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Climate extremes have more far-reaching and devastating effects than the mean
climate shift, particularly on the most vulnerable societies. Ethiopia, with its low
economic adaptive capacity, has been experiencing recurrent climate extremes
for an extended period, leading to devastating impacts and acute food shortages
affecting millions of people. In face of ongoing climate change, the frequency and
intensity of climate extreme events are expected to increase further in the
foreseeable future. This study provides an overview of projected changes in
climate extremes indices based on downscaled high-resolution (i.e., 10 ×
10 km 2) daily climate data derived from global climate models (GCMs). The
magnitude and spatial patterns of trends in the projected climate extreme
indices were explored under a range of emission scenarios called Shared
Socioeconomic Pathways (SSPs). The performance of the GCMs to reproduce
the observed climate extreme trends in the base period (1983–2012) was
evaluated, the changes in the climate projections (2020–2100) were assessed
and the associated uncertainties were quantified. Overall, results show largely
significant and spatially consistent trends in the projected temperature-derived
extreme indices with acceptable model performance in the base period. The
projected changes are dominated by the uncertainties in the GCMs at the
beginning of the projection period while by the end of the century
proportional uncertainties arise both from the GCMs and SSPs. The results for
precipitation-related extreme indices are heterogeneous in terms of spatial
distribution, magnitude, and statistical significance coverage. Unlike the
temperature-related indices, the uncertainty from internal climate variability
constitutes a considerable proportion of the total uncertainty in the projected
trends. Our work provides a comprehensive insight into the projected changes in
climate extremes at relatively high spatial resolution and the related sources of
projection uncertainties.
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1 Introduction

There is unequivocal and overwhelming evidence for the
ongoing climate change. The projected 1.5°C increase in global
average temperature by 2050s poses risks to humans and
ecosystems (IPCC, 2022). The changing climate has manifested
itself in higher climate extremes events (Myhre et al., 2019;
Madakumbura et al., 2021). Climate extremes usually have
more devastating effects than the mean shift in the climate.
Expected increases in flash flood events following more
frequent and extreme precipitation events, or droughts as a
result of prolonged periods of extremely low precipitation are
situations that may cost countries a huge price (IPCC, 2022).
Extreme heat or cold waves have far-reaching socioeconomic and
mental effects on the most vulnerable societies (IPCC, 2022).
Since 2005, the world has witnessed 9 warmest years, and 2019 has
been recorded as one of the three warmest years since the records
have begun. This global phenomenon has significant implications,
particularly for the most vulnerable part of the world’s economy.
Kemp et al. (2022) suspect that, together with other global threats,
the changing climate may become catastrophic even at modest
levels of warming.

Ethiopia’s economy depends largely on agriculture and it is
considered to be among the countries that are most vulnerable to
climate extremes. The agricultural sector second contributes ~ 38%
to the GDP (Gross Domestic Product) of the country but employs
67% of the population and contributes about 86% of export earnings
(Eshetu and Mehare, 2020; World Bank, 2022b; World Bank,
2022c). Moreover, the largely subsistence agriculture relies on
seasonal rains. The proportion of irrigated land was only 2.1% in
2018 (World Bank, 2022a) and agricultural mechanization was
below 1% (Berhane et al., 2017). Ethiopia has faced recurrent
climate extreme effects for a long period usually resulting in a
devastating impact and leaving millions in acute food shortage
(Kiros, 1991; Mohammed et al., 2018). The 2022 drought was
one of the worst in 50 years, leaving 2.2 million livestock dead
(FEWS NET, 2022). Considering the projected population of >
200 million by 2050 (World Bank, 2022d), the challenge of
comparable drought periods for the already vulnerable economy
would be enormous. Against this background, detailed
quantification of climate extremes is particularly relevant for
Ethiopia.

For the past climate, studies have documented consistent
increasing temperature trends both in mean and extremes in East
Africa in general (Gebrechorkos et al., 2019b; Muthoni et al.,
2019; Afuecheta and Omar, 2021) and Ethiopia in particular
(Gummadi et al., 2018; Gebrechorkos et al., 2019b; 2019a).
However, precipitation has been reported as inconsistent
across the region (Viste et al., 2013; Tierney et al., 2015;
Cattani et al., 2018; Gummadi et al., 2018). For instance,
Tierney et al. (2015) documented unusual drying of March-
May rainfall in East Africa during the past century.
Meanwhile, their assessment based on 23 CMIP5 models by
the end of the 21st century show largely increasing seasonal as
well as annual precipitation totals under high emission (RCP 8.5)
scenario (Tierney et al., 2015). Drying spring and summer
seasons have also been reported for southern Ethiopia. The
drying springs have affected most parts of the country (Viste

et al., 2013). However, local scale studies identified higher spatial
variability both in the observed and projected climate trends,
particularly for precipitation (Brown et al., 2017; Muthoni et al.,
2019; Alaminie et al., 2021; Bayable et al., 2021). High spatial
variability was also visible in past climate extremes (Cattani et al.,
2018; Esayas et al., 2018; Ademe et al., 2020; Gemeda et al., 2021;
Ali Mohammed et al., 2022; Birhan et al., 2022; Dendir and
Birhanu, 2022). Understanding the time evolution of extreme
climate events is of large interest for designing potential
adaptation options and informed decision-making (Kemp
et al., 2022). Ethiopia is characterized by diverse climate
regimes modulated by its complex topography exerting strong
elevation gradients (Diro et al., 2011; Van den Hende et al., 2021),
which require finer spatial resolution to produce relevant results
(El Kenawy et al., 2016).

The basic sources of projected climate data are the Global
Climate Models (GCMs) running on coarse spatial resolution
at > 70 × 70 km 2. The projected data are highly uncertain,
mainly due to the structural and parametrization differences
among the models (Murphy et al., 2004; Her et al., 2019; Lee
et al., 2021). Therefore, adaptation to climate extremes should be
based on multi-model-based simulation at high spatial
resolution taking into account several emission scenarios
(Fatichi et al., 2016). For Ethiopia, these GCM projections
were recently downscaled to 10 × 10 km 2 spatial resolution
for temperature and precipitation (Rettie et al., 2023). The
data were derived from the most current GCMs in the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
under three Shared Socioeconomic Pathways (SSPs) by
employing a statistical downscaling technique (Hamlet et al.,
2010; Maurer et al., 2010).

The present study provides an overview of observed and
projected changes in climate extremes indices derived from the
downscaled high-resolution daily climate data by Rettie et al. (2023).
For this, we compared the historical simulation of the
CMIP6 models and analyzed the temporal and spatial
distributions of projected changes. The skill of the individual
models in reproducing the observed trends of climate extremes
in the base period (i.e., 1983–2012) was evaluated, and the
uncertainties associated with the projected (i.e., 2020–2100)
trends were quantified.

2 Materials and methods

2.1 Climate data

The climate hazards group database provides free daily
climate data with a 5 × 5 km 2 spatial resolution with quasi-
global coverage (50°S–50°N, ftp://ftp.chg.ucsb.edu/pub/org/chg/
products/). Daily climate data is available for the study area
(Figure 1A) from CHIRPS (Climate Hazards Group InfraRed
Precipitation with Stations) for precipitation (Funk et al., 2015)
and from CHIRTS (Climate Hazards Group InfraRed
Temperature with Stations) for temperature (Verdin et al.,
2020) (Figures 1B–D). The data were generated in several
stages by blending satellite records and in situ station data
and are available since 1981 for precipitation and from
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1983 to 2016 for temperature. The data has been evaluated for its
ability to reliably reproduce the climatology and major
meteorological systems of Ethiopia (Dinku et al., 2018; Belete
et al., 2020; Taye et al., 2020; Kabite Wedajo et al., 2021; Malede
et al., 2022) and other regions (Zambrano-Bigiarini et al., 2017;
Saeidizand et al., 2018; Muthoni et al., 2019; Muthoni, 2020).

This work was conducted based on previously downscaled
climate projections covering the period of 2020–2100 from a list
of CMIP6 GCMs under three emission scenarios known as shared
socioeconomic pathways (SSPs) (Rettie et al., 2023). The data was
produced by applying a geospatial statistical downscaling technique
to downscale the original coarse spatial resolution (i.e., > 70 ×
70 km2) GCM outputs to 10 × 10 km2 spatial resolution covering
entire Ethiopia (3oN—15oN and 32oE—48oE). The data includes
projections of temperature and precipitation from 13 to
9 CMIP6 GCMs, respectively (Table 1). For a detailed
description of the downscaling procedure and evaluation see
there. In this study, we considered the downscaled climate
projections datasets under three SSPs. The selected SSPs are
SSP2-4.5, SSP3-7.0, and SSP5-8.5, which represent medium,

medium-high, and high-forcing scenarios based on middle-of-
the-road, regional rivalry, and fossil-fueled socioeconomic
development scenarios, respectively (O’Neill et al., 2017;
Meinshausen et al., 2020). The emission scenarios span a broad
range of CO 2 concentration, with radiative forcing level of
4.5 Wm −2 and 8.5 Wm −2 by 2100 for SSP2-4.5 and SSP5-8.5,
respectively (IPCC, 2021).

2.2 Climate extreme indices

Table 2 lists the 23 climate extreme indices investigated in
this study. The indices were among the 27 climate change
indicators which were developed by the Expert Team on
Climate Change Detection, Monitoring Indices (ETCCDMI)
and have been recommended by the World Meteorological
Organization (WMO) (Zhang et al., 2011). The R package
climdex.pcic (Pacific Climate Impacts Consortium (2020),
http://cran.r-project.org/web/packages/climdex.pcic/index.html)
was used to derive the climate indices at 10 × 10 km 2 grid

FIGURE 1
Maps of Ethiopia showing elevation (A), annual total precipitation in mm (B), and annual maximum (C) and minimum (D) temperatures based on
observation data (1982–2012).
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resolution covering entire Ethiopia (i.e., 3oN - 15oN and 32oE -
48oE). To assess the skill of the GCMs in reproducing the
observed climate extremes, the indices were calculated for a
common 30-year period for which CHIRPS and CHIRTS data
were both available. Hence, for each grid cell, the 23 climate
extreme indices (Table 2) were calculated for the observed climate
data (i.e., for the CHIRPS and CHIRTS data) and the historic
GCMs climate outputs for the common 30-year period
(i.e., 1983–2012). Similarly, the same climate extreme indices
were calculated for the projected climate period (i.e., 2020–2100)
for each GCM under each SSP. The indices were computed on
High-Performance Cluster bwUniCluster 2.0.

2.3 Evaluation of models’ skill

The performance of the GCMs in reproducing the observed
climate extremes was evaluated based on the Taylor diagram
(Taylor, 2001). Taylor diagram is a widely used tool to evaluate
how well a model matches observed climate states (Guo et al.,
2018; Rao et al., 2019; Li et al., 2021; Yang et al., 2021; Liu et al.,
2022). A Taylor diagram simultaneously visualizes three
summary statistics: the standard deviation (σ) of simulated
(Y) data normalized to that of the observed (X) data, the
correlation coefficient (r) between simulated and observed
data, and the centered root mean squared error (RMSE c)
between simulated and observed data (Table 3). For the
Taylor diagrams, we computed the model skills of climate
extreme indices over the area-averaged data across the entire
grid cells for 30 years (i.e., 1983–2012).

2.4 Trend estimation and test

We used the Mann-Kendall (MK) method (Mann, 1945;
Kendall, 1962; Pohlert, 2020) to test the trends in the respective
climate extreme indices for both the baseline climate and future
projections. The MK is a non-parametric test (i.e., the data does not
have to meet the normality assumption) and widely used method
because of its simplicity (Cattani et al., 2018; Esayas et al., 2018;
Afuecheta and Omar, 2021; Li et al., 2021; Simanjuntak et al., 2022).
The MK test determines the presence of monotonic (i.e., consistent)
increasing or decreasing tendency of data in a given time. The
magnitude of the trend is determined by using Sen’s slope estimator
(Sen, 1968) which is a non-parametric approach to estimate the
overall slope in a data series (Beyene et al., 2022; Malaekeh et al.,
2022; Pervin and Khan, 2022). All the MK tests and slope estimates
were computed using the “trend” R software package (Pohlert,
2020).

2.5 Partitioning sources of uncertainty in the
projected climate extremes

Climate change projections usually involve three main sources
of uncertainty, namely: uncertainty due to GCMs (M t), SSPs (S t),
and internal climate variability (V). Using the method proposed by
Hawkins and Sutton (2009); Hawkins and Sutton (2011), we
evaluated the projected climate extreme indices from the GCMs
(Table 1) under the three emission scenarios (SSPs) for the period
from 2020 to 2100. For the temperature-related indices, this gives a
total of 39 projections from the 13 GCMs (Nm = 13) and 3 SSPs

TABLE 1 List of GCMs and availability of data with respect to maximum (Tmax) and minimum (Tmin) temperatures and precipitation (Pr).

Model
name

Institution name Tmax Tmin Pr Resolution (lon.
by lat.)

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

✓ ✓ ✓ 1.9° × 1.3 °

ACCESS-
ESM1-5

Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of
Meteorology (BOM), Australia

✓ ✓ ✓ 1.9° × 1.2°

AWI-CM-1-
1-MR

AlfredWegener Institute, Helmholtz Centre for Polar andMarine Research, AmHandelshafen 12,
27570 Bremerhaven, Germany

✓ ✓ o 1.1° × 1.1 °

EC-Earth3-Veg EC-Earth-Consortium ✓ ✓ o 0.7° × 0.7 °

EC-Earth3 EC-Earth-Consortium ✓ ✓ o 0.7 ° × 0.7 °

GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory ✓ ✓ ✓ 1.3° × 1.0 °

INM-CM4-8 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5 °

INM-CM5-0 Institute for Numerical Mathematics ✓ ✓ ✓ 2.0° × 1.5 °

IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris 75252, France ✓ ✓ o 2.5° × 1.3 °

MIROC6 Japan Agency for Marine-Earth Science and Technology, Kanagawa 236–0001, Japan ✓ ✓ ✓ 1.4° × 1.4 °

MPI-ESM1-
2-HR

Max Planck Institute for Meteorology, Hamburg 20146, Germany ✓ ✓ ✓ 0.9° × 0.9 °

MPI-ESM1-
2-LR

Max Planck Institute for Meteorology, Hamburg 20146, Germany ✓ ✓ ✓ 1.9° × 1.9 °

MRI-ESM2-0 Meteorological Research Institute ✓ ✓ ✓ 1.1° × 1.1 °
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TABLE 2 List of ETCCDMI-defined precipitation and temperature extreme indices computed and evaluated in this study.

Label Index name Index definition Units

TN10p Cold nights Percentage of days when TN < 10 th percentile: Let TN ij be the daily minimum temperature on day i in period j
and let TN in 10 be the calendar day 10 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TN ij < TN in 10

%

TX10p Cold days Percentage of days when TX < 10 th percentile: Let TX ij be the daily maximum temperature on day i in period j
and let TX in 10 be the calendar day 10 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TX ij < TX in 10

%

TN90p Warm nights Percentage of days when TN > 90 th percentile: Let TN ij be the daily minimum temperature on day i in period j
and let TN in 90 be the calendar day 90 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TN ij > TN in 90

%

TX90p Warm days Percentage of days when TX > 90 th percentile: Let TX ij be the daily maximum temperature on day i in period j
and let TX in 90 be the calendar day 90 th percentile centred on a 5-day window for the period. The percentage of

time the period is determined where: TX ij > TX in 90

%

WSDI Warm spell duration Warm spell duration index: Annual count of days with at least 6 consecutive days when TX > 90 th percentile: Let
TX ij be the daily maximum temperature on day i in period j and let TX in 90 be the calendar day 90 th percentile
centred on a 5-day window for the period. Then the number of days per period is summed where, in intervals of at

least 6 consecutive days: TX ij > TX in 90

days

CSDI Cold spell duration Cold spell duration index: Annual count of days with at least 6 consecutive days when TN < 10 th percentile: Let
TN ij be the daily maximum temperature on day i in period j and let TN in 10 be the calendar day 10 th percentile
centred on a 5-day window for the period. Then the number of days per period is summed where, in intervals of at

least 6 consecutive days: TN ij < TN in 10

days

TXx Max TX Monthly maximum value of daily maximum temperature: Let TXx be the daily maximum temperatures in month
k, period j. The maximum daily maximum temperature each month is then: TX xkj = max(TX xkj)

°C

TXn Min TX Monthly minimum value of daily maximum temperature: Let TXn be the daily maximum temperatures in month
k, period j. The minimum daily maximum temperature each month is then: TX nkj = min(TX nkj)

°C

TNx Max TN Monthly maximum value of daily minimum temperature: Let TNx be the daily minimum temperatures in month
k, period j. The maximum daily minimum temperature each month is then: TN xkj = max(TN xkj)

°C

TNn Min TN Monthly minimum value of daily minimum temperature: Let TNn be the daily minimum temperatures in month
k, period j. The minimum daily minimum temperature each month is then: TN nkj = min(TN nkj)

°C

SU Summer days Number of summer days: Annual count of days when TX (daily maximum temperature) > 25°C. Let TX ij be daily
maximum temperature on day i in year j. Count the number of days where: TX ij > 25°C.

days

TR Tropical nights Number of tropical nights: Annual count of days when TN (daily minimum temperature) > 20°C. Let TN ij be
daily minimum temperature on day i in year j. Count the number of days where: TN ij > 20°C.

days

Rx1day Max 1-day precipitation Monthly maximum 1-day precipitation: Let RR ij be the daily precipitation amount on day i in period j. The
maximum 1-day value for period j are: Rx1day j = max (RR ij)

mm

Rx5day Max 5-day precipitation Monthly maximum consecutive 5-day precipitation: Let RR kj be the precipitation amount for the 5-day interval
ending k, period j. Then maximum 5-day values for period j are: Rx5day j = max (RR kj)

mm

SDII Simple daily intensity
Simple precipitation intensity index: Let RR wj be the daily precipitation amount on wet days, w (RR = 1 mm) in

period j. If W represents number of wet days in j, then: SDII j =
∑W

w�1RRwj

W

mm

R1mm Number of wet days Annual count of days when PRCP = nn mm, nn is a user defined threshold: Let RR ij be the daily precipitation
amount on day i in period j. Count the number of days where: RR ij = nnmm

days

R10 mm Heavy precipitation days Annual count of days when PRCP = 10 mm: Let RR ij be the daily precipitation amount on day i in period j.
Count the number of days where: RR ij = 10 mm

days

R20 mm Very heavy precipitation days Annual count of days when PRCP = 20 mm: Let RR ij be the daily precipitation amount on day i in period j.
Count the number of days where: RR ij = 20 mm

days

CDD Consecutive dry days Maximum length of dry spell, maximum number of consecutive days with RR < 1 mm: Let RR ij be the daily
precipitation amount on day i in period j. Count the largest number of consecutive days where: RR ij < 1 mm

days

CWD Consecutive wet days Maximum length of wet spell, maximum number of consecutive days with RR = 1 mm: Let RR ij be the daily
precipitation amount on day i in period j. Count the largest number of consecutive days where: RR ij = 1 mm

days

R95p Very wet days total precipitation Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR = 1.0 mm) in
period i and let RR wn95 be the 95 th percentile of precipitation on wet days in the reference period. If W

represents the number of wet days in the period, then: R95p j = ∑W

w�1RRwj where RRwj >RRwn95

mm

(Continued on following page)
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(Ns = 3). For the precipitation-related indices, the total was 27 with
Nm = 9 andNs = 3, because three GCMs simulations did not include
precipitation.

The decomposition of the uncertainty was computed on the
changes (denoted as Ys,m,t) of climate extreme indices between a
future and a baseline climate period for each grid cell following the
studies of Hawkins and Sutton. (2011); Zhang and Chen (2021).
Here, the period 1983–2012 was considered as a baseline period to
calculate the changes (Ys,m,t) due to climate change. The changes in
temperature derived indices are expressed in terms of absolute
changes as follows:

Ys,m,t � ps,m,t − 1
30

× ∑2012

t�1983p
s,m,t (1)

and the changes in precipitation-related extreme indices are defined
as percentage ratio:

Ys,m,t � 100 ×
ps,m,t

1
30 × ∑2012

t�1983ps,m,t
− 1⎛⎝ ⎞⎠% (2)

where s = 1, . . . , Ns, m = 1, . . . ,Nm, and t = 1, . . . ,Nt refer to the
number of SSPs, GCMs, and years, respectively, and ps,m,t refer to
the projected extreme indices for the sth SSPs, mth GCM, and
tth year.

Subsequently, the resulting changes (Ys,m,t) were then smoothed
into rolling decadal (i.e., 10 years) means and subjected to
uncertainty decomposition. The uncertainty decomposition
procedures are summarized as follows. To quantify and
decompose the uncertainty, the smoothed mean change (Ys,m,t)
for all GCMs and SSPs was partitioned into a climate change
signal (the smooth fit, is,m,t) and a residual (εs,m,t) by fitting
fourth-order and second-order polynomial models to
precipitation and temperature indices, respectively (Hawkins and
Sutton, 2011; Zhang and Chen, 2021).

Ys,m,t � is,m,t + εs,m,t (3)

The respective means of is,m,t and εs,m,t were calculated as follows
(Eqs. 4–6); (Eq. 7):

�i
M
s,t �

1
Nm

∑Nm

m�1i
s,m,t (4)

�i
m,t
S � 1

Ns
∑Ns

s�1i
s,m,t (5)

�i
t
S,M � 1

Nm × Ns
∑Ns

s�1∑Nm

m�1i
s,m,t (6)

�ε � 1
Nm × Ns × Nt

∑Ns

s�1∑Nm

m�1 ∑Nt

t�1 ε
s,m,t (7)

The component of the uncertainty due to the GCMs was then
estimated as the variance of the multi-scenario averages:

Mt � 1
Nm

∑Nm

m�1
�i
m,t
S − �i

t
S,M)2( (8)

Likewise, the component of the uncertainty due to the SSPs was
then estimated as the variance of the multi-model averages:

St � 1
Ns

∑Ns

s�1
�i
s,t
M − �i

t
S,M)2( (9)

On the other hand, the uncertainty due to the internal climate
variability corresponds to the variance of the residuals from the fits over
all GCMs, SSPs, and projection period (i.e., 2020–2095, Nt = 75).

V � 1
Nm × Ns × Nt

∑Ns

s�1∑Nm

m�1∑Nt

t�1 �ε − εs,m,t( )2 (10)

In our present study, we assumed no interaction effects between
GCMs and SSPs, and equal weights were given for all GCMs despite
the different performances (Zhang and Chen, 2021). The total
uncertainty (Tt) is, therefore, the sum of the uncertainty due to
GCMs, SSPs, and internal climate variability.

Tt � St +Mt + V (11)

TABLE 2 (Continued) List of ETCCDMI-defined precipitation and temperature extreme indices computed and evaluated in this study.

Label Index name Index definition Units

R99p Extremely wet days total
precipitation

Annual total PRCP when RR > 99p: Let RRwj be the daily precipitation amount on a wet day w (RR = 1.0 mm) in
period i and let RR wn99 be the 99 th percentile of precipitation on wet days in the reference period. If W

represents the number of wet days in the period, then: R99p j = ∑W

w�1RRwj where RRwj >RRwn99

mm

PRCPTOT Total wet-day precipitation Annual total precipitation in wet days: Let RR ij be the daily precipitation amount on day i in period j. If I
represents the number of days in j, then PRCPTOT j = ∑I

i�1RRij

mm

TABLE 3 Performance statistics on which the Taylor diagrams are based.

Symbol Description Notation

X, Y Observed and simulated climate extreme indices

σx, σy Standard deviations of observed and simulated climate extreme indices
σx �

��������∑N

n�1(Xn− �X)
N

√
, σy �

��������∑N

n�1(Yn− �Y)
N

√
r Correlation coefficient between observed and simulated climate extreme indices

r � 1
N
∑N

n�1(Xn− �X)(Yn− �Y)
σxσy

RMSE c Centered root mean squared error between observed and simulated climate extreme indices RMSEc �
��������������������������
1
N∑N

n�1[(Xn − �X) − (Yn − �Y)]2
√
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The signal-to-noise (S/N) ratio was calculated to understand the
influence of uncertainties on projected climate extreme indices over
time (Hawkins and Sutton, 2009).

S/N( )t � �i
t

1.65 ×
��
Tt

√ (12)

A larger S/N ratio implies that the projected uncertainties are
smaller relative to the average climate change signal (Hawkins
and Sutton, 2011; Zhang et al., 2011). The uncertainty of
projected climate extreme indices was analyzed for the nine
sub-regions (denoted as R1-R9) of Ethiopia that were
identified based on homogeneous rainfall zones by Rettie et al.
(2023).

3 Results and discussion

3.1 Temperature indices

Measuring the performance of the climate models in
capturing the observed climate extreme indices is an
important part of climate studies. Figure 2 shows the Taylor
diagrams comparing the performance of the GCMs and their
ensemble average in reproducing the different temperature
extreme indices in the observation data (i.e., CHIRPS and
CHIRTS) during 1983–2012. For most of the temperature-
related extreme indices, the correlation coefficients range
from 0.2 to 0.60. A larger range of correlation coefficients is
found for extremes such as TN10p, TX90p, TN10p, TN90p, SU,
and TR (refer Table 2). For absolute temperature indices like
TNn, TXn, WSDI, and CSDI, the correlation coefficients (r) are
very low. However, the interannual variation expressed by the
standard deviations (SD) of the observation was well reproduced
by most of the GCMs. Most of the indices simulated were well
below 1.5 SD relative to the SD of the observations. For TX10p,
WSDI and CSDI indices, many of the GCMs produced lower
variability compared to the observations. The diagrams also
show that the centered RMSE is well below 1.5 units relative
to the SD of observations. The smallest error was found for
TX90p and TX10p. The centered RMSE quantified the
differences in two fields, in our case the indices in the
observation data and the indices simulated by the GCMs. The
diagram further shows that the GCMs ensemble average reduced
both the errors (centered RMSE) and the interannual variability
(SD) while the correlation coefficients (r) were increased for
majority of the temperature-related indices indicating that the
GCMs ensemble average performance was better than individual
GCMs. The individual model as well as their ensemble average
performance also varied at the regional level (Supplementary
Figures S1, S2). In their multi-model study in China, Wei et al.
(2022) also reported that GCMs ensemble averages of climate
extreme outperform those by individual models. The models’
skill was much better for the drier and hotter sub-regions
(i.e., R1, R2, and R4) compared to the cooler highland
regions. More importantly, the improvement from the GCMs
ensemble average was more pronounced at the regional scale
(Supplementary Figure S2).

Figures 3–5 show the spatial distribution of annual trends in
temperature-related extreme indices in the projected climate
(2020–2100) under the three SSPs in comparison to the
corresponding trends in the observed climate (1982–2012). The
figures clearly show significant trends in both observations and
projections for all indices except for projected cold spell duration
indices (CSDI). Looking at the percentile indices, higher warm
extreme indices (TX90p and TN90p) are expected in future
climate ranging from 4% (SSP2-4.5) to 10% (SSP5-8.5) per
decade compared to approximately 3% per decade increase in the
observation period. Based on the CHIRPS data (i.e., the same
observed data as in our study), Gebrechorkos et al. (2019b)
reported similar patterns of extreme temperature trends for the
pasty climate (1979–2010). Changes of higher magnitude of
temperature extremes were reported at local level studies (Birhan
et al., 2022). The increasing trend in warm extreme indices is
confirmed by increasing trends in other warming indicators such
as summary days (SU), tropical nights (TR), and warm spell
duration (WSDI). The number of summer days (SU) and tropical
nights (TR) are expected to increase by up to 35 days and 50 days,
respectively, particularly in the highland regions under the SSP5-
8.5 scenario. Similar increasing trends are expected for the warm
spell duration index (WSDI), which could increase by up to 45 days
per decade under the SSP5-8.5 scenario. The results also indicate
that the magnitude the warm percentile indices expected to increase
would be higher than the magnitude the cold percentile indices are
expected to decrease. The relatively stronger downward trend of cold
extreme indices (i.e., TX10p and TN10p) over the observation
period (~4% per decade) is expected to decrease in future climate
by ~1% per decade under the SSP5-8.5 scenario. On the other hand,
the absolute extreme maximum and minimum temperature indices
(TXx, TXn, TNn, and TNx) show spatially heterogeneous patterns,
not solely, but particularly in the observations. However, largely
significant increasing trends of the absolute extreme maximum and
minimum temperature indices are expected in the future climate,
especially under the higher emission scenarios (SSP3-7.0 and SSP5-
8.5). For instance, under the SSP5-8.5 emission scenario, the
predicted absolute maximum of maximum temperature (TXx)
and minimum of minimum temperature (TNn) trends could
reach up to 6° C (8° C) per decade in the warmest (northeastern)
region of the country (see Figure1). This is a very relevant finding
since a few incidences of such magnitude of extreme temperatures
have harmful effects on crop growth (He and Chen, 2022) and would
have a devastating impact on crop yields (Vogel et al., 2019). As to be
expected, the projected trends consistently increase from lower
(SSP2-4.5) to higher (SSP5-8.5) emission scenarios.

3.2 Precipitation indices

The Taylor diagrams in Figure 6 indicate the performance of
the individual GCMs with respect to the precipitation-related
extreme indices in the observation data (i.e., CHIRPS) during
1983–2012. The GCMs had difficulties reproducing the observed
data even at the sub-regional level (Supplementary Figures S3,
S4). The correlation coefficients (r) of most precipitation-related
extreme indices were below 0.4. The simulated variability in
precipitation was considerably higher than the observed one
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where the standard deviations normalized to the observations are
mostly around 2, with R20mm, R95pTOT, and R99pTOT
showing values up to 3. The errors between the GCMs and the
observation (centered RMSE) were within 2 units. The diagrams
reveal that the GCMs ensemble average reduced both the error
(centered RMSE) and the interannual variability (SD). However,
for the majority of the indices, the correlation coefficients did not
improve. Overall, regarding the precipitation-related indices, the
GCMs performed much less well than for the temperature-
related indices. The spatial distribution of the trend in
precipitation-related extreme indices in the observed climate
(1982–2012) and the projected climate (2020–2100) under the
three SPSs are presented in Figures 7–9. The spatial patterns show
that the observed trends were largely statistically significant
(i.e., shown as areas with patches) across most of the indices
except for R1mm, R10mm, R20mm, and Rx5day for some pocket
areas in the western and southeastern parts of the country. The
southeastern part of the country which belongs to the driest
regions of the country [see Figure 1A; also refer to Rettie et al.
(2023)] exhibited a significant increase in maximum 5-day
precipitation (Rx5day), which is equivalent to an increase of
10 days per decade. Beyene et al. (2022) also found a significantly
increasing trend in Rx5day the southern region, mainly Omo-
Gibe and Rift Valley lake basins. Whereas the western part

bordering Sudan showed a significantly increasing number of
wet days (R1mm) by roughly 5 days per decade. The trends in
number of wet days were however not significant in all scenarios.
Largely increasing trends were also reported in Beyene et al.
(2022) for R10 mm indices for Ethiopia of which 20% of the grids
were statistically significant. Cattani et al. (2018) analyzed
seasonal rainfall variability and trends over East Africa for
1983–2015. They found that R1mm and R20 mm show
decreasing trend during October-December and an increasing
trend during March-May seasons for the larger part of East
Africa. On the other hand, as in the observed climate,
significantly increasing trends are projected for maximum 5-
day precipitation (Rx5day) where the trends were significant
across the large parts of the country. Likewise, generally
increasing trends were projected for number of days with
more than 10 mm (R10 mm) and 20 mm (R20 mm) indices.
They were significant across large parts of the country.
Regarding the precipitation totals and wet days, exceptionally
higher increases were projected under SSP3-7.0 in a small pocket
region in the northwestern part of the country, which was
statistically significant as well (Figure 9). The projected change
for the indicated pocket region was more than 25 days per year
increase both for very wet (R95pTOT) and extremely very wet
(R99pTOT) days. Our results are in line with Gebrechorkos et al.

FIGURE 2
Taylor diagrams comparing the skill of theGlobal ClimateModels (GCMs) in reproducing the observed (1983–2012) temperature related indices. The
azimuthal axis shows the correlation coefficients. The radial distance from the origin represents the variability (SD), while the distance from the “Ref” point
is the centered RMSE (brown dashed lines) difference between the GCMs and observed temperature related indices.
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(2019a), who found a significantly increased trend in R99pTOT
and R99pTOT in southern Ethiopia for the period of 1981–2010.
Unlike the temperature indices, the trends in precipitation are

generally heterogeneous in terms of spatial distribution,
magnitude, and statistical significance as well as across the
different emission scenarios (SSPs). Despite the large spatial

FIGURE 3
Spatial distribution of annual historical (1983–2012) and projected (2020–2100) trends (Sen’s slope) in multi-GCMs averaged temperature indices
(TN90p, TX90p, TX10p, and TN10p in % units) under the three SSPs. The areas under patches (depicted as signs) show significant (p < 0.05, MK test) trends.

FIGURE 4
Same as Figure 3 but for indices: TXx, TNx, TNn and TXn in °C.
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inconsistency, the overall results suggested that there are
indications for an increase in the frequency of the most
intense precipitation events.

3.3 Projection uncertainty

We assessed the three components of climate change
uncertainty (i.e., model (GCM), scenario (SSP), and internal
climate variability) for all climate extreme indices for the 9 sub-
regions defined by Rettie et al. (2023); Figures 10–13 present the
evolution of the three components over time for the
temperature-related indices (Figure 10; Figure 11) and
precipitation-related indices (Figure 12; Figure 13). The
figures show that, for temperature-related indices, a general
decreasing contribution of uncertainties from the GCMs and
internal variability to the total uncertainty while the reverse was
true for the uncertainty from SSPs. These findings were largely
consistent across the different regions of the country.
Accordingly, the uncertainty from the GCMs accounts for
about 64%–88% of the total uncertainty at the beginning of
the projection period (i.e., 2020). This proportion decreased to
about 45%–67% by the end of the projection period (i.e., 2100).
Meanwhile, the contribution from the internal variability
decreased from about 11%–32% at the beginning of the
projected climate to less than 15% by the end of the century.
Summer days (SU) are an exception here, with a slight projected
increase. On the other hand, the fraction of uncertainty from the

SSPs increased from less than 1% in 2020 to 18%–54% by the end
of the century. Our results are consistent with previous studies
that in the beginning projections are usually dominated by
uncertainties from GCMs and internal variability (Zhang and
Chen, 2021). The results were consistent across the temperature
indices except for the cold spell duration index (CSDI) where
the SSPs’ contribution to the total uncertainty remained
negligible.

In contrast to the temperature indices, the total projection
uncertainty of precipitation-related indices was dominated by
the contribution from the GCMs and the internal climate
variability, with marginal contribution from the SSPs.
However, the fractional contribution from the GCMs and
internal variability varies among the different indices. For
CDD, CWD, R1mm, and Rx1day, a large proportion
(~57–87%) of the total uncertainty was due to the internal
climate variability whereas, for the rest of the precipitation
indices, the contribution from the GCMs is considerable.
Mendoza Paz and Willems. (2022) also found that the larger
proportions of the uncertainty in the projected precipitation
extremes were related to the GCMs. In addition, the
contribution of model uncertainty increases with a lead time
for most of the precipitation indices except for CDD, CWD,
R1mm, and Rx1day. Results were consistent across the different
sub-regions. Compared to the temperature indices, internal
climate variability was an important source of uncertainty
for precipitation-related indices. Previous studies also
showed the relative importance of the uncertainty from

FIGURE 5
Same as Figure 3 but for indices: SU, TR, WSDI and CSDI in days.
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the internal climate variability for precipitation-related indices
(e.g., Hawkins and Sutton, 2011; Fatichi et al., 2016; Gu et al.,
2018).

To reduce the high uncertainty associated with the
precipitation indices, we suggest further investigation based on
multiple reference data sets (Grusson and Barron, 2021;
Madakumbura et al., 2021) and as far as possible, station-based
observation data (Cattani et al., 2018; Kim et al., 2019). Fatichi
et al. (2016) claimed that the rigorous assessment of historic
climate variability may give sufficient information about future
changes in precipitation extremes. In addition, seasonal level
analysis (Cattani et al., 2018; Ademe et al., 2020; Gemeda
et al., 2021; Ali Mohammed et al., 2022; Beyene et al., 2022;
Teshome et al., 2022) could also help to reduce the uncertainty
compared to annual level analysis (this study) given the high
spatial variability in the country.

3.4 Robustness of the projections

Finally, we quantified the signal-to-noise ratio (S/N) to
demonstrate the influence of uncertainties on projected climate
extreme indices over time (Hawkins and Sutton, 2009) and hence
to evaluate the robustness of the projected changes in climate

extremes (Hawkins and Sutton, 2009; 2011; Zhang et al., 2011).
Figure 14 and Figure 15 present the S/N ratio for the temperature
and precipitation-related indices, respectively, for the different sub-
regions.

Largely consistent across the temperature-related indices, the
signal-to-noise values increased in general with time, but with
considerable regional variation (Figure 14). This implies that the
magnitude of projected changes was greater than the magnitude
of the associated uncertainty and hence the projected changes are
reliable. However, the S/N ratio reaches peak values by the mid of
the century (i.e., between 2050–2060) for temperature intensity
indices (TXx, TXn, TNx, and TNn) with slightly decreasing
values with projection time. The peaks around the mid of the
century could be related to the shift in the contribution of
uncertainties from the different sources (i.e., GCMs, SSPs, and
internal climate variability). Zhang et al. (2011) reported a
similar period where the shift in the contribution of
uncertainty among the various sources occur. Regional
comparisons show that sub-region R8 (which is the wettest
region in the country, cf. Rettie et al. (2023)) shows a higher
S/N ratio for most of the temperature-related indices while sub-
region R1 (which belongs to the driest regions in the country)
shows relatively lower S/N, particularly for coldness indices
(i.e., CSDI, and TX10p).

FIGURE 6
Taylor diagrams comparing the skill of the Global Climate Models (GCMs) in reproducing the observed (1983–2012) precipitation related indices.
The azimuthal axis shows the correlation coefficients. The radial distance from the origin represents the variability (SD), while the distance from the “Ref”
point is the centered RMSE (brown dashed lines) difference between the GCMs and observed precipitation related indices.
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FIGURE 7
Spatial distribution of observation (1983–2012) and projected (2020–2100) trends (Sen’s slope) in multi-GCMs averaged precipitation indices (CDD
and CWD in days, and Rx1day and Rx5day in mm) under the three SSPs. The patches show significant (p < 0.05, MK test) trends.

FIGURE 8
Same as Figure 7 but for indices: Number of heavy precipitation days with at least 10 mm (R10 mm) and 20 mm (R20 mm), number of wet days
(R1mm), and simple daily intensity (SDII, mm).
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Precipitation-related extremes are key for climate change
adaptation as the country’s economy is heavily dependent on
rainfed agriculture. The S/N ratio was below unity despite a
slight increment with projection time (Figure 15) for most of the
precipitation indices indicating that the magnitude of projected
changes was smaller than the associated uncertainty. This implies

that the projected changes are associated with high uncertainty and
make the projection less reliable and not well-suited as a basis for
decision-making. Achieving reliable projections for precipitation
has been a challenge due to its associated higher uncertainties
compared to temperature (Madakumbura et al., 2021; Zhang and
Chen, 2021; Birhan et al., 2022). On the other hand, located near the

FIGURE 9
Same as Figure 7 but for indices: Total wet-day precipitation (PRCPTOT), very wet days total (R95pTOT), and extremely wet days total (R99pTOT) all
in mm.

FIGURE 10
Percentage share of uncertainty for temperature indices depicted by sub-regions over 2020–2100.
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equator and the Indian Ocean, the effects of the bi-annual migration
of the Inter-Tropical Convergence Zone (ITCZ) and the El
Niño–Southern Oscillation (ENSO) are the most important
climate systems governing precipitation across Ethiopia (Korecha
and Barnston, 2007). In this regard, one of the limitations of the

current study is attributed to the structural deficiency of the climate
models used in the study in reasonably simulating these major
climate systems. The majority of state-of-the-art GCMs fail to
simulate realistic ENSO characteristics (Beobide–Arsuaga et al.,
2021) and the double- ITCZ bias remains one of the most

FIGURE 11
Same as Figure 10 but for indices: TNn, TXn, WSDI, CSDI, SU, and TR.

FIGURE 12
Percentage share of uncertainty for precipitation indices depicted by sub-regions over 2020–2100.
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outstanding errors in the models (Tian and Dong, 2020). Given these
model deficiencies, their long-term prediction of climate extremes
might be affected as well. Therefore, the results of our study particularly
those of precipitation-derived extreme indices should be taken with
caution. Despite these limitations, the regional comparisons suggest
that fewer homogeneous clusters could be sufficient for the kind of
studies treated in this paper (Ware et al., 2022).

4 Conclusion

Climate extremes in Ethiopia were comprehensively assessed
until the end of the 21st century by producing and evaluating a large
set of extreme climate indicator indices. The study constitutes a large
number of state-of-the-art CMIP6 models covering a spectrum of
emission scenarios at high spatial resolution. By evaluating the

FIGURE 13
Same as Figure 12 but for indices: SDII, Rx1day, Rx5day, CDD, and CWD.

FIGURE 14
Signal-to-noise ratios for temperature indices depicted by sub-
regions over 2020–2100.

FIGURE 15
Signal-to-noise ratios for precipitation indices depicted by sub-
regions over 2020–2100.
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individual model performance during the base period, we estimated
the possible change in the trends of projected climate extremes. The
results were supplemented by a rigorous assessment of the
uncertainties associated with the projected extremes. The
projected trends for temperature-related indices are largely
statistically significant and spatially consistent and much more
reliable than the precipitation-related indices. Our study on
projected changes in climate extremes at the national level was
produced to serve as a baseline for future national or regional level
analysis. In this context, we recommend further assessments to
evaluate the effects of projected climate extremes on crop model
and/or hydrological model outputs.
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