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Water resources are essential for agriculture. In the spatial layout of agricultural
production, quantitatively identifying the spatial differences in water resource
conditions, including precipitation and irrigation water supply factors, is necessary.
Here, a water resource suitability index for agricultural production (WRSIA) was
constructed for agricultural development using irrigation water supply convenience
(IWSC) and precipitation conditions. Considering Lhasa as the study area, water
resource suitability index for agricultural production was calculated on a 100m grid
scale, and the spatial distribution relationship between water resource suitability index
for agricultural production and cultivated land was analyzed using geographically
weighted regression (GWR). The results showed that irrigation water supply
convenience severely restricted agricultural production in Lhasa, and the high water
resource suitability index for agricultural production values were mainly distributed in
the valleys of the Lhasa River and its tributaries. Moreover, 47.7% of the cultivated land
wasdistributed in 5%of the areahaving thehighestwater resource suitability. According
to geographically weighted regression, the cultivated land area and water resource
availability were strongly correlated (R2 = 0.904). The distribution of the cultivated land
waswell explained bywater resource suitability index for agricultural production, which
could describe the differences in water resource suitability for agricultural production.
Furthermore, the suitability of agricultural production was better evaluatedwhenwater
resource suitability index for agricultural productionwascoupledwith the land resource
suitability index. Overall, water resource suitability index for agricultural production
showedhigh applicability in Lhasa andother regions, thereby providing a scientific basis
and technical support for the spatial layout of agricultural production.
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1 Introduction

Water is an essential resource for agricultural production and plays an important role in
agricultural development (Wienhold et al., 2000; Cao et al., 2018). Both non-irrigated and
irrigated agricultural lands require water. Particularly, non-irrigated farmlands require sufficient
precipitation to ensure crop growth, whereas irrigated lands require needs suitable water supply
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conditions. The contradiction of agricultural water use has become
increasingly prominent and become a constraint for agricultural
production in some areas (Li, 2019; Shi et al., 2016). Developing
methods to measure the association between the sustability of water
resource conditions and agricultural production and to optimize the
spatial layout of agricultural production according to the suitability
conditions of water resources has become an increasing concern of
having scientific and practical significance (Joerin et al., 2001; Chen
et al., 2010; Ozkan et al., 2020).

Water resource suitability for agricultural production was
initially studied by assessing agricultural production conditions
in agricultural zones. In the 1930s, Soviet scholars first proposed
agroclimatic zoning and conducted agroclimatic zoning by
identifying and analyzing the most important climatic
indicators for crop growth and development (Tian et al., 2008).
In the 1960s, Japan conducted agricultural zoning based on the
geographical zoning of statistical agricultural and forestry land,
areal agricultural types, administrative regions, natural conditions,
and production characteristics (Guo, 1989; Zhang et al., 2007). In
China, integrated agricultural regionalization was studied from the
1950s to the 1960s using indicators, such as precipitation and
dryness, to classify dry and wet partitions as the basis for
agricultural regionalization (Huang, 1958; Chen, 1979; Shen
et al., 1982; Shen and Li, 1983). Extensive climate resource
surveys and agricultural climate zoning studies were conducted
from the 1970s to the 1980s. Additionally, the Third National
Agroclimatic Zoning was conducted from 1998 to 1999 by the
China Meteorological Administration (Li, 1988; Zhang et al., 2009;
Tao and Chen, 2014). In terms of indicator evaluation methods,
crop production water requirements and precipitation processes
were coupled and analyzed. Yang et al. (2005) constructed a water
balance table simulation to assess the crop water requirement
considering monthly precipitation, soil water, and deficit
processes. Caldana et al. (2019) conducted agroclimatic risk
zoning of avocados in the Paraná River Basin, Paraná State,
Brazil, based on precipitation, water balance, and other
conditions. Moreover, Zhang et al. (2022) proposed a stochastic
simulation model by integrating the Monte Carlo, Copula and
Markov process (MCMP-Copula) for agricultural water scarcity
risk assessment based on indicators, such as crop water
requirement and adequate precipitation. Masupha et al. (2016)
measured the effect of drought on rainfed maize production in the
Luvuvhu River Basin using the water demand satisfaction index.
Furthermore, the influence of precipitation and temperature on
agricultural development has also been widely studied previously
(Henseler et al., 2009; Falloon and Betts, 2010; Silva et al., 2013;
Elliott et al., 2014). Several complex factors affect agricultural
production; therefore, many scholars have developed the
framework of the indicator system based on the AHP model
(Analytic Hierarchy Process Model) to assess the suitability of
water resources for agricultural production (Ceballos Silva et al.,
2003; Akinci et al., 2013; Bozdag et al., 2016; Yalew, 2016; Akpoti
et al., 2019; Everest et al., 2021; Al-Hanbali et al., 2022; Shaloo
et al., 2022). Although the analysis method based on indicator
weights has a sizeable subjective factor, some scholars use machine
learning models, such as random forest, to estimate the relative
weights of the selected evaluation indicators (Taghizadeh-
Mehrjardi et al., 2020; Singh R. et al., 2022).

Water resources suitability studies are an essential basis for
agricultural production layout and have been widely used in
national and basin-wide agricultural development planning (Zolekar
and Bhagat, 2015; Aldababseh et al., 2018; Hagos et al., 2022; Roy et al.,
2022). Within watersheds, water resource suitability is also an
important factor influencing the layout of agricultural development.
In China’s ongoing Territorial Spatial Planning, a high-precision water
resource suitability assessment is required to reallocate agricultural,
urban and ecological spaces on a grid scale. (Feng et al., 2018; Zhang
et al., 2020; Li et al., 2021). However, most of the commonly used water
resources indicators are statistical data, which cannot describe the
differences in water resources conditions within a region and cannot
meet the high precision requirements of Terrestrial Spatial Planning (Li
et al., 2021; Liu and Zhou, 2021; Battisti et al., 2022). In some studies,
water source distance is usually used to characterize the accessibility of
irrigation water and to assess the water resource suitability for
agricultural production (Lane, 2010; Wang, 2018; Shen et al., 2020;
Hsu et al., 2021; Zhu et al., 2022). However, the distance to the water
source does not equal to irrigation water accessibility. As shown in
Figure 1, the optimal water supply path from water source A to P1 may
be the curve s2 instead of the straight line s1, because s2 has fewer hills.
Furthermore, the water supply path s3 from B may be better than
s2 from A. Moreover, the irrigation water accessibility of Point P2 is
better than that of Point P1, even though P2 is linear and far from the
river source.

Thus, Lhasa City, which has a complex terrain and mainly been
dominated by irrigated agricultural production, was selected as the
study area. In this study, a framework for evaluating the suitability of
water resources, including the convenience of water supply, was
constructed to assess the water accessibility and suitability for
agricultural production. Both distance to the water source and
topographical influences in the water supply path were
considered. Subsequently, the supporting capacity of irrigation
water supply conditions and precipitation for agricultural
production was comprehensively measured. The results provide a
scientific basis for agricultural production in the territorial spatial
planning of Lhasa and a reference for the layout of agricultural
production in other areas with complex terrain.

2 Materials and methods

2.1 Study area

Lhasa City in Tibet, China, covers an area of approximately
30,000 km2. The administrative divisions of Lhasa include three
districts (Chengguan, Duilong Deqing, and Dazi Districts) and five
counties (Linzhou, Damxiong, Nimu, Qushui, and Mozhugongka
Counties). The average elevation of Lhasa is 4,852 m, with relatively
higher elevation in the north than in the south. Lhasa mainly has a
mountainous terrain, except for some river valleys and the northern
Dangxiong Basin (Figure 2). The annual average precipitation is
approximately 420 mm, which is mainly concentrated during
June–September. The region is mostly located in the Yarlung
Zangbo River Basin, and only a small part in the north belongs
to the Namtso Lake Internal flow region. Themain rivers include the
Lhasa River and its tributaries (Sangqu, Wululongqu, Xuerong
Zangbo, Mozhumaqu, Pengboqu, and Duilongqu Rivers) and
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Nimumaqu River, a tributary of the Yarlung Zangbo River. The
Lhasa River, which is the primary water source in Lhasa, is an
important tributary of the Yarlung Zangbo River, with a total length
of 495 km, drainage area of 32,500 km2, and an average annual flow
of 287 m3/s.

The land use types in Lhasa are mainly grassland and forest, and
artificial ecosystems, such as cultivated land and construction land,
comprise a relatively small proportion (Figure 3). Grasslands, which
account for approximately 70% of the city’s total area, are mainly
distributed in the plateau valleys and mountains of medium elevated
and highest. Grasslands are followed by forests dominated by natural
shrubland and mainly distributed in Linzhou and Mozhugongka

Counties. The cultivated land area covers 61,824 ha, accounting for
2.1% of the total area. Owing to insufficient precipitation, the cultivated
land in Lhasa includes mainly includes irrigated farmland, with a total
area of 54,396 ha, whereas the remaining 7,428 ha includes non-
irrigated farmlands. The irrigated farmlands are mainly distributed
in the valleys of the Lhasa, Nimumaqu, Duilongqu, Mozhumaqu rivers,
and other rivers, whereas the non-irrigated cultivated lands are
dispersed around the irrigated cultivated land. Furthermore, rivers,
which are the main water source for agricultural irrigation, are
abundant in Lhasa. The average annual water resources comprise
approximately 7.2 billion m3, with 8,600 m3 per capita and
116,000 m3/ha of cultivated land, which meet the agricultural

FIGURE 1
Difference between water source distance and irrigation water accessibility.

FIGURE 2
Topography and river system map of Lhasa.
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requirements. However, engineering conditions limit Lhasa’s
agricultural irrigation supply, indicating that the restrictions on
water resources are mainly spatial rather than quantitative.

Lhasa City is one of themost suitable regions for human activities in
Tibet; particularly, agricultural production in this region plays an
important role in ensuring regional food security. Given the large
population, the scale and spatial layout of agricultural production
have been gaining attention. Irrigation convenience is a limiting
factor for agricultural development. However, conventional
indicators, such as distance of the water supply source, cannot
represent the spatial differences because several factors other than
the distance affect convenience in mountainous areas. Therefore,
identifying new indicators that characterize the spatial differences in
water resource suitability for agricultural production in Lhasa is
necessary to provide a scientific basis for developing regional
agricultural production layouts.

2.2 Data sources

A land use map with a 1:10,000 scale was obtained from the Second
National Land Survey conducted in 2018. Precipitation and
evapotranspiration data in a 1,000 m grid and digital elevation
model (DEM) data in a 30 m grid were downloaded from the
Resource and Environment Science and Date Center, Chinese
Academy of Science (https://www.resdc.cn). The details of the data
used in this study are listed in Table 1. The data were resampled to a
100 m grid in ArcGIS using a bilinear interpolation algorithm.

2.3 Methods

The Water Resource Suitability Index for Agricultural
Production (WRSIA) model was constructed. It consists of two
components: precipitation supporting capacity and IrrigationWater
Supply Convenience (IWSC). Precipitation supporting capacity
refers to the ability of precipitation conditions to support rain-
fed agriculture and is assessed by the magnitude of precipitation.
IWSC characterizes the suitability of water resources for the
development of irrigated agriculture and is assessed using
distance from potential water supply sources and lift elevation, as
measured using the model, as shown in Figure 4.

2.3.1 Runoff model construction and river network
extraction

In order to identify potential water supply sources, a hydrological
model needs to be constructed for flow simulation. The runoff of each
grid was calculated by subtracting the actual evaporation data from
precipitation data. The actual evaporation was estimated using the
formula (Zhang et al., 2001; Zhang et al., 2004) that is commonly used
in areas where hydrological information is lacking, as shown below:

E
P
� 1 + ω E0

P

1 + ω E0
P + E0

P( )−1 (1)

Where, E is the actual evapotranspiration, p is precipitation, E0 is
potential evapotranspiration, and ω is the plant available water
coefficient.

FIGURE 3
Land use map of Lhasa City.
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A 100 m grid scale runoff model was constructed for Lhasa.
Potential water sources for Lhasa’s agricultural water supply were
extracted from the DEM depression filling process, slope aspect
analysis, flow accumulation, and river network extraction. The
results of runoff per unit area calculated by Zhang’s formula show
the characteristics of high runoff in the east and low runoff in the west

(Figure 5A), which is consistent with the actual situation of Lhasa city
(Sun et al., 2019; Cai et al., 2021). The multi-year average yield flow in
Lhasa City obtained from the model result statistics is 6.9 billion m3,
which has an error of 4.2% with the observed value, and this error is
acceptable for the extracted river network. Moreover, a field survey of
Lhasa’s agricultural water supply sources was conducted to determine

TABLE 1 Principal data sources in this study.

Data Resolution Source Date

Land use type 1:10,000 National Land Survey 2018

Digital elevation model 30 m Resource and Environment Science and Date Center, Chinese Academy of Science (https://www.resdc.
cn/)

2007

Precipitation and
evapotranspiration

1,000 m Resource and Environment Science and Date Center, Chinese Academy of Science (https://www.resdc.
cn/)

1980-
2015

FIGURE 4
Workflow chart.
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the selection standard for primary and secondary agricultural water
supply sources. The corresponding extraction results are shown in
Figure 5B. The primary water source referred to the water source with
the highest degree of water supply security that met the irrigation
requirements of large scale irrigation areas, and the selection standard
was rivers having an average annual runoff of more than 300 million
m3,. The secondary water sources referred to water sources with
relatively low water supply security that met the requirements of
small scale irrigated agriculture, and the selection standard was
rivers with an average annual runoff ranging between 10 million
and 300 million m3. According to the distribution of cultivated land,
the water supply source selection standard was reasonable.

2.3.2 Irrigation water supply convenience (IWSC)
IWSC represents the convenience of irrigation conditions for

agricultural development in irrigation areas, including irrigation
water supply accessibility, and water source reliability. Water supply
accessibility describes the magnitude of the cost of water supply and
its affordability. This is determined by two factors, namely, the
distance to the water supply source and the height of the required
lift. The richer the water resources of the river water sources, the
higher the degree of water supply security, and the more suitable the
area is for the development of irrigated agriculture (Li, 2022). In this
study, the level of reliability of the irrigation water sources was
mainly distinguished based on the magnitude of river flow.

The convenience index of the irrigation water supply was
calculated as follows:

IP � 1 − ∑i dPi

DPmax
+ ∑i hPi
HPmax

( ) (2)

IS � 1 − ∑j dSj

DSmax
+ ∑j hSj
HSmax

( ) (3)

IWSC � Max 0.6 + 0.4 × IP , 0.4 + 0.4 × IS( ) (4)

Where, i and j refer to the points on the optimal water supply
path, starting from the primary and secondary water supply sources,
and simulated by the path distance module in ArcGIS. IP and IS
refer to the irrigation water supply accessibility of the primary and
secondary water sources, respectively. When IP and IS are <0, the
area does not have irrigation water supply conditions, and the value
is 0. dPi and hPi refer to the distance and water lifting height of
pathway point i, respectively, and DPmax and HPmax refer to the
maximum threshold distances of water diversion and the water
lifting height of agricultural production in large scale irrigation
areas, respectively. Furthermore, DPmax andHPmax were selected as
40 km and 60 m according to the irrigation agriculture survey in
Lhasa City. dSj and hSj refer to the distance and water lifting height
of pathway point j, and DSmax and HSmax are the maximum water
transfer distance (20 km) and water lifting height (20 m) endured by
agricultural production in small scale irrigation areas, respectively.
Within the potential irrigation water supply range of primary water
sources, the IWSC value range was 0.6–1, whereas it was 0.4–0.8 for
secondary water sources. Notably, areas without irrigation
conditions had a value of 0.

2.3.3 Water resource suitability index for
agricultural production (WRSIA)

WRSIA represents the suitability of water resources for
agricultural production. Considering the characteristics and
agricultural water use of water resources in Lhasa, WRSIA was
obtained by comprehensively evaluating precipitation and IWSC
using the following equations:

CP � MIN P/2000, 0.6( ) (5)
WRSIA � MAX CP , IWSC[ ] (6)

where CP is the supporting capacity of precipitation for agricultural
production. Areas with more abundant precipitation or higher

FIGURE 5
(A) Annual runoff yield per unit area, m3/km2; (B) potential water supply sources extracted by the runoff model.
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IWSC are more suitable for agricultural production; therefore the
highest values of CP and IWSC were taken as WRSIA. Natural
precipitation uncertainty is high and seasonal deficits in agricultural
water use can occur. Based on the field survey, the highest CP value
was determined to be 0.6, and the value is [0, 0.6] according to the
precipitation amount. In Lhasa City and the Tibetan Plateau region,
precipitation above 1200 mm is sufficient for agricultural
development; therefore, the CP index is taken as the maximum
value for areas above 1200 mm

2.3.4 Geographically weighted regression (GWR)
Brunsdon et al. (1996) built a GWR model that introduced the

spatial location of the data into regression coefficients. The local
estimator of the function was provided at each geographical
location, and the spatial non-stationarity of the regression
relationship was analyzed. Compared with the ordinary least
squares method, GWR is more effective for analyzing data with
spatial attributes (Lv and Zhen, 2010; Tang et al., 2012; Pang et al.,
2014; Liu et al., 2022; Xu et al., 2022). Therefore, GWR was selected
to analyze the correlation between cultivated land and WRSI. The
GWR model formula was as follows:

yi � β ui, vi( ) · xi + β0 ui, vi( ) + εi (7)
where yi is the dependent variable of the ith grid unit, xi is an
independent variable of the ith grid unit, (ui, vi) is the geographic
coordinate of the ith grid unit, β(ui, vi) is the regression coefficient of
the ith grid unit, β0(ui, vi) is the intercept term at grid unit I, and εi is
the random error term.

3 Results

3.1 WRSIA

According to the formula of irrigation water supply accessibility,
the path distance and accessibility indicators of each grid from the
primary and secondary water sources were measured using ArcGIS,
and the corresponding results are shown in Figures 6A, B,
respectively. High mountains and valleys dominated Lhasa, and
areas with better accessibility were concentrated in the river valleys.
The IWSC results are shown in Figure 6C. Irrigated agricultural land
(19.0% of the total area) was mainly concentrated in the middle and
lower reaches of the Lhasa River and tributary valleys, and the
Dangxiong Basin in the north. Some of the Lhasa River tributary
valleys had steep slopes on both sides; therefore, only narrow valleys
exhibited irrigation water supply conditions. Agricultural
production depending mainly on natural precipitation covered
the remaining 81% of the total area. Moreover, the supporting
capacity index of precipitation conditions for agricultural
production was calculated based on the mean annual
precipitation data (Figure 6D).

The WRSIA results are shown in Figure 7. The average value of
WRSIA in Lhasa was low (0.312). Owing to inadequate
precipitation in Lhasa, WRSIA was mainly determined by
IWSC. The better-suited areas were distributed in the valleys of
the Lhasa River and its tributaries, such as the Mozhumaqu,
Pengboqu, and Duilongqu Rivers, and the Dangxiong Basin
having a relatively flat terrain.

3.2 Relationship between WRSIA and
cultivated land

3.2.1 Spatial adaptability of WRSIA and cultivated
land

Figure 8 shows the double cumulative curve relationship
between WRSIA and cultivated land. Cultivated land was more
concentrated in areas with high WRSIA values, with 96.6% and
82.5% of the irrigated and non-irrigated cultivated land, respectively,
distributed in the top 20% of the WRSIA areas. Moreover, up to
81.1% and 49.1% of the irrigated and non-irrigated cultivated land,
respectively, were concentrated in the top 10% of the WRSIA areas,
accounting for 77.3% of the total cultivated land. Furthermore,
50.8% and 25.0% of the irrigated and non-irrigated cultivated
lands, respectively, were distributed in the top 5% of the WRSIA
areas, accounting for 47.7% of the total cultivated land. In summary,
WRSIA showed good spatial adaptability to cultivated land.
Therefore, WRSIA is a critical factor in determining Lhasa’s
agricultural production layout.

Table 2 shows the results of the cultivated land distribution in
different WRSIA ranges. In areas with <0.4 WRSIA, the proportion
of the cultivated land to the total land area was only 0.1%, which was
lower than that of the entire city (2.1%). With increasing WRSIA,
the cultivated land proportion increased. Among areas with WRSIA
values within [0.95, 0.99], the proportion of cultivated land reached
25.6%. Moreover, in the highest WRSIA interval [0.99, 1], the
cultivated land proportion decreased to 14.5% because of several
construction lands and wetlands. By excluding 39.9 km2 of
construction land and 235.66 km2 of wetland, the cultivated land
proportion in the [0.99, 1] interval was up to 28.0%.

3.2.2 Correlation analysis of WRSIA and cultivated
land by GWR

The study area was divided into 5,000 × 5,000 m fishing net
units, and the proportion of cultivated land andWRSIA in each unit
was measured. Figure 9 shows the correlation results between
WRSIA and cultivated land. Specifically, Figures 9A, B show the
spatial distribution of the regression coefficient and correlation
coefficient (r), respectively. The overall correlation was strong
(0.904). In the southern Lhasa River and its tributary valleys, the
regression coefficients were positive, and the correlation coefficients
were >0.6, thus, indicating a significant positive correlation. Thus,
WRSIA could strongly interpret the spatial distribution of cultivated
land. In the northern mountains and Dangxiong Basin, the
correlation was weak because cultivated land is sparse, and the
temperature could not meet the requirements of agricultural
production.

3.3 Coupling analysis with land resource
suitability

Agricultural production in Lhasa is restricted by topography,
such as high altitude and steep slopes, which are unsuitable for
agricultural production. We classified the suitability of slope and
elevation, conducted spatial superposition with WRSIA, and
analyzed the cultivated land density under different suitability
levels of water and soil resources; the corresponding results are
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shown in Tables 3, 4. The slope suitability level was divided into five
grades: highly suitable (0–2), moderately suitable (2–6), relatively
suitable (6–15), slightly suitable (15–25), and unsuitable (>25), and
the corresponding cultivated land proportions were 18.05%, 23.91%,
10.09%, 0.40%, and 0.00%, respectively, showing a decreasing trend
with increasing slope. Among them, the proportion of the cultivated
land in the highly suitable area was lower than that in the moderately
suitable area, and mainly wetlands and construction lands were
abundant. The proportion of the cultivated land increased with
WRSIA in each slope suitability level. For example, in the relatively
suitable slope area, the cultivated land proportion was 10.09% on an
average, whereas the proportions in the five WRSIA grades were
24.63%, 17.55%, 6.16%, 2.25%, and 1.54%, respectively. Similarly, in
each WRSIA grade, the cultivated land proportion decreased with
increasing slopes. For example, in the relatively suitable WRSIA

area, the average cultivated land proportion was 1.38%, whereas the
proportions in the four slope grades were 10.99%, 6.16%, 0.93%, and
0.00%, respectively, without a highly suitable slope area. Overall, the
coupling application of WRSIA and slope suitability appropriately
explained the spatial distribution of cultivated land.

Elevation is also an important factor affecting agricultural
production in the Qinghai-Tibet Plateau because lower
temperatures in high altitude areas limit crop growth (Xu et al.,
2022). According to the climatic conditions required for crops
growing in Lhasa, the elevation suitability for agricultural
production was divided into five grades: highly suitable
(<3,600 m), moderately suitable (3,600–3,900 m), relatively
suitable (3,900–4,200 m), slightly suitable (4,200–4,500 m), and
unsuitable (>4,500 m) and the respective cultivated land
proportions were 9.99%, 6.33%, 2.04%, 0.23%, and 0.02%,

FIGURE 6
(A) Irrigation water supply accessibility of primary water sources; (B) irrigation water supply accessibility of secondary water sources; (C) IWSC; (D)
supporting capacity of precipitation for agricultural production.
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respectively, indicating a decreasing trend with increasing elevation.
In each suitability elevation level, the cultivated land proportion
increased with WRSIA. For example, the average cultivated land
proportion in a relatively suitable elevation area was 2.04%, whereas
the ratios in five WRSIA grades were 14.11%, 7.56%, 2.61%, 0.71%,
and 0.20%, respectively. Similarly, in each WRSIA grade, the

cultivated land proportion decreased with increasing elevation.
For example, the average cultivated land proportion in a
moderately suitable WRSIA area was 5.88%, while the proportion
in highly suitable, moderately suitable, relatively suitable, slightly
suitable, and unsuitable elevation areas were 7.97%, 7.45%, 7.56%,
1.71%, and 0.20%, respectively. Thus, the coupling application of

FIGURE 7
Wrsia in Lhasa city.

FIGURE 8
Double accumulation curve of WRSIA and cultivated land.
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WRSIA and elevation effectively explained the spatial distribution of
cultivated land.

4 Discussion

The ecosystem of the Qinghai Tibet Plateau is highly sensitive to
anthropogenic activities and thus, it resources, environment, and spatial
suitability require increased attention. The suitability of agricultural
production and other anthropogenic activities is usually assessed by
land resources, water resources, vegetation, and temperature. Previous
studies have not considered water supply conditions; therefore, the
identification results of suitable areas are extensive, thereby, limiting
their application in agricultural development decision-making (You
et al., 2020; Chen, 2022; Xu et al., 2022). Furthermore, although some

studies have used water source distance to measure water supply
convenience, the spatial difference in water supply convenience has
not been effectively and accurately described (Xu et al., 2020). Figure 10
presents an enlarged map of WRSIA and cultivated land distribution.
High level WRSIA values were largely distributed in Lhasa and
Pengboqu River Valleys and sparsely distributed in other river
valleys having poor topographic conditions. The distribution of
cultivated land was consistent with the WRSIA distribution
characteristics (Figure 10). The results showed that WRSIA could
explain agricultural production conditions and was evidently
applicable in this region. Based on IWSC, WRSIA indicated whether
the water supply cost was within the acceptable range. In this study, the
water lifting height and water diversion distance, which determine the
water supply cost, were adopted for valleys with a steep slope. Therefore,
the WRSIA results could suitably describe the convenience of water

TABLE 2 Cultivated land distribution in different WRSIA ranges.

WRSIA Land
area
(km2)

Irrigated
cultivated land
area (km2)

Non-irrigated
cultivated land
area (km2)

Total
cultivated

land
area (km2)

Irrigated
cultivated land
proportion (%)

Non-irrigated
cultivated land
proportion (%)

Total cultivated
land

proportion (%)

[0, 0.4) 24,005.1 18.2 13.0 31.2 0.1 0.1 0.1

[0.4, 0.6) 780.7 6.2 4.5 10.8 0.8 0.6 1.4

[0.6, 0.8) 2,692.6 131.7 26.5 158.2 4.9 1.0 5.9

[0.8, 0.9) 579.1 95.2 10.2 105.4 16.4 1.8 18.2

[0.9, 0.95) 361.6 58.5 6.4 64.8 16.2 1.8 17.9

[0.95,
0.99)

643.6 155.3 9.4 164.7 24.1 1.5 25.6

[0.99, 1] 572.1 78.8 4.3 83.1 13.8 0.8 14.5

Total 29,634.8 544.0 74.3 618.2 1.8 0.3 2.1

FIGURE 9
Correlation analysis of cultivated land and WRSIA by GWR. (A) Regression coefficient; (B) correlation coefficient.
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resources for agricultural production than conventional factors, such as
water supply distance.

The constraints of water resources on agricultural production are
mainly reflected in three aspects: whether the quantity of water
resources is sufficiently abundant, whether the quality of water
resources can be used for agriculture, and whether the engineering
conditions for the development of irrigation are available. WRSIA
focuses on the issue of engineering conditions. The spatial layout of
agricultural production is an important research element in Territorial
Spatial Planning carried out in China in recent years. In the
mountainous regions of southern China, water resources are
abundant, but they cannot be used to irrigate the arable land located
halfway up the mountain. In the arid regions of Northwest China,
where land resources are abundant, and water resources are insufficient,
it is necessary to study areas that have low agricultural irrigation costs to
develop a reasonable agricultural layout plan. In these areas,WRSIA can
substantially improve the precision of evaluation and the accuracy of
results, and in fact, the model has been practically applied in different

areas with relatively good results. It is worth noting that indicators such
as topography, soil, and temperature are equally crucial in the layout of
agricultural production and need to be used along with WRSIA.

Regarding the availability of data, factors such as water
conservation sensitivity, meteorological disasters, and climate
change risks were excluded from the selection of indicators.
Agricultural production in some regions is strongly influenced by
the above factors and requires model correction. For example, some
arid areas need to consider the factor of groundwater, and some
areas need to incorporate the effect of the intra-annual distribution
of precipitation on agricultural production, etc.

5 Conclusion

Based on the convenience of irrigation water supply and natural
precipitation conditions, WRSIA was constructed in this study. Owing to
topographical conditions, only 19.0% of the land area in Lhasa exhibited

TABLE 3 Cultivated land proportions under different slope grades and WRSIA grades (%).

Slope

Highly
suitable (0–2)

Moderately
suitable (2–6)

Relatively
suitable (6–15)

Slightly suitable
(15–25)

Unsuitable
(>25)

Total

WRSIA Highly
suitable (0.8–1)

18.10 27.47 24.63 0.85 0.51 19.39

Moderately suitable
(0.6–0.8)

0.00 20.64 17.55 0.71 0.03 5.88

Relatively suitable
(0.4–0.6)

– 10.99 6.16 0.93 0.00 1.38

Slightly suitable
(0.2–0.4)

– 4.38 2.25 0.06 0.00 0.18

Unsuitable (0–0.2) – 6.93 1.54 0.18 0.00 0.07

Total 18.05 23.91 10.09 0.40 0.00 2.09

TABLE 4 Cultivated land proportions under different elevation grades and WRSIA grades (%).

Elevation

Highly
suitable

(<3,600 m)

Moderately suitable
(3,600–3,900 m)

Relatively suitable
(3,900–4,200 m)

Slightly suitable
(4,200–4,500 m)

Unsuitable
(>4,500 m)

Total

WRSIA Highly
suitable (0.8–1)

21.63 23.13 14.11 5.02 1.64 19.39

Moderately
suitable
(0.6–0.8)

7.97 7.45 7.56 1.71 0.20 5.88

Relatively
suitable
(0.4–0.6)

0.81 1.64 2.61 0.68 0.06 1.38

Slightly suitable
(0.2–0.4)

0.01 0.47 0.71 0.07 0.00 0.18

Unsuitable
(0–0.2)

0.13 0.22 0.20 0.04 0.01 0.07

Total 9.99 6.33 2.04 0.23 0.02 2.09
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good irrigation and water supply conditions. Moreover, the over-all
suitability of water resources for agricultural production was low
because of insufficient natural precipitation, with the average value of
the entire city being only 0.312. The statistical and spatial correlation
analysis between the cultivated land and WRSIA in Lhasa showed that
their spatial matching degree was relatively high. In the top 5%of the areas
having the highestWRSIA, 50.8%and 25.0%of the total irrigated andnon-
irrigated cultivated lands, respectively were concentrated, accounting for
47.7%of the city’s total land.Additionally, the correlation analysis based on
GWRshowed that the cultivated land andWRSIAwere strongly positively
correlated (R2 = 0.904) in valley areas having concentrated cultivated land.
On superimposing land resource elements (including slope and elevation),
we found that the coupled application ofwater resources and land resource
suitability explained the spatial distribution of cultivated land better.
Therefore, WRSIA constructed in this study could appropriately
represent the suitability of water resource conditions for agricultural
production in Lhasa and can provide scientific support for future
agricultural production planning in other Qinghai-Tibet Plateau regions.
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FIGURE 10
Partially enlarged view of (A) WRSIA and (B) cultivated land.
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