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Soil moisture (SM) is closely correlated with ecosystem structure and function.
Examining whether climate data (temperature, precipitation and radiation) and
the normalized difference vegetation index (NDVI) can be used to estimate SM
variation could benefit research related to SM under climate change and human
activities. In this study, we evaluated the ability of nine algorithms to explain
potential SM (SMp) variation using climate data and actual SM (SMa) variation using
climate data and NDVI. Overall, climate data and the NDVI based on the
constructed random forest models led to the best estimated SM (R2 ≥ 94%,
RMSE ≤ 2.98, absolute value of relative bias: ≤ 3.45%). Randomness, and the
setting values of the two key parameters (mtry and ntree), may explain why the
random forest models obtained the highest accuracy in predicating SM.
Therefore, the constructed random forest models of SMp and SMa in this study
can be thus be applied to estimate spatiotemporal variations in SM and for other
related scientific research (e.g., differentiating the relative effects of climate
change and human activities on SM), at least for Tibetan grassland region.
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1 Introduction

Soil moisture (SM) is related to the temperature sensitivity of ecological systems (Shen
et al., 2015; Fu and Sun, 2022), plant growth and production (Fu and Shen, 2017; Fu et al.,
2018; Fu et al., 2019; Zhang et al., 2021), plant α-diversity and community composition
(Wang et al., 2021a; Wang et al., 2021b; Sun et al., 2021), soil microbial community (Yu et al.,
2019a; Zhang et al., 2020; Zhang and Fu, 2021; Zong and Fu, 2021; Han et al., 2022a; Zhong
and Fu, 2022), soil carbon, nitrogen and phosphorus flux and storage (Fu and Shen, 2016; Yu
et al., 2019b; Fu and Shen, 2022). Surface measurement is undoubtedly the most accurate and
easiest method of obtaining SM; however, this method still has its own insurmountable
shortcomings (e.g., the temporal scale and especially the spatial scale at which it operates are
relatively small, and the time and labor costs are high) (Yang et al., 2017; Nguyen et al., 2022).
Many studies have been carried out to obtain SM data at larger spatial scales and for longer
time series (Zeng et al., 2015; Bi et al., 2016; Meng et al., 2018). Simulation methods of SM
based on microwave remote sensing technology (e.g., advanced scatterometer) have been
proposed since the 1970s (Schmugge et al., 1980; Naeimi et al., 2009; Zeng et al., 2015;
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Karthikeyan et al., 2017). The spatial resolution of SMmeasurements
based on microwave remote sensing technology is always relatively
coarse (Yang et al., 2017; Zhang et al., 2018; Nguyen et al., 2022; Wu
and Wen, 2022). Moreover, the accuracy of SM estimation using
microwave remote sensing technology is often low and thus needs to
be further improved, and such SM data need to be validated before
usage (Chen et al., 2013; Ullah et al., 2018; Zheng et al., 2018; Li et al.,
2022). All these disadvantages limit the usage usefulness of this
approach in quantifying SM (van der Velde et al., 2014; Sun et al.,
2016; Yang et al., 2017). Since its establishment, the temperature
vegetation dryness index (TVDI) has been widely used in SM
detection and management at large spatial and temporal scales
(Sandholt et al., 2002; Zhao et al., 2014; Zormand et al., 2017; Ali
et al., 2019; Fitriyah et al., 2019; Phan et al., 2020; Yuan et al., 2020).
Generally, SM data are indirectly obtained using the TVDI approach
and divided into multiple levels based on the TVDI values (Zormand
et al., 2017; Yuan et al., 2020). Moreover, the accuracy of SM
measurement based on the TVDI method is highly dependent on
the accuracy of the normalized difference vegetation index (NDVI,
derived from near-infrared and red-band reflectance) and land
surface temperature (Yang et al., 2017). All these factors limit the
usability of the TVDI-based approach. Some reanalysis data
products (e.g., ERA5, JRA-55, CFSR, ERA-Interim and MERRA-
2) can also provide SM datasets (Bao et al., 2010; Cheng et al., 2019;
Wang et al., 2019; Li et al., 2022; Liu and Yang, 2022). These
reanalysis SM datasets are convenient for related scientific
research, but their accuracy still needs to be further improved
(Ullah et al., 2018; Yang et al., 2020; Li et al., 2022; Liu and
Yang, 2022), and their spatial resolution (e.g., 0.1 ×0.1) is
relatively coarse (Yang et al., 2020; Liu and Yang, 2022).
Compared to process/physics-based models of SM or satellite-
derived SM products mentioned above, machine learning
algorithms can have their own advantages in estimating SM. For
example, R software is a popular open-source software, and some
common machine learning algorithms have directly worked well on
R software, but process/physics-based models of SM are not directly
performed on R software. That is, process/physics-based models of
SM need relative strong programming fundamental, but the machine
learning algorithms based on R software do not need strong
programming fundamental. The spatio-temporal resolution of SM
products is fixed and generally coarse, but the spatio-temporal
resolutions of SM in the machine learning algorithms can be set
according to actual needs. Some studies have tried to quantify SM
using various machine learning tools (e.g., random forest, extreme
gradient boosting) (Cui et al., 2016; Yang et al., 2017; Cui et al., 2019;
Tong et al., 2021; Guo et al., 2022; Jarray et al., 2022; Lei et al., 2022;
Uthayakumar et al., 2022; Veloso et al., 2022; Wei et al., 2022).
Although several previous studies confirmed that different machine
learning tools can have varying performances in quantifying surface
variables (Han et al., 2022b; Fu et al., 2022; He et al., 2022; Tian and
Fu, 2022), it is still unclear which has the best performance in
estimating SM (Tong et al., 2021; Zhang et al., 2022a; Nguyen
et al., 2022). Earlier models for estimating SM generally have
many model parameters (Wang et al., 2022a; Zhang et al., 2022a;
Kisekka et al., 2022; Tramblay and Segui, 2022). However, these
parameters have varying data accuracy, especially at large spatial and
temporal scales (Lee et al., 2022). Moreover, there may be some
autocorrelation between multiple model parameters. Thus, a model’s
accuracy in estimating SM may not be always positively correlated

with the number of parameters (Veloso et al., 2022). Accordingly,
further studies are needed to find improved SM model.

Several earlier studies pointed out that precipitation can have
stronger influences on ecological systems than temperature at various
spatial and temporal scales on Tibetan Plateau (Fu et al., 2018; Wang
et al., 2022b; Zhang et al., 2022b). Compared with precipitation, SM
can more directly impact ecosystem structure and function on Tibetan
Plateau (Shen et al., 2015; Shen et al., 2016; Fu et al., 2018).
Accordingly, a great deal of studies have attempted to obtain SM
with a more fine spatial scale over a larger area (Tong et al., 2021; Li
et al., 2022; Liu and Yang, 2022; Wu andWen, 2022), and investigated
the influences of SM on various ecological systems on Tibetan Plateau
(Fu et al., 2012; Yu et al., 2014; Zhong et al., 2016; Zhong and Fu,
2022). Compared to other regions in China, there are few SM
observation stations in this area (Wang et al., 2022a). This directly
affects the number of data available for direct measurement of surface
SM and hence limits their application. Studies more often use
precipitation and vapor pressure deficit rather than SM to reflect
environmental water conditions, especially over relatively larger area
(Shen et al., 2014; Wang et al., 2015; Fu et al., 2016), because data for
the former are easier to obtain for Tibetan Plateau. Both warming and
precipitation can directly affect SM, and solar short-wave radiation
can increase soil temperature and air temperature (Klein et al., 2005;
Fu et al., 2018). However, it is still unclear whether or not temperature,
precipitation and radiation can be used to invert SM. Thus, it is
necessary to construct a SM optimization model driven solely by
climate factors. Previous studies found that human activities (e.g.,
grazing) can generally reduce SM at a single point or along a transect
(Fu and Shen, 2016; Sun et al., 2021; Zhang and Fu, 2021). However, it
is still unclear how SM can be used to respond to the combined effects
of climate change and human activities on Tibetan Plateau. The
development a SM optimization model driven simultaneously by
climate factors and human activities is also needed. Furthermore,
the relative impacts of climate change and human activities on SM on
Tibetan Plateau also remain unclear. Therefore, further studies are
needed to obtain both an optimum model of SM driven only by
climate factors, and driven simultaneously by climate factors and
human activities, respectively, on the Tibetan Plateau.

The NDVI, as one of the most common and important vegetation
indices (Fu and Shen, 2022; Fu and Sun, 2022), can be easily and
directly obtained from remote sensing satellite data (Shen et al., 2014;
Wang et al., 2015). The earliest NDVI product can be dated back to the
1980s (Cortez, 2010; Fu et al., 2011). Some NDVI products provide
long-time-series data on the Earth. Compared to other vegetation
indices (e.g., enhanced vegetation index), the NDVI is much older. The
NDVI, which is based on remote sensing satellite data, can measure
effects induced by both climate change and by anthropogenic activities
(Breiman, 2001; Wang et al., 2015). The NDVI has been validated as
one of the most important variables affecting SM on Tibetan Plateau
(Cui et al., 2016; Li et al., 2022). Accordingly, SM variation in the
grassland systems of Tibet was estimated from climate data
(i.e., temperature, precipitation and radiation) and the NDVI based
on nine approaches. The main objectives of this study were to 1)
compare the accuracies of different algorithms, and 2) examine
whether climate data and NDVI can be used to estimate SM in
Tibetan grassland systems. On one hand, the building models of
SM can help scientists to save time by abandoning soil moisture field
surveys. On the other hand, this study can provide services for better
solving various ecological and environmental problems related to SM.
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For example, this study would not only facilitate estimating
spatiotemporal variations in SM, but also facilitate differentiating
between the effects of climate change and human activities on SM.
This study can also provide services for better perform the studies
related to ecosystem structure and function because SM is more closely
correlated to ecosystem structure and function than precipitation on
the Tibetan Plateau (Shen et al., 2015; Shen et al., 2016; Fu et al., 2018).

2 Materials and methods

2.1 Data

The study area was located in the grassland systems of Tibet. The
sampling sites were located from 28.37° N to 33.17° N and 79.69° E to
95.68° E in free-grazing areas, and from 29.28° N to 33.17° N and from
83.25° E to 92.01° E in fenced areas (Figure 1). The annual temperature
of the sampling sites ranged from −0.22°C to 9.81°C in free-grazing
areas and from −0.40°C to 6.16°C in fenced areas. The annual
precipitation of the sampling sites ranged from 26.88 mm to
674.03 mm in free-grazing areas and from 163.79 mm to
663.44 mm in fenced areas. The annual maximum NDVI of the
sampling sites ranged from 0.0606 to 0.8016 in free-grazing areas,
and from 0.1199 to 0.6923 in fenced areas.

Documented results suggest that SM in non-grazing areas is not
affected by anthropogenic activities (Han et al., 2022b; Fu et al., 2022;
Tian and Fu, 2022). Refer to some previous studies (Han et al., 2022b;
Tian and Fu, 2022), SM under non-grazing conditions were referred to
SMp. Based on the monthly meteorological data (temperature,
precipitation and radiation) from 145 meteorological stations, we
obtained the raster meteorological data in 2011, 2013–2018 and
2020 (spatial resolution of 1 km × 1 km, temporal resolution of
1 month) through spatial interpolation using the Anusplin software
(Fu et al., 2017; Tian and Fu, 2022). Temperature, precipitation and
radiation data were obtained from spatial interpolated meteorological
data, which often have higher accuracy (Fu et al., 2017; Tian and Fu,

2022). Temperature, precipitation and radiation have been validated
as important variables affecting SM on Tibetan Plateau (Cui et al.,
2016; Li et al., 2022; Liu and Yang, 2022). Accordingly, air
temperature, precipitation and radiation data were used to model
SMp to facilitate our study on the spatial-temporal variations in SMp.

Documented results suggest that SM in grazing areas is influenced
by both climate change and anthropogenic activities (Han et al., 2022b;
Fu et al., 2022; Tian and Fu, 2022). Refer to some previous studies
(Han et al., 2022b; Tian and Fu, 2022), SM under grazing conditions
were referred to SMa. Air temperature, precipitation, radiation and
NDVI data were used to model SMa, facilitating our study on the
spatial-temporal variations in SMa. By combining the two constructed
models of SMp and SMa, we were able to differentiate between the
effects of climate change and human activities on SM.

The MOD13A3 NDVI (1 km × 1 km, 1 month) was used in this
study. The reasons why MOD13A3 NDVI is applied in this study are
due to the following grounds. 1) The ultimate objective of constructing
a SM model was to aid the high-quality development of livestock
husbandry in Tibet. That is, we aimed to focus on the change in
grassland productivity during drought conditions and its impact on
the high-quality development of livestock husbandry in Tibet.
Although fine spatio-temporal resolution soil drought can have a
negative impact on grassland productivity, it does not have a fatal
impact on the high-quality development of livestock husbandry in
Tibet. Only a large area of soil drought would adversely impact the
high-quality development of livestock husbandry in Tibet. In addition,
using ultra-fine spatio-temporal resolution can increase the financial
cost of SM management, and therefore, is not of great significance for
the high-quality development of livestock husbandry in Tibet. On the
contrary, moderate spatio-temporal resolution (e.g., 1 km × 1 km,
1 month) in SM monitoring can ensure the high-quality development
of livestock husbandry in Tibet. 2) Grazing areas constitute one of the
main land use types for Tibetan grassland systems. Tibet is vast and
sparsely populated (Tibet covers about one-eighth of China’s total
land area, with a population of about 3.51 million). As grassland
productivity is generally relatively low in Tibet, 100 ha (1 km × 1 km)

FIGURE 1
Sampling points.
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of grassland is often not enough to support the grazing activities of a
grazing family. A grazing family can often have more than one 100-ha
grasslands. Therefore, grazing activities will not be limited to one 100-
ha area. Grazing behaviors, such as rotating grazing areas, can reduce
the impacts of soil drought on grassland productivity and grazing
activities. 3) About 13% of the total grassland area cannot be used for
grazing activities in Tibet.

We collected fresh soil samples and other related field works in
2011, 2013–2018 and 2020. We collected 280 and 206 fresh soil
samples at the depths of 0–10 and 10–20 cm in non-grazing areas,
and 275 and 218 fresh soil samples at the depths of 0–10 and

10–20 cm, respectively, in grazing areas. At each sampling site,
three to five soil quadrats were randomly arranged within 1 km ×
1 km. The size of each soil quadrat was 50 cm × 50 cm.Within any one
50 cm × 50 cm quadrat, we used a soil auger with a diameter of about
4 cm to collect fresh soil samples. Five auger-collected fresh soil
samples were mixed into a fresh soil sample for any one 50 cm ×
50 cm quadrat. Then, we weighed and recorded the aluminum boxes
using a balance with an accuracy of 0.01 g in the field. After loading
fresh soil samples into aluminum boxes, we weighed and recorded the
total weight of the aluminum boxes and the fresh soil samples using
the same balance. Then, all the aluminum boxes containing fresh soil

FIGURE 2
Relationships between simulated and observed potential soil moisture (SMp) at the depth of 0–10 cm for (A) random forest, (B) generalized boosted
regression, (C) multiple linear regression, (D) artificial neural network, (E) generalized linear regression, (F) conditional inference tree, (G) eXtreme gradient
boosting, (H) support vector machine and (I) recursive regression tree, respectively. The solid lines indicate the linear fitted lines between simulated and
observed soil moisture. All the linear regressions were significant at p < 0.05. The intercepts were constrained to pass through zero.
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samples were taken back to the laboratory and oven-dried at 105°C for
48 h (Sun et al., 2021). After fresh soil samples were oven-dried, we
weighed and recorded the total weight of the aluminum boxes and the
oven-dried soil samples using the same balance. We calculated SM
based on the weight of the aluminum boxes, the total weight of the
aluminum boxes and the fresh soil samples, and the total weight of the
aluminum boxes and the oven-dried soil samples. Observed SMp was
1.05%–51.67%, and 1.13%–60.11% at the depths of 0–10 and
10–20 cm, respectively. Observed SMa was 0.33%–36.73%, and
0.86%–27.49% at the depths of 0–10 and 10–20 cm, respectively.

2.2 Statistical analyses

We randomly selected 30 groups of temperature, precipitation,
radiation, NDVI and SM data from the 280 and 206 groups in non-
grazing areas and 275 and 218 groups in grazing areas at the depths
of 0–10 and 10–20 cm, respectively. These 30 groups data were used
to validate the accuracy of the SMmodels based on four parameters
(i.e., linear slope, relative bias, R2: determination coefficient, RMSE:
root-mean-square error) (Fu et al., 2011; Han et al., 2022b; Tian
and Fu, 2022). When we conducted the linear regressions between

FIGURE 3
Relationships between simulated and observed actual soil moisture (SMa) at the depth of 0–10 cm for (A) random forest, (B) generalized boosted
regression, (C) multiple linear regression, (D) artificial neural network, (E) generalized linear regression, (F) conditional inference tree, (G) eXtreme gradient
boosting, (H) support vector machine and (I) recursive regression tree, respectively. The solid lines indicate the linear fitted lines between simulated and
observed soil moisture. All the linear regressions were significant at p < 0.05. The intercepts were constrained to pass through zero.
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simulated and observed SM, constraining the intercept to go
through the origin, following the protocol of previous studies
(Fu et al., 2011; Han et al., 2022b; Tian and Fu, 2022). The
closer the slope and the R2 are to 1, the higher the accuracy of
constructed SM model is. The lower RMSE and absolute value of
relative bias are, the higher the accuracy of constructed SM model
is. Nine algorithms (i.e., random forest, generalized boosted
regression, multiple linear regression, artificial neural network,
generalized linear regression, conditional inference tree, eXtreme
gradient boosting, support vector machines and recursive

regression trees) were used to estimate SM in this research
(Supplementary Tables S1, S2). The packages used in this study
also included the randomForest, rpart, stats, e1071, gbm and
rminer packages (Freund and Schapire, 1997; Breiman, 2001;
Cortez, 2010; Han et al., 2022b; Tian and Fu, 2022). Both the
gbm and gbm.perf functions of the gbm package were used to
conduct generalized boosted regression models of SM. The
gbm.perf function optimized the trees used in the generalized
boosted regression SM models. All the statistical analyses were
performed using R version 4.1.2.

FIGURE 4
Relationships between simulated and observed potential soil moisture (SMp) at the depth of 10–20 cm for (A) random forest, (B) generalized boosted
regression, (C) multiple linear regression, (D) artificial neural network, (E) generalized linear regression, (F) conditional inference tree, (G) eXtreme gradient
boosting, (H) support vector machine and (I) recursive regression tree, respectively. The solid lines indicate the linear fitted lines between simulated and
observed soil moisture. All the linear regressions were significant at p < 0.05. The intercepts were constrained to pass through zero.
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3 Results

3.1 Main parameters of the nine algorithms

Among the constructed recursive regression tree, random
forest, and multiple linear regression models, random forest
models had the highest abilities in explaining the SM variation,
but the multiple linear regression models had the lowest abilities in
explaining the SM variation (Supplementary Tables S1, S2). Among
the constructed random forest, generalized boosted regression and

support vector machine models, the generalized boosted regression
models had the greatest trees, but support vector machine models
had the lowest support vectors (Supplementary Table S1). The
error values among the conditional inference tree, artificial neural
network, generalized linear regression and eXtreme gradient
boosting models were comparable (Supplementary Table S2).
The error values of the constructed eXtreme gradient boosting
models for SMp at 10–20 cm depth and SMa at 0–10 and 10–20 cm
depths were greatest (Supplementary Tables S2). The error values
of the constructed conditional inference tree models for SMp at

FIGURE 5
Relationships between simulated and observed actual soil moisture (SMa) at the depth of 10–20 cm for (A) random forest, (B) generalized boosted
regression, (C) multiple linear regression, (D) artificial neural network, (E) generalized linear regression, (F) conditional inference tree, (G) eXtreme gradient
boosting, (H) support vector machine and (I) recursive regression tree, respectively. The solid lines indicate the linear fitted lines between simulated and
observed soil moisture. All the linear regressions were significant at p < 0.05. The intercepts were constrained to pass through zero.
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0–10 cm depth and SMa at 0–10 and 10–20 cm depths were lowest
(Supplementary Tables S2).

3.2 Accuracy evaluation for the nine
algorithms

The slopes between simulated SM based on the eXtreme gradient
boosting algorithm and observed SM were the most far away from one
among the nine algorithms (Figures 2, 3, 4, 5). The simulated SM based
on the random forest algorithm explained the most SM variation at
0–10 cm depth among the nine algorithms (Figures 2, 3, 4, 5). The
simulated SM based on the random forest algorithm and generalized
boosted regression explained the more SM variation at 10–20 cm depth
than the other seven algorithms (Figures 2, 3, 4, 5). Both the absolute
values of relative bias, and RMSE values between the simulated SM
based on the eXtreme gradient boosting algorithm and the observed SM
were the largest among the nine algorithms (Table 1). In contrast, the
absolute values of relative bias between the simulated SMp based on the
random forest algorithm and the observed SMp were the lowest among
the nine algorithms (Table 1). Similarly, the absolute values of relative
bias between the simulated SMa based on the random forest algorithm
and the observed SMa at 0–10 cm depth were the lowest among the nine
algorithms (Table 1). In contrast, the absolute values of relative bias
between the simulated SMa based on the generalized boosted regression
and the observed SMa at 10–20 cm depth were the lowest among the
algorithms (Table 1). The RMSE values between the simulated SM based

on random forest algorithm and the observed SM were the lowest
among the nine algorithms (Table 1).

4 Discussion

Besides the NDVI, there are several other variables (e.g., NDMI:
normalized difference moisture index, slope, aspect or topographic
position index) that rely on remote sensing technology. However, we
only combined the NDVI and three meteorological variables to simulate
SMa in this study. The reasons for this are as follows.We can download the
NDVI product for free, which is not the case for every variable (e.g., NDMI
derived from near-infrared and short-wave infrared reflectance). Although
the NDVI may suffer from saturation effects, this phenomenon is not
common in the grassland system regions of Tibet (Wang et al., 2015; Fu
and Shen, 2017; Fu et al., 2019; Han et al., 2022b; Fu et al., 2022; Tian and
Fu, 2022), especially for the sampling sites in this study (the maximum of
NDVI value was 0.8016). Although slope, aspect, longitude, latitude and
elevationmay be correlatedwith SM (Sun et al., 2022; Zhang and Fu, 2022),
these variables do not change, at least not in the short-term, and may not
even change at all. Thus, they are less able to indicate temporal variation
(e.g., inter-annual variation and seasonal variation) in SM. Multiple years
of SM data may have been collected at the same sampling point in this
study. Moreover, these four independent variables (i.e., temperature,
precipitation, radiation and NDVI) can estimate ≥ 87% of the SM
variation based on random forest (Supplementary Table S1). The
constructed random forest SMa models using air temperature,

TABLE 1 The relative bias (%) and RMSE values between simulated and observed SM (n = 30).

Parameters Algorithms SMp SMa

0–10 cm 10–20 cm 0–10 cm 10–20 cm

Relative bias Random forest −3.45 −2.88 1.02 −1.91

Generalized boosted regression −6.61 −3.77 3.05 −0.98

Multiple linear regression −14.20 −21.07 4.66 9.15

Artificial neural network −14.20 −21.07 4.66 9.15

Generalized linear regression −15.90 −13.18 7.85 8.34

Conditional inference tree −8.40 −11.54 −4.17 13.27

eXtreme gradient boosting −50.60 −52.55 −50.18 −46.29

Support vector machine −10.36 −20.58 3.15 2.72

Recursive regression tree −12.76 −6.15 −5.34 13.70

RMSE Random forest 2.16 2.98 1.99 2.67

Generalized boosted regression 3.42 3.18 2.44 2.72

Multiple linear regression 7.44 7.92 4.79 4.09

Artificial neural network 7.44 7.92 4.79 4.09

Generalized linear regression 8.84 8.22 5.38 3.80

Conditional inference tree 7.18 6.93 3.36 4.26

eXtreme gradient boosting 9.85 8.68 6.55 5.55

Support vector machine 7.40 6.25 3.50 3.24

Recursive regression tree 7.64 6.12 2.79 4.21
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precipitation, radiation and the NDVI had adequate predicted accuracies
(RMSE ≤ 2.67, absolute value of relative bias ≤ 1.91%) (Table 1).

Our finding was in accordance with some previous studies which
demonstrated that random forest models had the better
performance than other models (Wang et al., 2022a; Das et al.,
2022; Kisekka et al., 2022). For example, the correlation coefficient
(R = 0.71) between the constructed SM from the random forest
models and observed SM was greater than that (R = 0.55) between
the constructed SM from the geostatistics technique models and
observed SM for the Maqu area (Tong et al., 2021). This
phenomenon may be due to their different model parameters and
algorithms (Han et al., 2022b; Tian and Fu, 2022). For example, both
random forest and support-vector machine provide some users-
adjusted model parameters, but multiple linear regression does not
provide (Han et al., 2022b; Tian and Fu, 2022). The predicted
accuracies of SM estimation based on the constructed random
forest models in this study were no lower than those found in
earlier studies performed on (Zeng et al., 2015; Bai et al., 2017; Deng
et al., 2018; Tong et al., 2021; Wu and Wen, 2022) and beyond
(Zormand et al., 2017; Ma et al., 2020; Yuan et al., 2020; Zhang et al.,
2022a; Wang et al., 2022c; Jarray et al., 2022; Manninen et al., 2022;
Zeyliger et al., 2022) Tibetan Plateau. For example, an earlier study
demonstrated that SM at the depth of 0–10 cm, according to the
global land data assimilation system (GLDAS) Noah, can only
explain about 71% of the variation in observed SM at the depth
of 0–10 cm in Naqu, and the RMSE values between the GLDAS Noah
and observed SM were 4.47–5.03 (Chen et al., 2021a). The AMSR2,
SMAP, GLDAS-Noah and ERA5 SM can only explain < 85% of the
variation in observed SM on Tibetan Plateau (Li et al., 2022).
Simulated SM from data assimilation of multisource remote
sensing can only explain about ≤ 75% of the variation in
observed SM on Tibetan Plateau (Chen et al., 2021b). Estimated
SM based on the TVDI method can only explain < 71% of the
variation in observed SM on Tibetan Plateau (Yang et al., 2017).
Estimated SM based on the constructed artificial neural network
model only explained ≤ 80% of the variation in observed SM on
Tibetan Plateau (Cui et al., 2016; Cui et al., 2019), and only explained
about 37% of the variation in observed SM in the Xiliaohe River
Basin (Guo et al., 2022). Estimated SM based on the random forest
models can only explain < 65% of the variation in observed SM at the
global scale (Lei et al., 2022). Estimated SM based on the extreme
gradient boosting regression, CatBoost gradient boosting regression,
random forest regression and support vector machine can explain
about 89%, 79%, 37% and 49%, respectively, of the variation in
observed SM in the cropland area of Western Australia (Nguyen
et al., 2022). Therefore, the constructed random forest can be used to
monitor SM changes under the disturbances of climate change and
human activities, at least for Tibetan grassland systems.

Since the data used in this study were only obtained from
Tibet, it means that when the models constructed in this study
were extrapolated to the regions outside Tibet, it needed to be
careful, or it needed to be further checked for accuracy. Therefore,
we need to further carry out research in areas outside Tibet.
Moreover, the uncertainty of NDVI data (Decuyper et al., 2020;
Shen et al., 2020; Shen et al., 2022) may also cause some
uncertainties for the models of SM constructed by this study.
The probable spatial-temporal mismatch between dependent and
independent variables may also result in some uncertainty (Han
et al., 2022b; Tian and Fu, 2022).

5 Conclusion

In summary, our study was the first to attempt to validate that the
use of climate data and the NDVI to estimate the variation in observed
SM in Tibetan grassland systems at two depths of 0–10 cm and
10–20 cm based on nine algorithms. The climate data utilized to
estimate SMp variation included air temperature, precipitation and
radiation. Air temperature, precipitation, radiation and the NDVI
were used to estimate SMa variation. The efficiencies of the nine
algorithms in estimating SM variation varied. Overall, the random
forest models had the strongest ability to estimate SM variation. In
contrast, the eXtreme gradient boosting models had the worst ability
to estimate SM variation. About 94%–99% of the variation in observed
SM can be explained by the simulated SM based on the random forest
models. The slopes between the simulated SM based on random forest
models and observed the SM were 0.92–0.99. The RMSE values
between the simulated SM based on the random forest models and
the observed SM were ≤ 2.98. In contrast, the RMSE values between
the simulated SM based on the eXtreme gradient boosting models and
the observed SM were ≥ 5.55. The absolute values of relative biases
between observed SM and simulated SM based on the random forest
models were ≤ 3.45%. In contrast, the absolute values of relative biases
between observed SM and simulated SM based on the eXtreme
gradient boosting models were ≥ 46.29%. Thus, climate data and
the NDVI cannot always be used to estimate the variation in observed
SM, depending on the algorithms chosen. The constructed random
forest models of SMp using air temperature, precipitation and
radiation, and the constructed random forest models of SMa using
air temperature, precipitation, radiation and NDVI can be used to
solve several ecological and environmental problems related to SM
(e.g., the impacts of climate change on plant productivity and soil
carbon pool due to variation in SM), at least for Tibetan grassland
systems.
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