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Improving energy efficiency is an effective way to achieve carbon neutrality in the
context of growing advocacy for a green economy in both academia and
government. In this study, we analyzed the impact mechanism of the
manufacturing agglomeration on total factor energy efficiency. Based on this
work, we identified 30 provinces (autonomous regions and municipalities) in
China using 2002 to 2017 panel data. We used the data envelopment analysis
game cross-efficiency model to calculate the interprovincial current state of
energy efficiency. We constructed a spatial Durbin model and used an
adjacent space weight matrix, geographic distance weight matrix, and
economic distance weight matrix to study the impact of manufacturing
agglomeration on total factor energy efficiency. The results showed that under
different spatial weights, the interprovincial total factor energy efficiency had a
significant spatial dependence; under the three spatial weights, we identified a
U-shaped relationship between manufacturing agglomeration and total factor
energy efficiency. Industrial agglomeration had obvious spatial spillover effects on
total factor energy efficiency, and the spillover effects under the weight of
geographic distance were higher than other spatial weights. During the sample
period, the direct, indirect, and total effects of the manufacturing industry had an
impact on energy efficiency. It all had a negative number indicating that there was
a crowding effect in manufacturing agglomeration, and it had an inhibitory effect
on energy efficiency.
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1 Introduction

Achieving carbon neutrality is an important goal for governments to pursue economic
development and environmental protection. Since the reform and opening up, China’s
economy has continued to grow rapidly and has received world attention. Looking back on
the history of China’s economic development, this rapid economic growth has been
accompanied by an increase in the industrial agglomeration level, especially the
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manufacturing industry. The long-term growth pattern
characterized by high energy dependence, however, has made
China the world’s largest carbon emitter. A 20th National
Congress of the Chinese government report emphasized that
promoting economic and social green and low-carbon
development is the key link to achieving high-quality
development. The massive consumption of traditional fossil
energy (coal, oil) is the primary source of carbon emissions.
Improving energy efficiency has become an efficient way to
alleviate the contradiction between economic growth and
environmental constraints, and it is an inevitable choice for
achieving sustainable economic development and carbon
neutrality in China (Pu et al., 2022; Wang and Liang, 2022; Yu
and Shi, 2022). The academic community, however, has not reached
a consensus on how to improve energy efficiency. Many studies have
shown that industrial agglomeration can have a profound external
impact on economic growth through agglomeration effects.
Krugman (1991) and Fujita et al. (2001) noted that industrial
agglomeration has produced positive externalities to enterprises
in the same areas through technology spillover and knowledge
diffusion effects. Understanding whether the positive externalities
of industrial agglomeration have a positive or negative impact on
energy efficiency is an important issue in the current process of
China’s economic development. From the perspective of industrial
economic theory, and under the guidance of a market mechanism,
industrial agglomeration with the goal of maximizing profits is
conducive to promoting the optimal allocation of resources and
economic growth. Under China’s fiscal decentralization system,
however, local governments tend to provide high-quality policy
support and services to enterprises within their jurisdictions to
improve growth performance, thus forming policy rents. To
obtain more policy rents, enterprises unite and form a superficial
industrial agglomeration. This kind of industrial agglomeration
formed in the pursuit of policy rent cannot produce technology
spillover and sharing effects. On the contrary, this superficial
industrial agglomeration easily leads to market segmentation,
industry convergence, and distortion of resource allocation.
Against this backdrop, in this study, we selected manufacturing
industrial agglomeration as the starting point to explore whether the
positive externalities of manufacturing industrial agglomeration
have a positive or negative impact on energy efficiency. This is
an important issue in the current process of China’s economic
development.

By combining many previous studies, most scholars have
attributed the key influencing factors of energy efficiency changes
to technological progress. Technological progress promotes the
improvement of energy efficiency in direct and indirect ways. An
example of a direct effect is that, with the advancement of technology,
the efficiency of equipment in the production department can be
improved, thereby reducing the intensity of energy consumption. An
example of an indirect effect is that, with the advancement of
technology, the quality of the labor force and the level of science
and technology in the whole society can be improved. As a result, the
phenomenon of energy waste in the production process is effectively
suppressed, and energy efficiency is improved (Einhorn, 1982;
Anderson, 1995). Some scholars, however, believe that although
technological progress can improve energy efficiency and promote
economic growth in the short term, in the long term, rapid economic

growth will bring about more energy consumption, which will offset
the delayed savings brought by efficiency improvements. This results
in a rebound effect of technological progress (Hu, 2014). Some
scholars later studied the impact of industrial structure changes on
energy efficiency. Denison (1967) andMaddison (1987) found that in
accordance with the productivity level, energy factors transferred from
low-level industries to high-level industries, and their utilization
efficiency in the entire national economy was improved. This is
also called a “structural dividend.” According to the basic idea of a
“hypothesis,” the industrial structure acts on energy efficiency through
externalities. A phenomenon closely related to industrial externalities
is industrial agglomeration. Research on industrial agglomeration
began in the 1990s (Kim, 1995), and externalities are considered to
be an important cause of industrial agglomeration (Henderson, 1974).
Marshall (1920) noted that the formation of industrial geographic
agglomeration (agglomeration) is largely due to the external economy
generated by agglomeration, that is, the creation of a skilled labor
market, professional service-oriented intermediate industries, and
technology spillovers. By analogy, energy is an input element, and
its utilization efficiency is likely to be affected by the spillover of other
companies’ energy use technology. Wang and Chen (2010) used
empirical methods to verify the hypothesis that industrial
agglomeration and the resulting externalities effectively improved
total-factor energy efficiency and single-factor energy efficiency.
Pan et al. (2017) found that industrial agglomeration significantly
promoted the improvement of total factor energy efficiency and
identified a stable inverted U-shaped relationship between the two.
Liu et al. (2017) used a dynamic spatial panel model to analyze the
impact of industrial agglomeration on energy efficiency and found
that the agglomeration of producer services and the coaggregation of
manufacturing and producer services were beneficial to the
improvement of energy efficiency. Guo and sun. (2019) explored
the impact of different types of industrial agglomeration on energy
efficiency. The study found significant differences in the effects of
different types of industrial agglomeration on energy efficiency. Shao
et al. (2019) proved that economic agglomeration directly affected
carbon emissions through its various positive externalities, and at the
same time, it also has an indirect impact on carbon emissions through
energy intensity. Carbon emissions and energy intensity had a
significant “snowball” effect in the time dimension and also had a
clear strategic competitive effect in the space dimension.

In addition, some recent studies also focused on the impact of
industrial agglomeration on energy efficiency. Hou et al. (2022) took
China’s provincial-level energy-intensive industries from 2004 to 2017 as
the research object and used amultidimensional panel fixed-effectmodel
to study the impact of industrial agglomeration on energy efficiency and
its mechanism. According to the study, industrial agglomeration had a
significant inverted U-shaped relationship with energy efficiency, and
industrial agglomeration improved energy efficiency by increasing
human capital and promoting investment in fixed assets. Utilizing
data for China from 2006 to 2018, Sun and Guo (2022) used a
variety of spatial Dubin models with near-neighbor weights to test
the spillover effects of environmental regulation, industrial
agglomeration, and integrated development on energy efficiency.
They found that industrial agglomeration (specialization and
diversification) effectively boosted the energy efficiency of China and
its neighboring regions (geographical proximity and economic
interaction). The spatial spillover effect of environmental regulation
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and industrial agglomeration on energy efficiency was not only caused
by geographical proximity but was also the result of coordination
between geographical proximity and economic interaction between
regions. The integrated development of environmental regulation and
specialized agglomeration inhibited the positive effect of specialization,
whereas the integrated development of environmental regulation and
diversified agglomeration had a stronger effect on promoting the
improvement of energy efficiency. Liu et al. (2022) empirically
studied the non-linear impact of spatial agglomeration on energy
efficiency of enterprises and further tested its heterogeneity and
mechanism based on panel data from the China Industrial Enterprise
Database and the China Industrial Enterprise Pollutant Emission
Database from 2003 to 2012. They found a significant U-shaped
relationship between spatial agglomeration and enterprise energy
efficiency, which suggested that enterprises made full use of the
benefits introduced by spatial agglomeration.

In summary, domestic and foreign scholars have carried out a
significant amount of research on the impact of industrial agglomeration
on energy efficiency and have obtained valuable research results, which
have established a solid theoretical foundation for this study. Some
aspects, however, require further research. First, from the existing
research, most of the total factor energy efficiency evaluation
methods have been based on the data envelopment analysis (DEA)
model. The DEAmodel, however, has a non-unique solution, and when
the efficiency values of multiple decision-making units are less than 1,
they can no longer be sorted. Additionally, in the process of calculating
the efficiency value of the decision-making unit, the weight coefficient is
often artificially enlarged, resulting in the false validity of a disadvantaged
decision-making unit DEA in the mutual evaluation process. Second, in
the process of quantitative analysis of energy efficiency influencing
factors in the existing literature, the spatial spillover effect is often
ignored. To account for the deficiencies of previous studies, in this
study, we investigated breakthroughs in the following aspects: First, in
the process of model construction, we considered the competitive
relationship between decision-making units and adopted the DEA
game cross-efficiency model to improve the scientific basis of the
energy efficiency calculation and the results. Second, considering that
the energy consumption demand of manufacturing is significantly
higher than that in other industries, we constructed a spatial
measurement model of energy-efficiency influencing factors and used
the adjacent space weightmatrix, geographic distance weightmatrix, and
economic distance weight matrix to spatially correlate an energy
efficiency analysis. We constructed a spatial Durbin model to analyze
the impact ofmanufacturing agglomeration on energy efficiency, andwe
identified direct effects and spillover effects. Third, although many
studies have discussed the spatial spillover effects of industrial
agglomeration on energy efficiency, we analyzed this issue from a
non-linear perspective rather than from the linear perspective
commonly used in previous studies to provide a more accurate basis
for policymakers to formulate economic policies.

2 Theoretical model and mechanism
analysis

Under the long-term extensive economic growth mode, local
governments often pay too much attention to gross domestic

product (GDP) growth during their tenure, and ignore the long-
term growth factors of sustainable economic development, resulting
in rapid economic development in the short term with excessive
resource consumption and serious environmental load. For the
price, given the study of the impact of manufacturing
agglomeration on energy efficiency, we referred to the Gowri
et al. (2015) model and included first industrial agglomeration in
the short-term production function of manufacturers, as follows:

Q � Gf K, E( ) � GKαE−α, (1)
where G represents the level of industrial agglomeration; K also
represents capital input, and capital input is positively correlated
with output, that is zQ/zK> 0; E represents the energy efficiency
investment of a manufacturer; and α represents the elastic coefficient
of factor output (note that these definitions apply to the other
formulas given in this paper). The more energy efficiency
investment the manufacturer has, the higher the energy
utilization efficiency is. Assuming that the total amount of
investment by manufacturers in the short term is constant, the
investment of capital by manufacturers to improve energy efficiency
will inevitably lead to a reduction in capital investment for
production. Considering the lag effect of energy saving and
emission reduction on an output increase, in the short term,
energy efficiency investment and output are negatively correlated,
zQ/zE< 0.

Manufacturers need to pay interest to obtain capital to purchase
machinery and equipment. Considering the sharing effect of
infrastructure brought about by industrial agglomeration, in this
study, we assumed that the remuneration (R � G−γKr) paid by
manufacturers to equipment is shared by all manufacturers. At the
same time, capital investment is transformed into machinery and
equipment, and manufacturers need to consume energy to provide
power for machinery and equipment-making power costs
(C � E−βK). After considering the capital interest and power
cost, the manufacturer’s production profit function is as follows:

π � GKαE−α − G−γKr − E−βK, (2)
where r represents the interest rate; γ represents the elasticity of the
sharing effect of industrial agglomeration infrastructure γ> 0; and β

represents the elasticity of the power cost of energy efficiency
investment. Because this indicator has irreversible constraints,
β> 1.

We calculated the first-order condition for maximizing the
manufacturer’s profit according to formula (2):

zπ/zK �αGKα−1E−α − G−γr − E−β � 0, (3)
zπ/zE � GKαE−α−1 + βE−β−1K � 0. (4)

Then, the optimal capital stock in equilibrium is as follows:

K* � β β − 1( )Gγ/r[ ] α−β( )/αG. (5)

The optimal energy efficiency investment is as follows:

E* � β − 1( )Gγ/r[ ]1/β. (6)
Further analysis of the relationship between energy efficiency

and industrial agglomeration and interest rates shows the following:
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zE*/zG � γ/β( ) β − 1( )/r[ ]1/βG γ−β( )/β > 0, (7)
zE*/zr � −1/β( ) β − 1( )Gγ[ ]1/βr −1−β( )/β < 0. (8)

According to an analysis of Eq. 6, when β< 1, the optimal energy
efficiency of the enterprise was negative, which violated the
constraint of irreversible investment, so a = 1. Eqs 7, 8 are the
first-order conditions of Eq. 2 on industrial agglomeration and
interest rate under the condition of energy efficiency
maximization. Eqs 7, 8, respectively, represent the influence of
industrial agglomeration and interest rate on the optimal
behavior of enterprises—that is, the optimal energy efficiency
investment was positively correlated with industrial
agglomeration and negatively correlated with interest rate. Under
the market mechanism, improvements in the level of industrial
agglomeration encourage enterprises to make additional
investments in energy efficiency. Thus, the higher the industrial
agglomeration level was, the more beneficial it was to the
improvement of industrial energy efficiency. Eqs 7, 8 show a
positive correlation between industrial agglomeration and optimal
energy efficiency investment. Because optimal energy efficiency
investment and energy efficiency also are positively correlated, it
can be obtained at a higher level of industrial agglomeration, thus
improving energy efficiency.

As stated, industrial agglomeration with the goal of
maximizing profits can achieve optimal allocation under the
regulation of a pure market mechanism, promote economic
growth, and improve energy efficiency. Under the system of
fiscal decentralization, the alienation of local government goals
has led to the emergence of differentiated policy rents (credits,
subsidies, tax reductions), which are aimed at protecting local
interests and intervening in corporate investment behavior, in
turn inducing the pursuit of policy rents. An “industrial cluster”
indicates areas where enterprises connect. Qian et al. (2019)
found that the phenomenon of enterprise clustering driven by
policy rents not only failed to produce technology spillovers and
sharing effects but also caused repeated construction,
convergence of industrial structure, and distortion of resource
allocation because of market segmentation.

Although industrial agglomeration affects the energy efficiency
of the region, it can also produce positive or negative externalities as
well as spillover effects on neighboring and other regions. In this
study, we analyzed these effects from the perspectives of external
economies of scale and external economies of scope. First, external
economies of scale may improve energy efficiency and also may
increase environmental load and inhibit energy efficiency.
Conversely, high-industry agglomeration and high-quality
development areas can play a demonstrative role in promoting
the spread of advanced energy-saving technologies among
regions, thereby driving the improvement of energy-saving
technologies in neighboring areas and improving overall energy
efficiency. Additionally, the positive industrial agglomeration
externalities can attract more foreign investors, intensify market
competition in the region, and force companies to accelerate
innovation in energy utilization technologies to maintain their
competitive advantage, thereby bringing about improvements in
energy efficiency. The wealth demonstration effect caused by
industrial agglomeration, however, also may lead to the

occurrence of enterprise clustering and industrial homogeneity,
leading to the crowding effect (Wang and Qiu, 2017). This
crowding, in turn, can trigger vicious competition and inhibit the
improvement of energy efficiency. Second, external economies of
scope may improve energy efficiency and also may inhibit energy
efficiency in neighboring or other regions. Industrial agglomeration
has brought about an increase in the number of enterprises. To
realize the positive externalities of agglomeration, enterprises have
established a “forward association” and “backward association”
among enterprises. This vertical association has improved the
division of labor and specialization among enterprises within the
region and also has improved the quality and energy efficiency of the
value chain in the region. At the same time, to obtain external
economies of scope, companies have established a collaboration and
division of labor relations with surrounding areas, forming close
forward and backward relationships, improving the quality and
efficiency of the value chain between different regions, and
ultimately achieving energy efficiency. Of course, industrial
agglomeration also may trigger a “race to the bottom” (Esty and
Dua, 1997), inhibiting the improvement of energy efficiency. Areas
with a higher level of economic development will inevitably
eliminate low-efficiency and high-emission enterprises in the
initial stage of agglomeration as the industrial agglomeration
becomes more mature, whereas neighboring or other areas with a
lower level of economic development will promote the spillover
effect of industrial agglomeration. Economic development will lower
the threshold of environmental regulation and absorb low-end
industries eliminated from areas with higher economic
development levels, resulting in increased environmental
pollution and reduced energy efficiency, as shown in Figure 1.

3 Econometric model and data
description

3.1 Model setting

To investigate manufacturing agglomeration spatial spillover
effects of all factors of energy efficiency, we built a spatial panel data
model to test the relationship between the two. Given that the spatial
Durbin model contains spatial lag terms of both independent and
dependent variables, it can reflect the influence of spatial
autocorrelation on regression results more comprehensively.
Therefore, we selected this model to test the relationship between
industrial agglomeration and total factor energy efficiency. The
model is set as follows:

lnEEit � ρWEEit + β1IAit + θ1WIAit + β2IA
2
it + θ2WIA2

it + β3Xit + θ3WXit + δi + ηt + μit
μit � λWμit + εit

,

(9)

where EEit represents total factor energy efficiency; IAit is the
explained variable; Xit is a series of control variables; ρ, θ is the
spatial autoregression coefficient;W is the spatial weight matrix;
δi represents the province fixed effect; and ηt represents the time
fixed effect. In this study, we used adjacency spatial weight
matrix, geographical distance spatial weight matrix, and
economic distance spatial weight matrix for comparison,
where i represents province, t represents time, and ε
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represents random disturbance term. When ρ ≠ 0, θ � 0, Eq. 9
was the spatial lag model (SLM). When λ ≠ 0, ρ � 0, Eq. 9 was the
spatial error model (SEM); When λ ≠ 0, θ ≠ 0, Eq. 9 was the
spatial Dubin model (SDM).

3.2 Decomposition of spatial spillover
effects

If there is a spatial lag term, the regression coefficient cannot
reflect the true influence between the variables, resulting in
deviation. To overcome the impact of space lag, in this study, we
referred to the research results of Lesage and Pace (2009) and
decomposed the impact of energy efficiency into overall effects,
direct effects, and indirect effects. The overall effect reflected the
average influence of the independent variable on the dependent
variables in all regions; the direct effect reflected the average
influence of the independent variable on the dependent variable
in the region; the indirect effect reflected the average influence of the
independent variable in the region on the dependent variable in
other regions. To this end, we transformed the spatial Doberman
model into the following:

y � ∑
k

r�1
Sr W( )i1x1r + Sr W( )i2x2r + ... + Sr W( )inxnr[ ] + V W( )τnα

+ V W( )ε.
(10)

The overall effect is the mean value of all elements in the matrix,
which is expressed as follows:

�M r( )total � n−1τnSr W( ) (11)
The direct effect is the mean value of the diagonal elements in

the matrix, which is expressed as follows:

�M r( )direct � n−1tr Sr W( )( ). (12)
The indirect effect is the mean value of the off-diagonal elements

in thematrix, that is, the difference between the overall effect and the
direct effect, which is expressed as follows:

�M r( )indirect � �M r( )total − �M r( )direct. (13)

3.3 Figure data source and variable
descriptions

3.3.1 Explained variable: Total factor energy
efficiency

The DEA method is a non-parametric method often used in
efficiency estimation, which can solve the problem of relative
efficiency evaluation of multiple inputs and outputs. Traditional
DEA methods, however, fail to consider the unexpected
outputs—that is, when the output index values are all positive
(Chen et al., 2021). In this study, based on the DEA game
crossover efficiency model proposed by Liang et al. (2008), we
incorporated carbon emission into the energy efficiency
evaluation model as a non-desirable output. If the energy
efficiency value of the decision-making unit DMUd (different
provinces and cities) is eed , other decision-making units DMUj

can maximize their own efficiency DMUd on the premise that the
energy efficiency value is not reduced, and the game cross energy
efficiency value of the decision-making unit (relative to) is defined as
follows:

eedj �
∑s

r�1μ
d
rjyrj

∑m
i�1ω

d
ijxij

, d � 1, 2, ..., n, (14)

where eedj is the game cross-efficiency value relative to the decision-
making unit; and μdrj and ωd

ij is the feasible weight of the model,
which can be solved by the following linear programming model:

max∑
s

r�1
μdrjyrj

s.t.∑
m

i�1
ωd
ijxil −∑

s

r�1
μdrjyrl > 0, l � 1, 2, ..., n, (15)

∑
m

i�1
ωd
ijxij � 1

eed × ∑
m

i�1
ωd
ijxij −∑

s

r�1
μdrjyrd ≤ 0

ωd
ij ≥ 0, i � 1, 2, ..., m, and μdrj ≥ 0, r � 1, 2, ..., s

where eed ≤ 1 is an initial parameter value, which represents the
DMUd average cross-efficiency value of the decision-making unit. If
the optimal solution of this model is μdrj(eed), the average game

FIGURE 1
The path map of the impact of industrial agglomeration on energy efficiency.
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DMUj crossover efficiency of the decision-making unit can be
defined as follows:

eej � 1
n
∑
n

d�1
∑
s

r�1
μdrj × eed( )yrj. (16)

Based on this analysis, we used the following steps to solve the
regional energy efficiency value based on game intersection under
the carbon emission constraint.

Step 1: Let t � 1, eed � eed1 � �Ed to solve Eq. 15, and determine a
set of average cross efficiency values.

Step 2: Calculate Eq. 16 to solve the optimal weight. Let eej2 �
1
n∑

n

d�1∑
s

r�1μ
d
rj × (eed1)yrj to get the general expression, where

μdrj × (eed1) represents eed � eedt , which is the optimal solution
μdrj in Eq. 15.

Step 3: If there is a decision-making unit DMUj, make |eejt+1 −
eejt|≥ ε true, where ε represents a sufficiently small positive number,
and if eej � eejt+1, return to the second step; if it is true for all
decision-making unitsDMUj, then stop and obtain the final average
game cross-efficiency value eejt+1.

3.3.2 Core explanatory variable: Manufacturing
agglomeration

At present, research on industrial agglomeration has been
abundant, and the selection of indicators for industrial

agglomeration also is different. Given the degree of the
manufacturing industry’s impact on energy efficiency, this study
draws on the practice of Tang et al. (2018) and uses the location
entropy method to calculate the following:

AIij �
qij/qi
qj/q

, (17)

where i represents the province; j represents the manufacturing
industry; the AIij represents the location entropy index of the i
province’s j industry in the country; qj represents the number of
employees in the province’s industry j; qi represents the number of
employees in the national industry; the number of employees in the
province i; and q represents the number of employees in all
provinces in the country.

3.3.3 Other explanatory variables
The level of technological progress (TPit), which represents

improvements in the technological level, will bring about an
increase in the efficiency of production equipment, save energy
consumption in the production process, and directly affect energy
efficiency. At the same time, improvements in the technical level are
conducive to improving the quality and energy-saving awareness of
producers, which indirectly affect energy efficiency. In this study, we
selected the number of invention patent applications in each
province as the proxy indicator for the level of technological
progress (ERit). This environmental regulation draws on the
research of Li (2016), which used the percentage of the sewage

TABLE 1 Chinese interprovincial energy efficiency Moran’s I inspection, 2002–2017.

Years Adjacency space weight matrix (w1) Geographic distance weight
matrix (w2)

Economic distance weight
matrix (w3)

I Z P I Z P I Z P

2002 0.395 3.468 0.000 0.092 3.735 0.000 0.185 2.531 0.006

2003 0.332 2.979 0.001 0.095 3.820 0.000 0.250 3.266 0.001

2004 0.252 2.341 0.010 0.060 2.828 0.002 0.181 2.224 0.010

2005 0.277 2.533 0.006 0.074 3.229 0.001 0.149 1.945 0.021

2006 0.195 1.870 0.031 0.051 2.534 0.006 0.137 1.877 0.032

2007 0.209 1.977 0.024 0.057 2.725 0.003 0.106 1.486 0.065

2008 0.163 1.606 0.054 0.032 1.974 0.024 0.098 1.352 0.081

2009 0.120 1.254 0.105 0.022 1.682 0.046 0.082 1.232 0.109

2010 0.155 1.535 0.062 0.037 2.124 0.017 0.105 1.473 0.070

2011 0.166 1.627 0.052 0.039 2.159 0.015 0.126 1.688 0.046

2012 0.221 2.067 0.019 0.049 2.447 0.007 0.150 1.943 0.026

2013 0.253 2.322 0.010 0.058 2.734 0.003 0.147 1.904 0.028

2014 0.254 2.330 0.010 0.059 2.739 0.003 0.146 1.891 0.029

2015 0.229 2.128 0.017 0.049 2.454 0.007 0.140 1.829 0.034

2016 0.251 2.314 0.012 0.056 2.729 0.004 0.145 1.875 0.027

2017 0.301 2.702 0.003 0.074 3.201 0.001 0.174 2.185 0.014

Frontiers in Environmental Science frontiersin.org06

Jiang et al. 10.3389/fenvs.2023.1132294

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1132294


charges levied in each region in the local GDP as a proxy indicator.
The industrial structure (ISit) was based on the research of Qian
et al. (2011), which adopted the industrial advancement index as the

proxy indicator of the industrial structure. Energy consumption
structure (ESit), which was the structural adjustment, mainly
included the adjustment of the industrial structure and energy
consumption structure. Regional energy consumption structure
directly affected energy efficiency, which was caused by the
differences in and characteristics of various energy sources. In
this study, we selected the proportion of regional coal
consumption in total energy consumption as a proxy indicator of
the energy consumption structure. In terms of the level of
urbanization (ULit), which is the impact of the level of
urbanization on energy efficiency, different scholars have arrived
at differentiated conclusions. An increase in the level of urbanization
will intensify the demand and consumption of energy for the
socioeconomic system, thereby inhibiting the improvement of
energy efficiency; however, urbanization will inevitably increase
the level of economic development and residents’ awareness of
energy conservation, thereby promoting energy to improve
efficiency. Therefore, we selected the proportion of urban
population in the total population as a proxy indicator for the
level of urbanization. The level of economic development (PGDPit),
using the province’s per capita GDP (2002 as the base period), was
the proxy indicator.

The data used for these variables are all from the “China
Statistical Yearbook” (2003–2018), “Statistical Yearbook of
Provinces and Municipalities” (2003–2018), “China
Environmental Statistical Yearbook” (2003–2018), “China
Population and Employment Statistical Yearbook” (2003–2018),
and “China Energy Statistical Yearbook” (2003–2018).

4 Empirical analysis

4.1 Spatial correlation test

In this study, we used Moran’s I index to test the spatial correlation
of total factor energy efficiency from the global spatial level. Moran’s I
index is used to estimate the similarity of total factor energy efficiency
observations in spatially adjacent area units, which can reveal whether
there is a spatial agglomeration trend in total factor energy efficiency
(Chen et al., 2021). The results are given in Table 1.

FIGURE 2
Interprovincial Moran’s I energy efficiency scatter plot, 2017.

TABLE 2 Hausman test results.

Test Fixed effect Random effect

Hausman test-statistic 798.812 680.282

p-value 0.000 0.000

TABLE 3 LR test results.

Inspection type Statistics value p-value

SAR 496.15 0.000

SEM 496.08 0.000

SDM 501.19 0.000

TABLE 4 Model selection test result.

Inspection type Statistics p-value

Spatial fixed-effect SDM model 698.497 0.000

Time fixed-effect SDM model 697.893 0.000

Two-way fixed-effect SDM model in time and space 712.477 0.000
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From the results in Table 1, we calculated the p-values of the
Moran index test based on the three spatial weight matrices, except
for the critical value of 0.5 in 2009, which significantly rejected the
null hypothesis of “no spatial autocorrelation” in other years. China
had a significant spatial autocorrelation in interprovincial energy
efficiency. At the same time, it was apparent that the index of the
spatial weight matrix of economic distance Moran’s I was greater
than the spatial weight matrix of geographic distance. This result
indicated that geographic distance reduced the positive spatial
dependence of energy efficiency in various regions to a certain
extent, whereas economic factors increased this positive direction.
We drew the scatter plot in Figure 2 according to the indices
calculated by the three weight matrices Moran’s I.

Adjacent space weight matrix (w1)
Geographic distance weight matrix (w2)
The results, as shown in Figure 2, demonstrate that based on

the scatter plot of the three weight matrices, most provinces fall
in the first and third quadrants. The spatial weight matrix of
economic distance was particularly significant, with
12 provinces and cities falling in the first quadrant; seven
provinces and cities falling in the second quadrant; eight
provinces and cities falling in the third quadrant; and two
provinces and cities falling in the second quadrant. The first
and third quadrants included most provinces and cities,
indicating that low-energy-efficiency provinces and cities
were surrounded by high-energy-efficiency provinces and
cities; low-energy-efficiency provinces and cities were
surrounded by low-energy-efficiency provinces and cities;

and energy efficiency spatial autocorrelation characteristics
were significant. The six provinces and cities of Shanghai,
Jiangsu, Zhejiang, Guangdong, Shandong, and Beijing were
located far away from the origin in the first quadrant,
further showing that these six provinces and cities were in a
leading position of energy efficiency in the country and
promoted the improvement of energy efficiency of
neighboring provinces and cities. Jilin and Qinghai
Provinces were in the third quadrant far from the origin,
which indicated that they were at a lower level of national
energy efficiency, and neighboring provinces and cities had a
weaker driving effect on their energy efficiency.

4.2 Model selection test

We used the Hausman test to verify the results of this study and
used the LR test and model selection test to determine the model
type. The specific test results are given in Tables 2, 3, 4.

The results in Table 2 show that the Hausman test result value
was 0.000, indicating that it passed the hypothesis test at a
significance level of 1%, and the statistic of the fixed-effects
model was 798.812, which was significantly larger than the
statistic of the random-effects model of 680.282. Therefore, we
constructed a fixed-effect panel model. To determine whether or
not the SDM model degenerated into the SAR model or the SEM
model, we performed a degradation test. The results are given in
Table 3.

TABLE 5 Spatial SDM model estimation results based on different weight matrices.

Variable name Adjacent space weight (w1) Geographic distance weight matrix (w2) Economic distance weight matrix (w3)

lnIA −0.101*** (0.001) −0.168*** (0.000) −0.142*** (0.000)

lnIA × lnIA 0.094*** (0.002) 0.113*** (0.000) 0.099*** (0.006)

lnER 0.011** (0.028) 0.014*** (0.005) 0.012** (0.018)

lnIS 0.439*** (0.000) 0.205** (0.015) 0.470*** (0.000)

lnES −0.035* (0.061) −0.102* (0.076) −0.059** (0.013)

lnTP 0.149*** (0.002) 0.137** (0.011) 0.145*** (0.008)

lnPgdp 0.014*** (0.000) 0.018*** (0.000) 0.015*** (0.003)

lnUL 0.082*** (0.000) 0.094*** (0.000) 0.012** (0.033)

W × ln IA −0.146*** (0.007) −0.103** (0.038) −0.128*** (0.006)

W × ln IA × lnIA 0.083 (0.253) 0.104* (0.084) 0.097** (0.023)

W × lnER 0.077*** (0.003) 0.115** (0.026) 0.094*** (0.001)

W × lnIS 0.104** (0.019) 0.131*** (0.000) 0.122*** (0.007)

W × lnES −0.044*** (0.007) −0.036*** (0.009) −0.041*** (0.002)

W × lnTP 0.131*** (0.000) 0.142* (0.085) 0.138** (0.046)

W × lnPgdp 0.021*** (0.002) 0.032*** (0.000) 0.027*** (0.000)

W × lnUL 0.043** (0.021) 0.058** (0.027) 0.035** (0.033)

R2 0.93 0.88 0.96

Note: The p-value in parentheses. *, ** and *** represent the significance at the 10%, 5% and 1% levels, respectively.
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The results in Table 3 show that the test results of the SARmodel
and the SEM model were both 0.000, which indicated that they
passed the hypothesis test at a significance level of 1%, and the
statistics were 496.15 and 496.08, respectively, which were
significantly less than the test result of the SDM model 501.19.
This result indicated that the SDM model should be used. We then
tested which type of SDMmodel should be used for model selection.
The results are given in Table 4.

4.3 Spatial Durbin model estimation

According to the previous test results, and based on the adjacent
space weight matrix, geographic distance weight matrix, and
economic distance weight matrix, we used the space-time two-
way fixed-effect spatial Durbin model to estimate the spatial
spillover effects of energy efficiency. The results are given in Table 5.

According to the estimated results in Table 5, under the
three spatial weight matrices, the regression coefficients of the
spatial lags of the explanatory variables of total factor energy
efficiency were all positive, and all passed the test at the 1%
significance level. At the same time, the explanatory variables’
spatial lag terms W×lnIA, W×lnER, and W×lnIS all passed the
test at the 5% significance level, indicating that the total factor
energy efficiency had a strong spatial dependence and was not
independent. Because the regression coefficient of the variable
spatial lag term was not zero, the regression coefficient of the
explanatory variable and its spatial lag term could not be used to
explain the change of the explained variable, and the regression
coefficient of the explanatory variable indicated the degree of its
direct influence on the explained variable. In the spatial
econometric model, the regression coefficients of explanatory
variables included not only direct effects but also feedback
effects. Therefore, it was necessary to eliminate the feedback

TABLE 6 Decomposition of direct effects and spillover effects of spatial SDM model.

Effect Variable
name

Adjacent space
weight (w1)

Geographic distance weight
matrix (w2)

Economic distance weight
matrix (w3)

Direct effect lnIA −0.099*** (0.003) −0.157*** (0.000) −0.141*** (0.000)

lnIA × lnIA 0.043** (0.032) 0.052** (0.028) 0.049** (0.019)

lnER 0.018** (0.020) 0.021*** (0.006) 0.013** (0.016)

lnIS 0.432*** (0.000) 0.302*** (0.001) 0.483*** (0.000)

lnES −0.713** (0.044) −0.028* (0.067) −0.059** (0.011)

lnTP 0.055*** (0.006) 0.074*** (0.004) 0.068*** (0.003)

lnPgdp 0.017*** (0.000) 0.018*** (0.004) 0.025*** (0.001)

lnUL (0.000) −0.014* 0.221* (0.057) −0.028* (0.088)

Indirect
effect

lnIA −0.093** (0.023) −0.140*** (0.001) −0.125*** (0.000)

lnIA × lnIA 0.009** (0.046) 0.017** (0.041) 0.024** (0.025)

lnER 0.011** (0.029) 0.013** (0.018) 0.012** (0.024)

lnIS 0.408*** (0.003) 0.253*** (0.002) 0.469** (0.014)

lnES −0.041 (0.601) −0.027* (0.087) 0.039*** (0.003)

lnTP 0.042** (0.034) 0.044** (0.046) 0.038*** (0.004)

lnPgdp 0.011*** (0.002) 0.014*** (0.007) 0.022*** (0.005)

lnUL 0.131* (0.061) 0.104* (0.071) 0.117** (0.021)

Total effect lnIA −0.192*** (0.000) −0.297*** (0.007) −0.267*** (0.002)

lnIA × lnIA 0.052** (0.033) 0.069** (0.048) 0.073** (0.037)

lnER 0.029** (0.042) 0.034** (0.036) 0.025** (0.019)

lnIS 0.840*** (0.000) 0.555*** (0.003) 0.982*** (0.001)

lnES −0.754* (0.065) −0.055** (0.043) −0.020** (0.047)

lnTP 0.096*** (0.008) 0.118*** (0.005) 0.104*** (0.000)

lnPgdp 0.028*** (0.008) 0.032*** (0.003) 0.047*** (0.000)

lnUL 0.117* (0.078) 0.325* (0.077) 0.089* (0.069)

Note: The p-value in parentheses. *, ** and *** represent the significance at the 10%, 5% and 1% levels, respectively.
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effect and further decompose the spillover effect into direct and
indirect effects. The results are given in Table 6.

Table 6 shows the total effect, direct effect, and indirect effect of
manufacturing agglomeration on total factor energy efficiency under
the weight of neighboring space, geographical distance, and
economic distance. Under the adjacent space weight matrix, the
spillover effect of manufacturing agglomeration was −0.099, and the
direct effect was −0.093, and they passed the test at 5% and 1%
significance levels, respectively. The regression coefficient of the
quadratic spillover effect of manufacturing agglomeration was 0.009,
the direct effect was 0.043, and all passed the test at the 5%
significance level. Under the spatial weight matrix of geographic
distance, the spillover effect of manufacturing agglomeration
was −0.57, and the direct effect was −0.140, and both passed the
test at a significant level of 1%. The regression coefficient of the
quadratic spillover effect of manufacturing agglomeration was 0.017,
the direct effect was 0.052, and all passed the test at the 5%
significance level. Under the economic distance spatial weight
matrix, the spillover effect of manufacturing agglomeration
was −0.125, and the direct effect was −0.141, and both passed the
test at a significant level of 1%. The regression coefficient of the
quadratic spillover effect of manufacturing agglomeration was 0.024,
the direct effect was 0.049, and all passed the test at the 5%
significance level. These results showed that under the three
spatial weight matrices, a U-shaped relationship existed between
manufacturing agglomeration and total factor energy efficiency.
Before manufacturing agglomeration reached a critical point, the
degree of agglomeration had a negative spatial spillover to total
factor energy efficiency. In other words, the agglomeration of
manufacturing industries in the region would have an inhibitory
effect on the total factor energy efficiency of other neighboring
regions. When the agglomeration degree of manufacturing in the
region crossed the critical point, the increase in the degree of
agglomeration would have an impact on the overall factor energy
efficiency and thus have a promoting effect. Manufacturing
agglomeration had a significant spatial spillover effect on total
factor energy efficiency. This conclusion verified the results of the
previous theoretical analysis that a non-linear relationship existed
between manufacturing agglomeration and total factor energy
efficiency. Thus, proper manufacturing agglomeration was
conducive to the improvement of total factor energy efficiency
and had a spatial spillover effect.

Among other explanatory variables, under the three spatial
weight matrices, the direct effects of environmental regulation,
technological progress, economic development level, and
industrial structure on total factor energy efficiency were all
positive, which indicated that these factors had a positive impact
on energy efficiency in the region. The regression coefficients of
energy consumption structure and urbanization level were negative,
however, which indicated that these factors had an inhibitory effect
on energy efficiency in the region. This conclusion was related to the
proxy indicators selected in this study. We selected the proportion of
coal consumption in total energy consumption as a proxy indicator
for the energy structure. Coal had low calorific value and high
carbon and oxidation factors, and the increase in its consumption
inevitably led to a decrease in energy efficiency. In this study, we
selected urbanized population, and the proportion of the total
population was used as a proxy indicator for the level of

urbanization. This indicator reflected only the quantity of
urbanization and not its quality. The suppression of energy
efficiency caused by the rapid increase in the level and speed of
urbanization in the western region offset the promotion of energy
efficiency cause by the improvement of urbanization quality in the
eastern region, and finally showed a suppression effect of
urbanization level on energy efficiency. Previous scholars have
called this the “rebound effect.” In terms of spillover effects, the
regression coefficients of most explanatory variables had no change
in the direction and were smaller than the direct effects, which
indicated that the spillover effects of these factors between regions
were smaller than those within regions. Note that the spillover effect
of the level of urbanization was positive, contrary to the direct effect,
which indicated that areas with high levels of urbanization had a
positive spillover effect on the energy efficiency of neighboring areas.
At the initial stage when low-level urbanization areas absorb the
spillover effects of high-level urbanization areas, the number and
speed of urbanization have not yet reached the turning point that
affects energy efficiency, and thus it has a positive effect on energy
efficiency. From the perspective of overall effects, industrial
structure optimization had the largest overall effect on energy
efficiency, followed by the level of urbanization. This result was
also in line with the current status of China’s economic
development. The current central supply-side structural reform
and the promotion of urbanization will promote the steady
improvement of regional energy efficiency.

5 Conclusion and policy
recommendations

In this study, we used China’s interprovincial panel data
from 2002 to 2017, selected the spatial Durbin model, and
considered the influence of adjacent spatial distance weights,
geographic distance weights, and economic distance weights on
spatial effects. We decomposed the impact of manufacturing
agglomeration on total factor energy efficiency as well as its
direct effect, indirect effect, and total effect. The study results
showed the following: 1) Under different spatial weights, the
agglomeration of interprovincial manufacturing had a
significant spatial dependence on total factor energy
efficiency. 2) Under the three spatial weights, there was both
agglomeration of manufacturing and total factor energy
efficiency. A U-shaped relationship with manufacturing
agglomeration had clear spatial spillover effects on total
factor energy efficiency, and the spillover effect under the
weight of geographic distance was higher than other spatial
weights. The spillover effect under the geographical distance
weight was higher than that of other spatial weights, which
indicated that the spatial spillover effect of industrial
agglomeration on energy efficiency in China’s provinces was
generated mainly by geographical proximity during the sample
period. This further indicated that the direct effect of industrial
agglomeration drove the improvement of energy efficiency in
regions close to it through the form of demonstration imitation,
and interprovincial economic interaction should be further
strengthened to jointly promote the improvement of energy
efficiency. 3) Both the direct effect of manufacturing on
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energy efficiency during the sample period and the indirect effect
were negative, which indicated that the agglomeration of the
manufacturing industry had an inhibitory effect on energy
efficiency, which was the crowding effect noted in the
previous analysis.

Based on these research conclusions, we propose the
following policy implications: First, the Chinese government
should formulate differentiated regional industrial development
policies. China has a vast territory, and regional economic
development, technological innovation, and resource
endowments are quite different. Each regional government
should combine its own development stage and regional
characteristics, cultivate competitive industries, and actively
promote the coordinated development of manufacturing and
producer services to stimulate the positive externalities of
industrial agglomeration. Second, the government should
formulate a reasonable industrial transfer policy. Given the
imbalance of economic development and industrial structure
in the eastern, central, and western regions of China, and to
overcome the crowding effect in the eastern region where the
manufacturing concentration level is relatively high, part of the
marginal manufacturing industry should be transferred to the
central and western regions. The development of the producer
service industry in the region would provide more space to
promote industrial upgrading and improve energy efficiency.
Third, the government should formulate a reasonable ecological
environment monitoring policy, establish a cross-regional and
cross-industry cooperation mechanism, implement division of
labor and coordination within and between regions, monitor
each other, identify the threshold of industrial access, implement
strict environmental regulations, restrict the entry of high-
energy consumption and high pollution enterprises, and
ensure the promotion of industrial agglomeration. In addition
to economic development, the efficiency of energy utilization
should be improved to minimize the environmental load.
Fourth, the government should promote local industries to
actively embed global value chains. Technological progress is
an effective way to improve energy efficiency. Through high-
frequency external contacts, we can obtain external advanced
knowledge and technology, improve the technical content, add
value of products, and strive to overcome low technology levels
and low-end value chain lock-in, as the global value chain
continues to climb toward higher value-added links.

The results in Table 4 show that the three fixed-effects models all
passed the test at the 1% significance level, and the statistics of the
spatial fixed-effects model and the temporal fixed-effects model were

both smaller than the statistics of the two-way spatiotemporal fixed-
effects model. Therefore, in this study, we selected a two-way fixed-
effect model of time and space.
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