1Fi γj( )Rrs γj( )∑n

j�1Fi γj( ) (1)

Where Rrs(γi) (sr−1) is water remote sensing reflectance; Fi is the
spectral response function of the i th band of the broadband satellite
sensor synchronized with the in-situ data.

The water spectrum data were used to simulate the true values of
remote sensing reflectance observed by satellite sensors. Three spectral
data of three different TSM concentrations of 6 mg/L, 26 mg/L, and
48 mg/L were selected, and Formula 1 was used to simulate the remote
sensing reflectance of eight sensors (Figure 2). Table 2 showed that the
MAPE of broad bandwidth satellite remote sensing reflectance under
different TSM concentrations was 2.11%, indicating that different

broad bandwidth satellites transferred about 2% error in the retrieval
model.

3 Methods

This study compares several representative machine learning
algorithms of TSM concentration that are most widely used. To
enhance the feature set of the machine learning model, based on
the four bands of blue, green, red, and near-infrared, using the band
combination of TSM retrieval in the existing literature and FUI
(Section 3.1) are considered as the feature variable. These spectral
variables are used to estimate the TSM concentration in water to check
the performance of the machine-learning model.

3.1 Forel-Ule Index

The FUI is one of the monitoring data of traditional water quality
optical properties. The FUI is closely related to changes in water
quality parameters and has strong potential and advantages in
monitoring water quality on a regional and global long-term scale.
Moreover, the FUI extracted from satellite images has higher accuracy
and is closely related to the TSM concentration. The remote sensing
extraction of the FUI has strong stability and can convert between
different sensors (Wernand et al., 2013; Garaba et al., 2015; Li et al.,
2016). Based on the Forel-Ule Scale, the color of natural water is
divided into 21 color levels, from dark blue to reddish brown (Novoa
et al., 2013; Wang et al., 2014). Therefore, The FUI are added to
supplement the input feature dataset of the machine learning model.
The calculation method of the FUI refers to the research paper of Li
et al. (Wang et al., 2021).

3.2 Machine learning model

Machine learning models can automatically identify and capture
the characteristics of training data and develop predictive models with
good performance (Reichstein et al., 2019). Several representative

FIGURE 3
Schematic diagram of four machine learning algorithms for optimal TSM retrieve from Rrs(γ) combination.

TABLE 2 Simulation accuracy of single spectrum under different spectral
response function.

MAPE* (%) Band 1 Band 2 Band 3 Band 4

Lake Chagan 2.27 0.75 1.24 1.81

Lake Taihu 2.03 1.71 2.65 2.76

Lake Bosten 2.23 0.91 2.14 4.89

Mean 2.11

* MAPE is the mean absolute percentage error.
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machine learning models are used in the TSM retrieve in water quality,
including linear regression, support vector regression, random forest,
and BP neural network. To ensure the accuracy and generalization of
the retrieved model, The in-situ data and spectral data were divided
into the training dataset (N = 230), validation dataset (N = 100), test
dataset (Lake Chagan (2021-08-31), Lake Changdang). Water spectral
characteristic variables are used to estimate the TSM concentration to
check the performance of the machine learning models.

3.2.1 Linear regression
Linear regression establishes an approximately linear relationship

between the independent variable xi and the dependent variable y.
When a dataset n is given, the model can be expressed by Formula 2:

y � β0 + β1xi1 +/ + βpxip + εi � xT
i β + εi, i � 1, 2,/, n (2)

where y is the dependent variable, βi is the polynomial coefficient of
xi, p is the number of independent variables, εi is the ith possible
variation, and xTi is the inner product between vectors xi and βi.

y �
y1

y2

..

.

yn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, X �
xT
1

xT
2

..

.

xT
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 x11 / x1p

1 x21 / x2p

..

. ..
.
xi,p

..

.

1 xn1 / xnp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, β �
β1
β1
..
.

βn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, ε

�
ε1
ε1
..
.

εn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3)

where y1 is the i th dependent variable, xi,p is the value of the i th
independent variable in the p th data, based on the classical matrix
operation theory, LR model uses the least squares method to solve
coefficients of the vector β and predict the dependent variable y.

3.2.2 Support vector regression
Support Vector Regression aims to present the dataset in a high-

dimensional feature space via non-linear mapping and solve the
prediction problem. Find a hyperplane with the smallest linear
approximation distance to the sample dataset in the feature space.
For the training dataset D � (x1, y1), (x2, y2)/, (xm, ym){ }, yi ∈ R,
find a hyperplane given:

f x( ) � w∅ x( ) + b (4)
where x is an independent variable,w is a weight vector, ∅(x) is a non-
linear mapping function, and b is a bias term. The kernel function uses
the radial basis function.

3.2.3 Random forest regression
Random Forest Regression is an ensemble learning method that

inputs data from random sampling into many weak learners (decision
trees) and votes to obtain the final output (Victor et al., 2014). The
MSE standard grows a single decision tree, and the predicted target
variable is computed as the average prediction of all decision trees. The
steps of the RF regression algorithm are as follows: First, apply
bootstrap to extract m sample datasets from all training samples
with replacement to construct m regression trees, and the
unselected samples form m out-of-big datasets. Then, at each tree
node, a part of the segmentation variables is randomly selected from
all explanatory variables, and the optimal branch is chosen according

to the branching goodness criterion. Finally, each regression tree starts
recursive branching from top to bottom until the split termination
condition is met. The advantages of random forest regression are: that
the learning process is fast; for large-scale datasets, it is an efficient
processing algorithm, and it has strong robustness to the noise in the
dataset.

3.2.4 BP neural network
The back propagation neural network is a feed-forward network

proposed by Rumelhart and McClelland, which uses the error back
propagation algorithm as the learning rule for supervised learning
(Teodoro et al., 2007). By training known samples, find out the
relationship between the characteristic attributes of the input
samples and the target output. Suppose the number of input nodes
of the network is M and the number of output nodes is L. In that case,
this neural network can be regarded as an M-dimensional Euclidean
space to Mapping of L-dimensional Euclidean spaces. It uses the error
back propagation algorithm. The BP neural network is usually
composed of an input layer, an output layer, and a hidden layer.
The neurons between the layers are fully interconnected. The neurons
in each layer are not connected. Interconnected through the
corresponding network weight coefficient w.

3.3 Statistical analyses and accuracy
assessment

The mean absolute percentage error (MAPE), the mean absolute
error (MAE), and the root mean square error (RMSE) are used to
evaluate the performance of the TSM concentration retrieval model.
Their formulas are as follows:

MAPE � 100%
N

∑N
i�1

Ei −Mi

Mi

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (5)

MAE � 1
N

∑N
i�1

Ei −Mi| | (6)

RMSE �

�������������
1
N

∑N
i�1

Ei −Mi( )2
√√

(7)

whereN is the total number of data, i represents a single data;M and E
are measured values and estimated values, respectively.

4 Results and analysis

4.1 TSM data analysis

Figure 4 showed the change differences in the TSM concentration
in each lake. This difference reflected the impact of human life on the
water environment of the lake. For example, Qinghai Lake and Lake
Bosten were located in the central and western parts of China. Because
the lakes are governed and protected by the local government, and the
TSM concentration were lower. The highest values of TSM
concentration in Lake Chagan and Lake Xingkai were more
significant than 100 mg/L. They were located near towns in
northern China, so they were highly vulnerable to human activities.
The TSM concentration in all samples ranged from 1 to 126 mg/L,
averaging 40 mg/L. It showed that our lake dataset contains the Rrs(γi)
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of the lake type of 0–130 mg/L, and did not contain the lakes with high
TSM concentration higher than 130 mg/L.

4.2 Machine learning input feature variable
screening

Based on the four bands of blue (Band 1), green (Band 2), red
(Band 3), and near-infrared (Band 4), band combinations (Band 3/
Band 2, Band 3/Band 1, Band 3/Band 4, Band 2*Band 3/Band 1) and
the FUI were used as the feature variables for the TSM concentration
retrieve (Du et al., 2020; Liu et al., 2021). However, if there was a strong
correlation between the feature variables, it may lead to
multicollinearity of the dataset, affecting the solution’s spatial
instability. The Mean Decrease Impurity (MDI) feature selection
method in Scikit-learn were used to reduce the dimensionality of
the feature dataset. The feature importance ranking was shown in
Figure 5. Band 3/Band 2 features variables had the highest proportion
of importance, which was 0.44. The importance of the top four feature

variables accounted for more than 80%. Therefore, the final selected
four feature variables, Band 3/Band 2, FUI, Band 4, and Band 3/Band
4, were used to retrieve the TSM concentration.

4.3 TSM retrieve model calibration and
validation

The following comparative analysis on the TSM retrieve model
were conducted: evaluated the retrieved model of TSM concentration
in the existing documented; compared and evaluated four machine
learning methods; considered the influence of FUI on the accuracy of
TSM retrieve model.

Six existing documented models were compared in this study
(Table 3). Figure 6 showed the retrieval performance of the six
models in existing datasets. All TSM concentration retrieve models
were generally underestimated at high values. Overestimation
occurred in the low-value area. The performance of Model 2 and
Model 5 was the most prominent, and their predicted values was
concentrated between 20 and −60 mg/L, and they were not sensitive
to low and high TSM concentration. Although the fitting
coefficients of Model 1, Model 3, and Model 6 were above 0.4,
the MAPEs were all above 54%, indicating obvious faults in the

FIGURE 4
Data analysis of suspended solids in each lake.

FIGURE 5
Ranking of the importance of feature variables.

TABLE 3 Documented candidate TSM algorithms related to 4 bands.

Algorithms Algorithms descriptions Author Year

Model 1 TSM � 492 × b3 + 2.212 Xu, Jian 2020

Model 2 TSM � 31.47 × e2.95×b3 Ciancia, E 2020

Model 3 X � b4 − (b1 − b4) × b4 + (b3 − b4) Xu, Jian 2020

TSM � −1290 × X2 + 699.7 × X − 3.724

Model 4 TSM � 232.2 × b2 × b3/b1 + 13.48 Du, Yunxia 2020

Model 5 TSM � 5.849 × (b3/b1)6.168 Du, Yunxia 2020

Model 6 TSM � 68.98 × (b3/b2)2.5063 Liu, Yao 2021
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FIGURE 6
Scatter plots of derived and measured values of TSM concentrations according to documented candidate TSM algorithms related to Broad bandwidth
satellite (Table 3), The unit of RMSE and MAE mg/L.

FIGURE 7
(B, D, F, H) were the training and validation accuracy of the four machine learning models without FUI, and (A, C, E, G) were the training and validation
accuracy of four machine learning models with FUI.
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shallow value area (<10 mg/L) and other value areas. Therefore, the
existing documented models often exhibited high dispersion and
error characteristics when targeting different types of lakes and
were not suitable for joint retrieve research of TSM concentration
in multiple lakes.

Machine learning algorithms had good performance for feature
capture of training datasets. The retrieved results of the four
machine-learning models were shown in Figure 7 (Table 2). The
statistical indicators of the validation dataset showed that among
the four machine learning models, the RF model
(R2 � 0.83,MAPE � 25.5%) and BP model
(R2 � 0.80,MAPE � 22.7%) show good performance (slope close
to 1) and relatively low error. In contrast, the SVR model
(R2 � 0.55,MAPE � 114.4%) algorithm showed good learning
performance in the low-value area, but underestimated the TSM
concentration (>50 mg/L) in the high-value area, the results of LR
model (R2 � 0.59, MAPE � 94.3%) also showed that the high-value
area was underestimated, and its dispersion was high. Therefore, we
considered the RF and BP models as candidate models for the TSM
retrieval model.

The FUI divided water bodies into different categories, covering
an extensive range of natural water optical features. The FUI was
added into the machine learning model. Figures 7E, F, G, H)
showed the accuracy changes of the four machine learning
models after adding the FUI. The MAE of the four machine
learning models on the test dataset was reduced from 16.06 mg/
L, 15.30 mg/L, 8.06 mg/L, and 7.52 mg/L to 15.14 mg/L, 15.21 mg/
L, 6.69 mg/L, 6.92 mg/L (Table 4). At the same time, RMSE
decreased by an average of 1.48 mg/L among the four models.
By comparing the RF model (Figures 7D, H), it was found that
in the TSM concentration of 30–50 mg/L, the FUI effectively
captured the change characteristics, which significantly improved
the performance of the model on the validation dataset. Figures 7G,
H showed that the FUI can make the machine learning model
converge better and improve the training accuracy of the BP model
and RF model (RF: R2 � 0.97, BP: R2 � 0.91) and Validation
accuracy (RF: R2 � 0.88, BP: R2 � 0.88). The resulted showed
that the FUI could improve the accuracy of the TSM retrieval
model in the machine-learning model.

4.4 TSM retrieve model generalization

The RF model and BP model were used to retrieve the TSM
concentration in Lake Chagan (2021-8-31) and Lake Changdang
(Figure 8). The Lake Chagan dataset was used to verify the
generalization ability of the TSM model for the machine learning
model in different phases of the same lake. The Lake Changdang
dataset was used to demonstrate the generalization ability of machine
learning in different lakes and time phases. The resulted showed that
the prediction model of the RF model and BP model had the best
performance in Lake Chagan (RF: R2 � 0.935, BP: R2 � 0.885) and
Lake Changdang (RF: R2 � 0.898, BP: R2 � 0.752) showed good
performance. But the RF model was superior to the BP model in
the statistical indicators of MAPE and RMSE. And the MAE of the RF
model was less than 2 mg/L, which showed that compared with the BP
model, the RF model had a better generalization ability, and its
prediction results of TSM concentration could be effectively
guaranteed.TA
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4.5 Spatial variations of TSM with broad
bandwidth satellite: Examples

The RF model was used to retrieve the TSM concentration in Lake
Bosten, Lake Chagan, and Lake Changdang in this study. Lake Bosten
was used to verify the retrieval accuracy of the TSM concentration
used for modeling. Lake Chagan and Lake Changdang were to prove
the generalization performance of the RF model. The remote sensing
images of the three lakes used were the HJ2A-CCD image on
31 August 2021, the GF1B-PMS image on 15 September 2021, and
the GF1-PMS image on 2 November 2022. The imaging time of the
remote sensing image and the on-site sampling time were both carried
out on the same day, and the verification validity of the in-situ data
could be guaranteed. Figures 9A–C showed the validation results of
retrieving TSM concentrations in three lakes. The MAPEs of the three
lakes were 5.3%, 8.1%, and 12.1%, respectively, and the results reached
relatively high precision. Compared with the retrieved results of the
water spectra data of Lake Chagan and Lake Changdang (Figures 8A,
B), the retrieval accuracy of remote sensing images needed to be
higher. The reason may be that the accuracy error images of
radiometric and atmospheric correction models limited remote
sensing images. There was a certain error between the remote-
sensing spectrum data and the in-situ spectrum data. For example,
the retrieve of TSM concentration in Lake Changdang had an

overestimation (>10 mg/L) in the high-value area (60–75 mg/L). At
the same time, the in-situ spectral data of (Figure 8B) could better
invert the high-value area of TSM concentration. Lake Bosten was the
largest freshwater lake in China. The water quality environment had
always been good, and the TSM concentration was deficient (0–15 mg/
L). The TSM concentration in Lake Chagan and Lake Changdang was
relatively high (33–89 mg/L, 32–84 mg/L). The reason may be that the
two lakes are located on the edge of the city and are greatly affected by
human activities such as agriculture and industry.

5 Discussion

Satellite remote sensing images provide an effective observation
method for estimating the TSM concentration in large-scale and long-
term series. The accuracy of the retrieved model directly affects the
reliability of the retrieved results. Currently, the research on the
retrieved model for the TSM concentration mainly focuses on the
retrieved model of a single lake or a single sensor. However, the spatial
coverage capability and revisit period of a single sensor are limited by
orbital parameters, and achieving the dynamic monitoring
requirements of TSM concentration is difficult. Therefore, the
collaborative retrieval of multiple sensors is required to improve
the dynamic monitoring of TSM concentration. On the other hand,

FIGURE 8
Generalization ability of RF retrieve model and BP retrieve model. RF model (A, B) and BP model (C, D).
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the documented research results showed that RF model has excellent
performance in the TSM retrieve of regional lakes (Shen et al., 2020;
Wang et al., 2022b; Xu et al., 2022). The advantage of RF model is that
the learning process is fast; It is an efficient processing model for large
datasets. And it has strong robustness to noise in dataset (Shen et al.,
2022). Therefore, A random forest-based machine learning model was
developed to solve the applicability of multi-source broad bandwidth
satellite data collaborative retrieval of regional typical TSM
concentrations in this study. The retrieved results of three different
types of lakes (Lake Bosten, Lake Chagan, and Lake Changdang)
showed that the RF model has high accuracy (MAPE<15%). These
studies showed that the RF model could effectively solve the problem
of the applicability of the broad bandwidth satellites retrieval of TSM

concentration and meet the accuracy requirements of large-scale and
dynamic monitoring of lakes.

5.1 Application limitations

The RF model proposed in this study preliminarily solves the
applicability of broad bandwidth satellites to retrieve the TSM
concentration in different types of water. But the RF model also
has certain limitations. First, the machine learning model requires a
large amount of in-situ data, enabling it to capture the water
spectral features of various TSM concentrations. The ideal
training data should collect long-term continuous water

FIGURE 9
The generalization ability of RF Retrieve model, Lake Chagan (A, D), Lake Changdang (B, E), and Lake Bosten (C, F).
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spectrum and TSM concentration data in various typical lakes in
China so that the spectral characteristics of these types of lakes can
fully characterize the changes in TSM concentration. However, the
acquisition cost of these data is relatively high in actual work.
Therefore, 22 water experiment data from 15 lakes were selected as
the dataset in this sutdy. There is a certain need for more training
data. The range of TSM concentration can only cover the range of
0–120 mg/L, and there is a lack of training data for highly turbid
water (TSM>10 0 mg/L). This makes the RF model proposed has a
better retrieve effect for water bodies with medium and low
suspended solids concentrations. Still, the accuracy must be
verified more in high turbid water bodies. Secondly, this study is
the first attempt to use a combination of multiple broad bandwidth
satellites to retrieve the TSM. The true value of remote sensing
reflectance of each broad bandwidth satellite is calculated by
Formula 5. However, although the bands of these broad
bandwidth satellites are similar, there are certain differences in
the sensitivity of their sensors to different bands. This results in a
certain error (MAPE ≈ 2%) when the true value of the reflectance
formed corresponds to different satellites after spectral equivalence.
Using the equivalent true data of these different satellites to carry
out unified modeling research will increase the uncertainty of the
TSM retrieved model to a certain extent. The evaluation of this
uncertainty still needs to be verified through continuous
experiments.

5.2 Future plan

This study attempts to use various broad bandwidth satellites to
carry out comprehensive TSM concentration retrieval. The purpose
is to develop a TSM retrieve model compatible with various high-
resolution broad bandwidth satellites to meet the requirements of
water dynamic monitoring. RF and various neural network models
have good model generalization ability, and the quality of the
accuracy of the TSM retrieve model is primarily affected by the
amount of data. The RF model proposed is to obtain the optimal
model in the existing dataset. In the future research, on the one
hand, the research team will continue to accumulate water
quality data of typical lakes in China, the model will continue to
iterate and update. We will continue to optimize the model to
obtain a broad bandwidth satellite TSM retrieve model with better
stability and accuracy. On the other hand, the bandwidth and
spectrum of broad bandwidth satellite sensors are very similar.
Therefore, we consider building these satellites into virtual
constellations, carry out research on the normalization of remote
sensing spectra of broadband satellites, and eliminate observation
errors between different sensors. The coordinated operation among
satellites can meet the demand of regional lakes dynamic
observation.

6 Conclusion

TSM concentrations have spatial-temporal heterogeneity in
different lakes. To meet the dynamic monitoring requirements
of TSM concentration, machine learning models have potential
applicability in TSM retrieval. The accuracy and relevance of the
four machine learning models of the LR model, SVR model, RF

model and BP model are tested through the in-situ datasets of
multiple lakes. Compared with other machine learning models, the
RF model provided better performance. The RF model has good
generalization ability, showing high verification accuracy in both
validation datasets and practical applications. The FUI can
effectively enhance the precision and accuracy of the TSM
retrieve model. Therefore, this study showed that the RF model
can improve the retrieve performance and generalization ability of
the broad bandwidth satellite’s TSM concentration in lakes and
meet the accuracy requirements of high-frequency and dynamic
monitoring of TSM concentration. With the continuous
accumulation of more in-situ lake data, the accuracy and
stability of the TSM retrieve model proposed in this study will
be further improved.
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