
Evaluating air quality and criteria
pollutants prediction disparities by
data mining along a stretch of
urban-rural agglomeration
includes coal-mine belts and
thermal power plants

Arti Choudhary1,2*, Pradeep Kumar3*, Chinmay Pradhan2,
Saroj K. Sahu2, Sumit K. Chaudhary4, Pawan K. Joshi3,5,
Deep N. Pandey5, Divya Prakash4,6 and Ashutosh Mohanty7

1Center for Environment, Climate Change and Public Health, Utkal University, Bhubaneswar, Odisha,
India, 2Department of Botany, Utkal University, Bhubaneswar, Odisha, India, 3School of Environmental
Sciences, Jawaharlal Nehru University, New Delhi, India, 4Institute of Environment & Sustainable
Development, Banaras Hindu University, Varanasi, India, 5Special Centre for Disaster Research, Jawaharlal
Nehru University, New Delhi, India, 6Department of Civil Engineering, Poornima University, Jaipur,
Rajasthan, India, 7Madhyanchal Professional University, Bhopal, India

Air pollution has become a threat to human life around theworld since researchers
have demonstrated several effects of air pollution to the environment, climate, and
society. The proposed research was organized in terms of National Air Quality
Index (NAQI) and air pollutants prediction using data mining algorithms for
particular timeframe dataset (01 January 2019, to 01 June 2021) in the
industrial eastern coastal state of India. Over half of the study period,
concentrations of PM2.5, PM10 and CO were several times higher than the
NAQI standard limit. NAQI, in terms of consistency and frequency analysis,
revealed that moderate level (ranges 101–200) has the maximum frequency of
occurrence (26–158 days), and consistency was 36%–73% throughout the study
period. The satisfactory level NAQI (ranges 51–100) frequency occurrence was
4–43 days with a consistency of 13%–67%. Poor to very poor level of air quality
was found 13–50 days of the year, with a consistency of 9%–25%. Random Forest
(RF), Support Vector Machine (SVM), Bagged Multivariate Adaptive Regression
Splines (MARS) and Bayesian Regularized Neural Networks (BRNN) are the data
mining algorithms, that showed higher efficiency for the prediction of PM2.5, PM10,
NO2 and SO2 except for CO and O3 at Talcher and CO at Brajrajnagar. The Root
Mean Square Error (RMSE) between observed and predicted values of PM2.5

(ranges 12.40–17.90) and correlation coefficient (r) (ranges 0.83–0.92) for
training and testing data indicate about slightly better prediction of PM2.5 by
RF, SVM, baggedMARS, and BRNNmodels at Talcher in comparison to PM2.5 RMSE
(ranges 13.06–21.66) and r (ranges 0.64–0.91) at Brajrajnagar. However, PM10

(RMSE: 25.80–43.41; r: 0.57–0.90), NO2 (RMSE: 3.00–4.95; r: 0.42–0.88) and SO2

(RMSE: 2.78–5.46; r: 0.31–0.88) at Brajrajnagar are better than PM10 (RMSE:
35.40–55.33; r: 0.68–0.91), NO2 (RMSE: 4.99–9.11; r: 0.48–0.92), and SO2

(RMSE: 4.91–9.47; r: 0.20–0.93) between observed and predicted values of
training and testing data at Talcher using RF, SVM, bagged MARS and BRNN
models, respectively. Taylor plots demonstrated that these algorithms showed
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promising accuracy for predicting air quality. The findings will help scientific
community and policymakers to understand the distribution of air pollutants to
strategize reduction in air pollution and enhance air quality in the study region.

KEYWORDS

air quality, NAQI, meteorology, data mining, prediction, statistical analysis

1 Introduction

It is necessary to establish National Ambient Air Quality
Standards (NAAQS) for most of the common air pollutants, such
as ‘criteria’ air pollutants to protect public health and safety
nationwide. Rapid urbanization, industrialization, and increase of
the criteria air pollutants have become major concerns to the
scientific community and many stakeholders all over the world.
United Nations, forecast report of urban population for the year
2050 depicted a 12% increase from 56.15% in the year 2020.
Urbanization and industrialization are associated with several
issues like healthcare, logistics, and air quality (WHO, 2018).
Scientific evidence declares that poor air quality is responsible for
human health and thus created research interests on air pollution
and its impacts in the scientific community (Piqueras and Vizenor,
2016; Cohen et al., 2017). Increasing air pollution has become one of
the major concerns in developing countries like India and China, etc.
(Baldasano et al., 2003; Kumar et al., 2020; Sokhi et al., 2022). It is a
severe problem in some Asian mega cities like Beijing, Bangkok,
Delhi, Jakarta, Manila, Mumbai, and Shanghai (Baldasano et al.,
2003; Prakash et al., 2013; Choudhary et al., 2022a). Rapid increase
in air pollution is the result of urbanization, industrialization and
emission activities from other sectors (Choudhary et al., 2022b;
Kumar et al., 2022). Time to time advanced technologies is used to
combat air pollution like as now a days low level jets are common
and used worldwide to enhance the air quality (Wei et al., 2023). To
understand the impact of air pollutants and their prediction,
researchers have been studying the criteria for air pollutants,
namely, Particulate Matter (PM), Ozone (O3), Carbon Monoxide
(CO), Nitrogen Dioxide (NO2), and Sulphur Dioxide (SO2)
(Choudhary et al., 2020; Pratap et al., 2020; Zhu et al., 2023).

The Central Pollution Control Board (CPCB) introduced
NAAQS in India in 1982 to help people comprehend the current
state of the country’s air quality and further revisions were made in
2009, 2014, and 2015. To make the common masses aware in the
simplest manner, and to understand the severity of outdoor air
quality, National Air Quality Index (NAQI) scale was proposed
(CPCB, 2009; CPCB, 2014; CPCB, 2015). It is a valuable indicator to
implement legislative instruments and control strategies in
recognition of the health issues associated with air quality. As the
absolute concentration of air pollutants differs, therefore single-scale
expression for all pollutants is necessary to understand their
qualitative and quantitative contribution to the environment,
climate change, and public health. Ott (1978) first introduced the
concept of NAQI, wherein the bigger the NAQI indicates, the severe
air pollution and health risk, and vice versa. The air quality is
classified in-term of good, satisfactory, moderate, poor, very poor, or
severe, depending on the NAQI rating. Several developed nations in
the world, including the United States, Australia, the
United Kingdom, and Canada have their own Air Quality Index

(AQI). Climate Vulnerability Index composed of four baseline
vulnerabilities (health, social/economic, infrastructure and
environment) and three climate change risks (health, social/
economic and extreme events), are currently used in
United States of America to understand qualitative and
quantitative contribution of climate and environmental risk
combinedly (Lewis et al., 2023).

Along with AQI, predicting the distribution of the criteria
pollutant is equally important to understand the distribution of
air pollutants (Liu et al., 2019). Such distribution pattern helps in
developing strategies for reducing air pollution (Liu et al., 2019;
Gocheva-Ilieva et al., 2022). Larkin et al. (2023) proposed global
spatial-temporal land use regression model to maximizes prediction
of NO2. Herein data mining algorithms offer tremendous
computational power for the assessment and prediction of air
pollutants (Subramaniam et al., 2022; Varde et al., 2022). For
example, Random Forest (RF) algorithm has acquired
momentum for its ability to deal classification and regression
issues with high precision and less chance of overfitting
(Breiman, 2001). Laña et al. (2016) used the RF algorithm, which
simultaneously assembled data from several decision trees, to model
nitrogen oxides (NOx), CO, and O3 concentrations. The Support
Vector Machine (SVM) algorithm, which seeks to reduce the upper
bound of the generalization error, is based on the notion of
structured risk minimization (Pai et al., 2010). Because of this,
SVM has a stronger chance to regress the input-output relationship
during its training phase and performing well with new input data
(Chen, 2011). In a study, Liu et al. (2019) reported that SVM
performed better at AQI prediction (RMSE = 7.67), while RF
performed better in the NOX concentration prediction (RMSE =
83.67). SVM showed promising performance in the prediction of
PM2.5 in Taiwan (Zhou et al., 2019), PM10 and SO2 in China (Wang
et al., 2015), and O3 prediction in Spain (Ortiz-García et al., 2010).
Gupta et al. (2023) utilized RF and SVM prediction algorithm to
determine the AQI of New Delhi, Bangalore, Kolkata, and
Hyderabad. The study concluded that RF provides the lowest
RMSE values in Bangalore (0.57), Kolkata (0.14), and Hyderabad
(0.38) compared to SVM algorithm. Kumar and Pande (2022)
investigate 6 years of air pollution data from 23 Indian cities for
air quality analysis and used six prediction model. In this study
authors concluded that XGBoot model outperformed in terms of
error statistics (RMSE = 0.96–1.46) and SVM model gives
comparatively substandard results (RMSE = 1.03–3.80). An
algorithm for flexible modeling of high dimensional data is
Multivariate Adaptive Regression Splines (MARS) (Friedman,
1991). Srivastava et al. (2019) reported the performance of
algorithms in order of RF > M5>MARS > CART for solar
radiation forecasting in Gorakhpur, India. Gocheva-Ilieva et al.
(2022) used RF, CART Ensemble, and bagging stacked by MARS
for the prediction of PM10. They showed that the bagged MARS
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algorithm (RMSE = 4.32) outperformed in comparison to all single-
based algorithms. Because of such advantageous features, bagged
MARS offers excellent pattern recognition capabilities that are
widely applied for vehicular emission prediction (Oduro et al.,
2015). Gal and Ghahramani (2016) proposed Bayesian
Regularized Neural Network (BRNN) algorithm due to its
simplicity, regularization capability, strong generalization ability,
and scalability. In general, BRNN serves as a black box to produce
output compressive strength from input geopolymer concrete
specifications without describing the relationship (Aneja et al.,
2021). Against this backdrop, the proposed study is carried out
in the industrial cluster of eastern coastal state of India, which is
predominantly known for air pollution.

The study aims to characterize criteria pollution and use data
mining algorithms to predict their distribution. The objectives of the

study are to (i) characterize criteria pollutants (PM2.5, PM10, NO2,
CO, O3, and SO2) in Talcher and Brajrajnagar, (ii) assess NAQI and
its spatiotemporal variation across the industrial sites, and (iii)
predict the distribution of criteria pollutants using RF, SVM,
bagged MARS and BRNN algorithms. Such findings benefit is
developing strategies for reducing air pollution and enhance air
quality. However, in this particular case, such a study is among
very few attempts to analyze air pollutants at the coalmine
cluster and coal-based thermal power plant stretch of eastern
coastal state in India. Evaluating air quality and prediction of
criteria pollutants will also reveal nuances of meteorology,
climate, and traffic conditions in the industrial landscape at
the eastern coal of India. The findings could be useful to develop
strategies for air pollution reduction and enhance the air quality
in the region.

FIGURE 1
Geographical location of study area.
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2 Methodology

2.1 Study area

The present study has been conducted over the Talcher and
Brajrajnagar coalmine belts of Odisha (eastern coast), India
(Figure 1). Talcher coalfield is the largest repository of power-grade
coal in India, which is located between latitudes of 20° 53′to 21° 12′N
and longitudes of 84° 20′to 85° 23′E, respectively. This coalfield has an
area of about 1800 sq.-km and is located mainly in the Angul district of
Odisha. Talcher coalfield is strategically located to supply power-grade
coal to other parts of the country, especially to the powerhouses situated
in southern and western India. In Odisha state, Brajrajnagar is a town
and a municipality in the Jharsuguda district which is situated at a
latitude of 21° 49′N and longitude of 83° 55′E, respectively. Freely
available data on criteria air pollutants, namely, PM2.5, PM10, NO2, CO,
O3, and SO2 data were collected from 01 January 2019 to
01 June 2021 from the CPCB (https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing/data) monitoring stations installed at
Talcher and Brajrajnagar coal mine areas. The study considers
pre-post pandemic and pandemic period dataset as research
objective to predict air pollutants over coalmine complex belt of
Odisha, India. Several studies reported air quality for short span
using the similar data mining algorithms at different regions
(Ojha et al., 2021; Abirami et al., 2022; Sethi and Mittal, 2022;
Kalbande et al., 2023). Hourly pollutant data were converted to
24 h average data for the prediction of these air pollutants. Since
the simultaneous meteorological data of CPCB installed air
quality monitoring stations were missing for Talcher and
Brajrajnagar therefore, free daily averaged meteorological
variables of the MERRA-2 model viz., temperature (°C),
Relative Humidity (RH), precipitation, and Wind Speed (WS)
were downloaded from the National Aeronautics and Space
Administration (NASA) Power (https://power.larc.nasa.gov/)

with a spatial resolution of 0.5° × 0.5°. The schematic
flowchart is shown in Figure 2.

2.2 National air quality index (NAQI)

CPCB (2015) updated real-time NAQI in the nexus of most
probable health breakpoints in six sub-indices. The cut-off levels of
all six sub-indices were estimated for expected health exposure with
24 h individual pollutant concentration (8 h for CO and O3) at
monitoring stations. The methodology for computing NAQI in the
proposed research is adopted from CPCB (2015), computation
needs a minimum of three pollutants one must be PM2.5 or
PM10. The standard permissible limits have been set by CPCB
for all six criteria air pollutants and computed six NAQI levels
(good to severe) and associated health impact (Table 1). The
computations of sub-indices for n pollutants are evaluated by
sub-indices functions.

Ii � f Xi( ), i� 1, 2,. . . . . ..n (1)
I � F I1, I2, I3, . . . . . ...In( ) (2)

The sub-indices computation includes addition and or
multiplication; details are reported in the literature (Das et al.,
2022). The computation of Ii (Sahu and Kota, 2017; Das et al.,
2022) is demonstrated in Equation 3.

Ii � IHI − IL0( )
BHI − BL0( ) × CP − BL0( ) + IL0 (3)

where, BHI means breakpoint concentration ≥ known
concentration; BL0 stands for breakpoint concentration ≤ known
concentration; IHI means NAQI value equivalent to BHI; IL0 means
NAQI value equivalent to BL0 and CP indicates pollutant
concentration. The overall NAQI can be estimated by taking the

FIGURE 2
The schematic flowchart of methodology.
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maximum sub-index of constituent pollutants, denoted as
dominating pollutants (Hu et al., 2015; Sahu and Kota, 2017).

NAQI � MAX I1, I2, I3, . . . . . ...In( ), n� 1, 2, 3,. . . . . .6 (4)

2.3 Consistency of NAQI

The consistency analysis of NAQI is performed for monitoring
stations - Talcher and Brajrajnagar. NAQI level has several classes
(Table 1) that range from good to severe. The consistency of the
individual class is analyzed as the ratio of individual NAQI class
incidence to the total number of incidences (Das et al., 2022). The
proposed study evaluated the frequency and consistency of NAQI
class in the Talcher and Brajrajnagar to know the persistent air
quality during the study period over the study sites.

PPFL � ∑Xi

n
× 100 (5)

PPFL represents the Pollution Presence Frequency of individual
classes; Xi denotes the number of days when the NAQI value falls
within the targeted class and n stands for the total number of days
used for analysis.

2.4 Predictive modelling

For the prediction of air pollutants, RF, SVM, bagged MARS and
BRNN models are used in the proposed study. The predictor variables
such as PM2.5, PM10, NO2, CO, O3, and SO2 were evaluated for Talcher
and Brajrajnagar. To ensure that the models developed will not over fit
the data, and to evaluate the performance of models, we randomly
partitioned the datasets into training (2/3rd) and testing (1/3rd) sets.
The training data was used to calibrate the models. In the calibration
phase, the training of models was done using bootstrap strategy with
20 folds, i.e., the training dataset was bootstrapped into 20 sub-datasets
and the model was trained. Once the optimized model was identified,
then model was tested on testing dataset. After dividing the data sets
into training and testing sets, multiple times trials weremade for finding
out optimal parameters. Thus, the best model was selected based on
training error and testing error levels.

2.4.1 Random forest
According to Breiman (2001) and Belgium and Drăguţ (2016),

RF is an effective tree-based algorithm for problems relating to
classification and regression. This algorithm resists overtraining,
outliers in predictors, and handling missing values because all
individual trees are independent, eliminating the possibility of
over fitting (Breiman and Cutler, 2004). RF algorithm uses
decision trees as its foundation; it constructs each tree using a
bootstrap sample of data and divides each point in the tree of
randomly chosen predictors (Liaw and Wiener, 2002). Utilizing the
impurity Gini index, the decision trees integrate all of the trees to
make predictions (Cutler et al., 2007). A preset sample subset of the
available data is used by each component tree in a RF algorithm
(Archer and Kimes, 2008). Different bootstrap samples are chosen
randomly for training and the remaining samples (“out-of-bag” or
OOB) are used for testing. The efficiency of each algorithm is thenTA
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assessed using an OOB error (Breiman, 2001). Low bias and
variance, lack of over fitting, low correlation of individual trees,
robust error estimates, and improved prediction accuracy are a few
advantages of adopting OOB error (Wiesmeier et al., 2011; Chen
et al., 2014). The primary parameters needed to construct an RF
algorithm are the number of trees (n), predictive variables, and split
nodes (m). For example, n = 500 (Bui et al., 2016) should be large
enough to ensure the diversity of the RF algorithm. In the proposed
research, n = 500 and m = 1 values are selected for all air pollutants
for both sites. RF model requires less running time and generates
relatively less generalization error, and as the number of trees
increases, the generalization error decreases (Breiman, 2001).

2.4.2 Support vector machine
The SVM algorithm is based on supervised learning methods

and showed robustness for classification and regression problems;
developed and introduced by Cortes and Vapnik (1995). This
algorithm is used to establish an optimal separating hyper plane
with maximum margin in high-dimensional feature space. To
differentiate between various air quality levels, a hyper plane is
created using a kernel in the high-dimensional feature space
(Vapnik et al., 1997). In this work, the most popular non-linear,
Radial Basis Function (RBF) kernel is utilized which has shown
robustness in some previous studies (Kumar et al., 2015; 2019). The
optimal values of kernel parameters like bandwidth of kernel function
(σ) and Cost (C) must be identified in prediction, σ controls the level of
non-linearity introduced in the algorithm. The C value regulates the
balance between minimizing training error and maximizing margin, as
well as function smoothness and training duration (Rashidi et al., 2016).
The SVM performance is greatly influenced by the kernel function and
parameters used during the development SVMalgorithm.Optimization
parameters used for the prediction of air pollutants using different
algorithms are given in Table 2.

2.4.3 Bagged multivariate adaptive regression
splines

The non-parametric, non-linear approach known as bagged
MARS is used to fit the relationship between the independent
and dependent variables. The target variables can be predicted by

the bagged MARS algorithm using a series of coefficients and basic
functions (BFs). The bagged MARS approach predicts the “BF”
function using linear combinations and interactions of adaptive
piecewise linear regression (Friedman, 1991). One of the benefits of
the MARS algorithm, according to Cheng and Cao (2014), is its
capacity to estimate the contributions of these BFs. The generated
algorithm is then continuously updated with the BFs. It is widely
noted that when the BFs are added, the algorithm considers the
functions that cause a significant reduction in the sum of square
errors. The typical form of a MARS algorithm can be expressed by
the following equation (Cheng and Cao, 2014; Park et al., 2017):

y � fn x( ) � co +∑n

i�1cibi x( ) (6)

where y is the dependent variables, x is the independent
variables, co is biasing, n is the number of BFS in the algorithm,
ci is the coefficient of the ith BF, and bi(x) indicates the ith BF.

MARS algorithm was developed in two phases: (i) to improve
algorithm performance, the forward stepwise algorithm adds BFs
and looks for potential knots. However, obtaining too many BFs in
this procedure can result in an over-fitted MARS algorithm. (ii) the
backward stepwise algorithm, prunes redundant BFs that have the
smallest contributions to the algorithm used in the forward stepwise
algorithm until a suitable MARS is presented.

2.4.4 Bayesian regularized neural network
BRNN algorithm is much more robust, compared with

conventional NN algorithms (Burden and Winkler, 2008). The
conventional NN algorithms typically lacks satisfactory
generalization ability, which leads to inaccurate air pollution
prediction. Regularization is an essential procedure to improve the
generalization ability of NN algorithm and to optimize regularization
parameters (Ye et al., 2021). By incorporating a weight decay function
into the NN’s energy function, regularization is achieved. BRNN
avoids over fitting and overtraining because the network trains on
useful network parameters or weights and disregards the irrelevant
parameters. The following equation can be used to define the training
objective function F(ω) utilized by the BRNN algorithm (Yue et al.,
2011):

TABLE 2 Optimization parameters used for the prediction of air pollutants using different algorithms.

Algorithms sites parameters PM10 PM2.5 CO NO2 O3 SO2

SVM Talcher kernel function (σ) 0.16 0.08 0.19 0.07 1.15 2.59

cost (C) 0.27 11.31 0.03 0.99 0.04 0.09

Brajrajnagar kernel function (σ) 0.42 0.12 2.16 0.01 0.09 2.36

cost (C) 0.12 0.48 0.05 6.99 0.09 0.50

bagged MARS Talcher nprune 4 6 5 8 7 6

degree 2 2 1 2 2 2

Brajrajnagar nprune 3 6 3 6 6 11

degree 2 2 1 2 2 1

BRNN Talcher neurons 2 3 1 2 2 14

Brajrajnagar neurons 2 3 18 2 2 3

RF: Optimization parameters for all air pollutants are n = 500 and m = 1 for both sites
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F ω( ) � αSω + βSe (7)
where Sω is the total sum of squared network weights, Se is the total
sum of network errors, and α and β stand for the hyper parameters.
Squared errors and weights are combined, and their sum is
minimized until the ideal combination is found for which the
network generalizes well.

The effects of noise are effectively suppressed and the NN’s
capacity for generalization is increased, in the current work. The
goal of training a NN is typically to provide a set of network
weights and biases that minimize the error between observed air
pollutants and predicted air pollutants. Theoretically intricate
input-output relationships can be revealed by BRNN, making it a
powerful prediction algorithm (Kayri, 2016; Okut, 2016). Even
though BRNN takes up a lot of time, it can be used with small or
noisy datasets. Training is continued until the optimum weights
are identified (Aneja et al., 2021).

2.5 Performance investigation metrics

To make a reasonable evaluation for each prediction model, the
subsequent error standards are adopted to measure the prediction
accuracy, with correlation coefficient (r), root means square error
(RMSE), PBias, fractional bias (FB), and fractional variance (FV)
(Eqs 8–12).

r � ∑n
i�1 Cp − Cp( ) Co − Co( )�������������������������∑n

i�1 Cp − Cp( )2∑n
i�1 Co − Co( )2√ (8)

RMSE �
���������������
1
n
∑n

i�1 Cp − Co( )2√
(9)

PBias � ∑n
i�1 Cp − Co( )*100∑n

i�1Co
(10)

FB � 2
Co − Cp

Co + Cp
(11)

FV � 2
σCo − σCp

σCo + σCp

(12)

where r is the correlation coefficient, and n is the number of data
points to be trained or tested. Cp and Co are the predicted and
observed values, respectively. Cp and Co are their respective
means. σCp and σCo are the respective standard deviations. A
closer value of r to 1 denotes a better algorithm fit, whereas a
closer value to 0 indicates a worse algorithm fit. In common,
good predictive algorithms are allied with smaller values of
RMSE and PBias. RMSE provides a comprehensive idea of the
difference between observed and predicted values. PBias is used
for the identification of the details regarding over and under-
predicted values (Salazar-Ruiz et al., 2008). According to the
Moriasi et al. (2007) performance ratings fall into the
“Satisfactory” (±30 < PBias < ±55), ‘Unsatisfactory’
(PBias > ±55), ‘Very good’ (PBias < ±15), and ‘Good’ (±15 <
PBias < ±30) ranges. The mean observed values and the mean
predicted values can be compared using the normalized
measure FB. A normalized measure called FV enables
comparisons of variance differences between predicted and
observed data. A model with FV = 0 quantities can be

viewed in that variance of predicted values of the model is
equal to the variance of observed values.

3 Results and discussion

3.1 Criteria pollutants characterization

The study regions are populated with various types of
industrial components, which are the major source of
deteriorated air quality in the surroundings of Talcher and
Brajrajnagar. The PM2.5 and PM10 concentration levels
showed slightly decreased values throughout both lockdown
periods (25th March to 31st may 2020 and 5th may to 31st
may 2021). High SO2 concentration is attribution of the
industrial sources. Guttikunda and Jawahar (2018) suggested
that eastern states like Odisha, West Bengal, and Jharkhand in
India have high PM2.5 pollution loads due to the expansion of
coal-fired power plants. The box plots depicted the distribution
of data for six air pollutants from 01 January 2019, to 01 June
2021 (Figure 3). It is observed that at Talcher around 50% of data
distribution was between the 25th to 75th percentile and the
remaining 40%–50% of data lies between the lower and upper
whisker and up to 5% of data is displayed as an outlier,
particularly in the year 2019 and 2020. At Brajrajnagar around
80% of data was distributed between 25% and 75% and up to 19%
of data was distributed between upper and lower whiskers. Only
1% of data is found as an outlier. This nature of the distribution is
consistent with the study period.

The inclusive concentrations of air pollutants over both
monitoring stations are as follows, PM2.5 ranges from 2.49 to
245.57 μg/m3 with mean value 57.08 μg/m3; PM10 ranges from
4.83 to 348.17 μg/m3 with mean value 125.39 μg/m3; CO ranges
0.2–4.13 mg/m3 with mean value 1.57 mg/m3; SO2 ranges
2.73–146.22 μg/m3 with mean value 48.44 μg/m3; NO2 ranges
1.49–99.08 μg/m3 with mean value 27.35 μg/m3 and O3 ranges
1.02–134.82 μg/m3 with mean value 44.12 μg/m3. The range of
pollutants concentration is presented in Supplementary Table S1.
The distribution pattern revealed that 95% of data (out of this 50% of
data lies within the 1st and third quartile) was within the lower and
upper whiskers. The average concentration of PM2.5, PM10, and CO
was higher than the NAQI standard limit (around 50% days of the
study period), suggesting that the PMs are the dominant and key
pollutants governing local air quality. The eastern coastal state
Odisha is accounted as a hotspot in the last decades (Ghude
et al., 2008; Sahu et al., 2017), residential burning of coal for
household cooking is further adding up to local air pollution in
the region (Tyagi et al., 2021).

3.2 Air pollutants and meteorological
variables

The meteorological conditions often play important roles in
local air quality through accumulation or ventilation of pollutants.
Statistical analysis of air pollution data and meteorological variables
reveals that at Talcher, PM2.5 and PM10 have a very good correlation
(r = 0.82), and the other set of variables, PM2.5 and temperature
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(r = 0.65); and PM10 and temperature (r = 0.50) showed good
correlation. A moderate correlation is found between RH and
precipitation; temperature and WS; PM2.5 and WS; PM10 and
WS, CO; NO2 and O3; and SO2 and O3. At Brajrajnagar, PM2.5

and PM10 showed a very good correlation (r = 0.94) with each other.
PM2.5 and temperature (r = 0.49); PM2.5 and NO2 (r = 0.58); CO and
NO2 (r = 0.67) and PM10 and NO2 (0.54) showed good correlation.
A moderate correlation is found between RH and precipitation;
PM2.5 and RH, CO, precipitation; PM10 and RH, precipitation,
temperature; NO2 and RH; and O3 and CO, RH. Other air
pollutants showed a poor correlation between meteorological
variables. The detailed descriptive statistics between air pollutants
and meteorological variables for Talcher and Brajrajnagar are
presented in Figure 4; Supplementary Table S2.

3.3 NAQI and sub-indices

The NAQI is the weighted addition of sub-indices of pollutants.
The sub-indices of PM2.5 and PM10 are deciding components of
NAQI in 90% of the cases (Sahu and Kota, 2017). The sub-AQI of
PM2.5 and PM10 distribution showed that >50% of days PM2.5

concentration was higher than the NAQI standard limit (100 μg/

m3 and 60 μg/m3, respectively). The CO concentration NAQI limit is
2 mg/m3. It is observed that around 40% of days in the year
2019 sub-indices of CO exceeded the NAQI limit but
comparatively more days were found within the CO-indices
NAQI standard limit in years 2020 and 2021. The sub-indices of
NO2 distribution are found within NAQI standard limit (80 μg/m3)
for both monitoring stations. However, absolute concentration has
been found to be increased in the successive year from 2019 to
2021 at Talcher and the vice versa pattern is observed at
Brajrajnagar. The comparative increase in the absolute magnitude
of O3 sub-indices is observed for both the monitoring stations and
noticed that only for a few days in the years 2020 and 2021 the O3

sub-indices exceeded the NAQI standard limit. The absolute sub-
indices of SO2 at Talcher dropped in progressive years as compared
to the year 2019 and the number of days that exceeded the NAQI
standard limit also decreased in successive years from 2019 to 2021.
The sub-indices distribution over Brajrajnagar is similar to Talcher
but for the year 2021, many days exceeded the SO2 NAQI standard
limit (80 μg/m3).

It is observed that Talcher station had satisfactory and moderate
class NAQI, on most of the days in the year 2019. Similarly, in the
year 2020 NAQI distribution ranges from satisfactory to very poor
class, with maximum days the air quality lies in moderate class. In

FIGURE 3
Characterization and distribution of criteria pollutants for Talcher (S1) and Brajrajnagar (S2)monitoring stations (2019–2021), eastern coastal states in
India.
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the year 2021, NAQI is observed in two classes, satisfactory and
moderate. The slight improving air quality in the years 2020 and
2021 was due to the enforced restriction on the roadway and
commercial activity as a precautionary step to control COVID-19

(Baweja et al., 2022). At Talcher, good NAQI days are zero whereas
at Brajrajnagar station NAQI distribution depicted a wide range of
NAQI classes, mostly moderate to poor days NAQI, and for a few
days, air quality lies between satisfactory to the very poor class. In the

FIGURE 4
Correlation matrix between air pollutants and meteorological variables for (A) Talcher and (B) Brajrajnagar sites, eastern coastal state in India.
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year 2020, for a few days, air quality was good, poor, and very poor
whereas, for a significant number of days, NAQI was within the
moderate and satisfactory class. Similarly, in the year 2021 at

Brajrajnagar, NAQI distribution was found in the class of
satisfactory to very poor with maximum days with moderate
NAQI class as shown by Sharma et al. (2020) and Baweja et al.

FIGURE 5
NAQI and criteria pollutants sub-indices for Talcher (A) and Brajrajnagar (B) monitoring stations, eastern coastal states in India.
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(2022). The pollutant-wise sub-indices and NAQI for air quality
monitoring stations for Talcher and Brajrajnagar, a coalmine
complex area, for three consecutive years 2019–2021, are shown
in Figure 5.

3.4 NAQI frequency and consistency

The comparative aspects of 3 years (2019–2021) of NAQI
frequency (Supplementary Table S3) and consistency
(Supplementary Table S4) distribution of different levels are
portrayed in bubble plots (Figure 6) for both monitoring sites. It
is observed that NAQI ranges from 101–200 (moderate level) and
has a maximum frequency of occurrence of 26–108 and 27–158 days
during the year 2019–2021 at Talcher and Brajrajnagar, respectively.
NAQI level of 51–100 (satisfactory class) has a frequency of
occurrence of 20–67 and 13–60 days during 2019–2021at Talcher
and Brajrajnagar, respectively. The consistency of satisfactory level
NAQI ranges from 22% to 3% to 4%–28% at Talcher and
Brajrajnagar, respectively. The consistency of satisfaction
increased from 22% in 2019 to 43% in 2021 at Talcher and 4%
in 2019 to 28% at Brajrajnagar in the year 2020.

The poor level NAQI (201–300) frequency of occurrence ranges
from 5 to 19 and 9–37 days at Talcher and Brajrajnagar, respectively.
The consistency of NAQI 201–300 level ranges from 3% to 10% and

11%–17% at Talcher and Brajrajnagar, respectively. The very poor
NAQI class (301–400) frequency ranges from 11 to 12 days at
Talcher and 4–13 days at Brajrajnagar and consistency ranges
from 2% to 8% at both sites. It is noticeable that in the year
2019, the consistency and frequency of occurrence of NAQI
levels 101–200, and 201–300 were higher as compared to the
years 2020 and 2021. However, at a satisfactory level air quality
frequency of occurrence and consistency was lower in the year
2019 and higher in the year 2020 and 2021 due to shut down of
anthropogenic activities. The difference in moderate and poor level
NAQI in the year 2020–2021 as compared to 2019 is due to imposed
restrictions on roadway transport and commercial activities due to
the pandemic event. Economic activities in the neighboring areas had a
great impact on air quality, and during the fraction of this study period
(2020–2021), the commercial activities were forced to shut down to
control COVID-19 dispersion (Das et al., 2022). However, not much
significant difference in air quality was obtained since the thermal
power plants and coal mines (associated activities mining, coal
transport, coal dumping, etc.) were operational during the study
period. Therefore, a minor difference in NAQI in the year
2020–2021 is found as compared to the year 2019 NAQI. Similar
results were reported by Shairsingh et al. (2018) and Mihankhah et al.
(2020). The results indicate that industrial regions are more prone to
high PMs concentrations and higher NAQI levels as compared to
commercial and residential sectors.

FIGURE 6
Bubble plots for frequency of occurrence and consistency (in percentage) of NAQI class for monitoring stations Talcher and Brajrajnagar, eastern
coastal states in India.
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3.5 Prediction using RF, SVM, bagged MARS,
and BRNN algorithms

Monitoring and predicting air quality have become basically
significant in real time, particularly in emerging nations like India
(Kumar and Pande, 2022). The machine leaning based forecast
models have been ended up being more reliable. The precise and
robust prospects of large data can be managed proficiently with ML
algorithms (Gladkova and Saychenko, 2022). This recent article
proposed comprehensive robust models to predict AQI accurately,
at Talcher and Brajrajnagar. ML models like RF, SVM, bagged

MARS, and BRNN were employed here to predict the AQI, because
these models have shown their robustness to enhance AQI
worldwide. The prediction of the AQI not only requires the
selection of a good choice of prediction model, it requires
attention to multiple factors, including the missing observations
in raw training data, the high inconsistency in data, proper selection
of predictors, meteorology and high temporal correlations between
the concentrations of pollutants and its accurate parameters tuning.
This paper proposed ML models considering all of these factors. r,
RMSE, Pbias, FB and FV were the performance metrices considered
to evaluate the performance of the model. The prediction of

FIGURE 7
Scatter plots between observed and predicted values of PM2.5 for training [(A1–D1) for Talcher and (A3–D3) for Brajrajnagar] and testing [(A2–D2) for
Talcher and (A4–D4) for Brajrajnagar]. Where plots are for RF (A1-A4), bagged MARS (B1–B4), BRNN (C1–C4) and SVM (D1-D4) algorithms.
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pollutant’s level with the selected features was adequate for almost all
the pollutants to improve prediction accuracy of AQI. Further
analysis and testing may be taken using additional features for
predicting CO levels, as it would enhance overall AQI prediction.
Since its predictions were the least accurate for both the sits.

The scatter plots between observed and predicted values of
training and testing data are depicting strong correlation in case
of PM2.5 (Figure 7) and PM10 (Figure 8) for all models at Talcher and
Brajrajnagar sites. The mostly scattered points are lying over the best
fit line at the centre of the plots. The low and comparable RMSE
between observed and predicted values of PM2.5 are indicating about
slightly better prediction of PM2.5 by RF (Training

RMSE = 12.40 μg/m3; Testing RMSE = 17.90 μg/m3), SVM
(Training RMSE = 16.76 μg/m3; Testing RMSE = 17.54 μg/m3),
bagged MARS (Training RMSE = 16.86 μg/m3; Testing RMSE =
17.64 μg/m3), and BRNN (Training RMSE = 16.79 μg/m3; Testing
RMSE = 17.53 μg/m3) models at Talcher site in comparison to
Brajrajnagar site. However, PM10 (RMSE = 25.80–43.41 μg/m3,
NO2 (RMSE = 3.00–4.95 ppb) and SO2 (RMSE = 2.78–5.46 ppb)
at Brajrajnagar are better than PM10 (RMSE = 35.40–55.33 μg/m3),
NO2 (RMSE = 4.99–9.11 ppb), and SO2 (RMSE = 4.91–9.47 ppb)
between observed and predicted values of training and testing data at
Talcher using RF, SVM, bagged MARS and BRNN models,
respectively. Low PM10 RMSE between observed and predicted

FIGURE 8
Scatter plots between observed and predicted values of PM10 for training [(A1–D1) for Talcher and (A3–D3) for Brajrajnagar] and testing [(A2–D2) for
Talcher and (A4–D4) for Brajrajnagar]. Where plots are for RF (A1–A4), bagged MARS (B1–B4), BRNN (C1–C4) and SVM (D1–D4) algorithms.
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values of training (RMSE = 25.80 μg/m3) and testing (RMSE =
38.72 μg/m3) data using RF model are slightly better at Brajrajnagar
in comparison to SVM, bagged MARS and BRNN models of both
sites. Whereas, moderate correlation between observed and
predicted values of training and testing data for all the models
were identified in case of NO2 (at both site) (Figure 9) and O3 (at
Brajrajnagar site) (Figure 10). RF model training data showed strong
correlation between observed and predicted values in case of CO, O3

and SO2 at both sites. Though, SVM, bagged MARS and BRNN
models illustrating weaker correlation between observed and
predicted values of CO and SO2 at both sites (Supplementary
Figures S1, S2). The predicted values of PM2.5, PM10, NO2, SO2,

CO, and O3 using training datasets are compared with measured air
pollutants. The trained algorithms are verified using the testing
dataset for the prediction of air pollutants. The predicted air
pollutant values using testing datasets are compared with the in-
situ measured air pollutants. Importantly, all algorithms showed
good performance except CO and O3, which highlighted overall
capabilities in modeling air pollutants. Low-magnitude values of P
bias indicate accurate model simulation, with 0.0 being the ideal
value. The negative values indicate model underestimation bias,
whereas positive values indicate overestimation bias. SVM algorithm
was given high under estimated Pbias (−11.78) for NO2 prediction
and overestimated Pbias (5.38) for SO2 prediction at Talcher site.

FIGURE 9
Scatter plots between observed and predicted values of NO2 for training [(A1-D1) for Talcher and (A3–D3) for Brajrajnagar] and testing [(A2-D2) for
Talcher and (A4–D4) for Brajrajnagar]. Where plots are for RF (A1–A4), bagged MARS (B1–B4), BRNN (C1–C4) and SVM (D1–D4) algorithms.
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Though, at Brajrajnagar site high under estimated Pbias (−9.21) was
for SO2 using SVM algorithm and overestimated Pbias (4.38) was for
CO using RF algorithm. Statistical analysis concluded that SVM
algorithm results are moderate in comparison to RF algorithm in the
time series data investigation. The predicted accuracy of the results
of PM2.5, PM10, NO2, and O3 using the RF model in this study for
both sites are similar in compare to predicted PM2.5, PM10, NO2, and
O3 using RF model by Gariazzo et al. (2020) in Italy. Chen et al.
(2019) predicted similar results in China for PM2.5 using the RF
model. The performance of different algorithms is evaluated in
terms of r, RMSE, P bias, FB, and FV are presented in detail in
Table 3.

3.6 Performance evaluation of air pollutants
using different algorithms by Taylor diagram

Taylor diagram is used to display the graphical representation of
the model performance in terms of r, centered Root-Mean Square
Difference (cRMSD), and standard deviation (SD) using training
and testing datasets, respectively. The radial distance from the origin
is represented by the SD values. The cRMSD is the distance between
the modeled data and the observed data (measured in the same units
as the SD) (Taylor, 2001). The performance of RF, SVM (radial),
bagged MARS, and BRNN algorithms to predict PM2.5, PM10, CO,
NO2, O3, and SO2 are compared using the Taylor diagram. Using

FIGURE 10
Scatter plots between observed and predicted values of O3 for training [(A1–D1) for Talcher and (A3–D3) for Brajrajnagar] and testing [(A2–D2) for
Talcher and (A4–D4) for Brajrajnagar]. Where plots are for RF (A1–A4), bagged MARS (B1–B4), BRNN (C1–C4) and SVM (D1–D4) algorithms.
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TABLE 3 Comparative statistical analysis for the prediction of air pollutants using different optimized algorithms.

Talcher

Models PM2.5 (µg/m3) PM10 (µg/m3) CO (ppm) NO2 (ppb) O3 (ppb) SO2 (ppb)

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

RF r 0.92 0.86 0.91 0.69 0.90 0.40 0.92 0.49 0.92 0.11 0.93 0.40

RMSE 12.40 17.90 35.40 53.87 0.32 0.53 4.99 8.92 7.52 13.67 4.91 9.03

PBias −0.08 −4.63 −0.04 4.44 −0.01 −1.91 0.33 −3.46 0.17 0.39 −0.03 4.46

FB 0.00 0.05 0.00 −0.04 0.00 0.02 −0.00 0.04 −0.02 −0.00 0.00 −0.04

FV 0.22 0.36 0.29 0.34 0.55 0.83 0.46 0.68 0.59 0.91 0.54 0.87

SVM r 0.84 0.87 0.72 0.69 0.33 0.20 0.52 0.48 0.35 0.11 0.48 0.32

RMSE 16.76 17.54 55.33 54.09 0.55 0.56 8.71 9.11 13.48 13.24 8.89 9.45

PBias −4.43 −7.52 −5.70 −2.95 −1.53 −4.47 −10.77 −11.78 7.81 4.89 2.27 5.38

FB 0.05 0.08 0.06 0.03 0.02 0.05 0.11 0.13 −0.10 −0.05 −0.02 −0.05

FV 0.26 0.34 0.41 0.39 1.42 1.43 0.66 0.66 1.54 1.52 1.32 1.32

bagged MARS r 0.83 0.86 0.72 0.68 0.39 0.22 0.55 0.48 0.39 0.21 0.38 0.35

RMSE 16.86 17.64 55.15 54.79 0.54 0.56 8.45 8.97 12.88 13.01 9.05 9.29

PBias 0.17 −4.41 −0.01 3.05 0.25 −2.55 −0.54 −3.60 0.21 −0.48 −0.03 3.13

FB −0.00 0.05 0.00 −0.03 −0.00 0.03 0.01 0.04 −0.02 0.01 0.00 −0.03

FV 0.21 0.30 0.37 0.36 1.09 1.13 0.75 0.74 1.09 1.15 1.25 1.23

BRNN r 0.83 0.85 0.72 0.68 0.29 0.16 0.49 0.48 0.28 0.11 0.20 0.31

RMSE 16.79 17.53 55.25 54.57 0.55 0.57 8.76 8.95 13.37 13.43 9.47 9.47

PBias −0.15 −4.10 −0.54 3.11 0.08 −2.83 −0.64 −3.29 0.19 0.79 0.09 2.64

FB 0.00 0.04 0.01 −0.03 −0.00 0.03 0.01 0.03 −0.03 −0.01 −0.00 −0.03

FV 0.19 0.28 0.35 0.31 1.13 1.16 0.73 0.76 1.13 1.08 1.41 1.45

Brajrajnagar

RF r 0.91 0.64 0.90 0.69 0.89 0.22 0.88 0.45 0.87 0.41 0.88 0.42

RMSE 13.06 21.65 25.80 38.72 0.54 0.93 3.00 4.88 9.14 15.18 2.78 5.12

PBias 0.20 1.94 0.26 −0.40 −0.09 4.38 0.14 0.97 0.18 0.83 0.24 −4.50
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TABLE 3 (Continued) Comparative statistical analysis for the prediction of air pollutants using different optimized algorithms.

Talcher

Models PM2.5 (µg/m3) PM10 (µg/m3) CO (ppm) NO2 (ppb) O3 (ppb) SO2 (ppb)

Training Testing Training Testing Training Testing Training Testing Training Testing Training Testing

FB −0.00 −0.02 −0.00 0.00 0.00 −0.12 −0.00 −0.01 −0.00 −0.01 −0.00 0.05

FV 0.29 0.34 0.36 0.49 0.63 0.18 0.43 0.51 0.48 0.72 0.50 0.77

SVM r 0.68 0.67 0.60 0.67 0.43 0.19 0.49 0.42 0.39 0.41 0.68 0.31

RMSE 21.57 20.76 42.51 39.85 0.89 0.93 4.95 4.91 15.31 15.15 3.78 5.46

PBias −2.82 −0.79 −4.27 −4.29 −9.63 −8.94 −2.80 −2.91 1.65 4.12 −3.46 −9.21

FB 0.03 0.01 0.04 0.04 0.10 0.09 0.03 0.03 −0.02 −0.04 0.04 0.10

FV 0.43 0.43 0.53 0.52 1.58 1.64 0.71 0.80 0.76 0.77 0.58 0.78

bagged MARS r 0.70 0.64 0.57 0.64 0.30 0.35 0.58 0.50 0.53 0.54 0.55 0.39

RMSE 20.92 21.65 43.41 41.08 0.88 0.88 4.62 4.67 14.11 14.06 4.25 5.22

PBias 0.22 1.33 −0.43 −1.20 0.31 1.73 −0.18 −0.05 −0.02 1.42 0.44 −5.80

FB −0.00 −0.01 0.00 0.01 −0.00 −0.02 0.00 0.00 0.00 −0.01 −0.00 0.06

FV 0.41 0.39 0.63 0.59 1.25 1.12 0.65 0.65 0.74 0.79 0.65 0.75

BRNN r 0.68 0.64 0.59 0.65 0.14 0.09 0.52 0.49 0.46 0.50 0.49 0.34

RMSE 21.40 21.66 42.81 40.32 0.91 0.93 4.84 4.72 14.69 14.44 4.44 5.35

PBias 0.01 1.55 0.14 0.37 1.56 0.39 −0.04 0.83 0.29 1.62 0.07 −7.71

FB −0.00 −0.02 −0.00 −0.00 −0.02 −0.00 0.00 −0.01 −0.00 −0.02 −0.00 0.08

FV 0.39 0.39 0.53 0.49 1.59 1.60 0.66 0.68 0.74 0.79 0.72 0.88

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

17

C
h
o
u
d
h
ary

e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
3
.113

2
15

9

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1132159


observed data, the Taylor plot’s circle mark along the X-axis is
designated as the reference point. Overestimation will arise if the SD
of the predicted values is larger than the SD of the observed values,
and vice versa (Gupta et al., 2017; Chaudhary et al., 2022). Taylor

plot also shows a strong correlation between the observed and
predicted values of air pollutants during the training and testing
of all algorithms. RF model provided higher efficiency in
comparison to SVM, bagged MARS, and BRNN in the training

FIGURE 11
Evaluation of different air pollutants using bagged MARS, RF, SVM (radial), and BRNN algorithms by Taylor diagram at Talcher.
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of all air pollutants at both monitoring sites. Though for testing of
data, the RF model has provided results analogous to SVM, bagged
MARS, and BRNN models at Talcher and Brajrajnagar sites. All

algorithms have shown higher efficiency for PM2.5 and PM10 except
being for CO and O3 at Talcher and CO at Brajrajnagar. The results
are found moderate in the prediction of NO2 and SO2 using all

FIGURE 12
Evaluation of different air pollutants using bagged MARS, RF, SVM (radial), and BRNN algorithms by Taylor diagram at Brajrajnagar.
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models at both sites. The evaluation of different air pollutants using
RF, SVM (radial), bagged MARS and BRNN algorithms by Taylor
diagram are shown at Talcher (Figure 11) and Brajrajnagar
(Figure 12). The suggested research’s findings are currently
viewed as a useful practical tool that may be increasingly helpful
for decision-makers and environmental management and to gain
new insights into air quality modeling.

4 Conclusion

As the source strength of air pollutants differ spatio-temporal, it
is of extreme priority to understand distribution of harmful air
pollutants to lay out optimum benefit control strategies in urban-
rural stretch and coal-mine complex belt of an eastern coastal
state, Odisha. The PM2.5 and PM10 concentration levels slightly
decreased during 2020 at Brajrajnagar, and during 2021 at both
sites. High SO2 concentration is primarily attributed to industrial
sector, which favors rise of O3 levels. The concentration of PM2.5,
PM10, and CO is higher than the NAQI standard limit (around
50% days of the study period), indicating the issue of air pollution
and deteriorated local air quality in and around the mining area.
Among pollutant sub-indices around 90% of the cases PM2.5 and
PM10 are deciding components of NAQI. Around 26–158 days
with the consistency of 36%–73% moderate level air quality
prevail over the study period of 2019–2021. Whereas,
satisfactory level air quality prevails up to 4–43 days with a
consistency of 13%–67%. Remarkably, it is observed that a
satisfactory level of air quality consistency increased from 22%
to 43% at Talcher and 4%–28% at Brajrajnagar during 2020 and
2021 as compared to 2019. This small improvement in air quality
during 2020–2021 timeframe was due to shut-off of
anthropogenic activities in the state. RF, SVM, Bagged MARS
and BRNN showed higher efficiency for the prediction of PM2.5,
PM10, SO2, and NO2 except CO and O3 at Talcher and CO at
Brajrajnagar. Though the RF model showed higher r values
between observed and predicted values for training data in
comparison to SVM, Bagged MARS and BRNN models.
Statistical analysis and Taylor plots demonstrated that the
proposed algorithms showed promising accuracy for
predicting air quality. The experimental findings demonstrate
that the suggested algorithms can enhance the generalization
ability of data mining, and outperform several established
prediction models in terms of prediction accuracy.
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