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In the west of China, a rarely seen black storm, with a high intensity of dust aerosols
and a large area of influence, occurred from April 26–29, 2015, for the first time,
after more than 30 years. Based on the regional climatemodel (RegCM version 4.6),
combined with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite
retrieval, meteorological, and environmental data, this work presents the pollution
situation, weather background, and backward trajectory during the black storm
process. In addition, we analyzed the temporal–spatial distribution of aerosol optical
depth (AOD) and the impacts of dust aerosols on solar radiation and near-surface
temperature under this extreme weather condition. We discovered that this black
storm process was caused by the surface cold high pressure and frontal transit
under the background of the upper-air circulation of “two troughs and two ridges.”
The pollutants primarily from Xinjiang and the Central Asia region, along with the
airflow, entered northern Xinjiang almost simultaneouslywith the southwest airflow,
piled up along the Tianshan Mountains, and then crossed the mountains into
southern Xinjiang. In addition, the areas with high AOD were mostly in the
desert regions and basins, whereas the low-value areas were mountainous areas
with relatively high altitudes due to the effect of geographical and climatic
conditions. The AOD from RegCM 4.6 was generally lower, unlike the MODIS
AOD. Moreover, the dust aerosols from this black storm caused a significant decline
in net short-wave radiation (NSR) both at the top of the atmosphere (TOA) and
surface. The cooling effectwasmore significant in the regionwith high AOD. For the
areas where the AOD was higher than 0.7, the net short-wave radiative forcing of
dust aerosols (ADRF) at the surface was above −70W•m−2; on the other hand, the
cooling effect at the TOA was not as significant as that at the surface, with the
ADRFTOA being only about a quarter of the ADRFSUR. The ADRFSUR could reduce the
near-surface temperature, and the region with a large temperature drop
corresponded to the high-value areas of ADRFSUR/AOD. During this black storm,
the near-surface temperature response to dust aerosols reached 0.40°C–2.9°Cwith
a significant temperature drop because of cold air.
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1 Introduction

Dust storms are serious natural hazards that are driven by strong
winds from the ground and reduce horizontal visibility to less than
1 km, which usually occur in arid and semi-arid areas. Intense dust
storms, especially black storms, with strong winds and horizontal
maximum visibility of less than 2 m, are extremely destructive
environmental disasters. Due to their suddenness, short duration,
and high intensity, dust storms often cause serious harm in a short
time. They bring a colossal amount of dust aerosols to the
atmosphere, which can significantly deteriorate air quality and
photosynthetic activity (Korotaeva et al., 2018; Kaskaoutis et al.,
2019) by increasing the particulate concentrations at levels that
potentially increase atmospheric turbidity, causing the extinction of
solar and atmospheric radiation via scattering and absorption
(Kaskaoutis et al., 2006; Garcia-Pando et al., 2014; Maghrabi &
Al-Dosari, 2016; Kaskaoutis et al., 2019). In addition, the wind
erosion of dust storms aggravates desertification, seriously affecting
the ecosystem and human health (Kang et al., 2017; Li et al., 2020).

Dust aerosols, derived mainly from dust storms, are one of the
important components of the atmospheric system. They can not
only change cloud albedo or life cycle by acting as cloud
condensation or ice nuclei (Li et al., 2018; Nguyen et al., 2019;
Yan & Wang, 2020) but also disrupt radiation budget by directly
scattering and absorbing solar radiation, reducing the amount of
solar radiation gained by the ground and lower atmosphere, before
modifying the near-surface temperature (Ge et al., 2010; Gao et al.,
2015; Samset et al., 2018; Wang et al., 2018; 2019; 2020; Zhou et al.,
2022a; 2022b). In addition, dust aerosols can stimulate abnormal
water cycle feedback and change precipitation distribution (Lau
et al., 2017; Zhao et al., 2020). Dust also reduces visibility (Watson,
2002), exacerbates air quality (Salvador et al., 2019), and affects
atmospheric circulation by changing atmospheric heating in the
middle and upper troposphere (Alizadeh-Choobari et al., 2014).
Overall, dust has adverse effects on human health and climate
change at regional and even global scales (Huang et al., 2014;
2012; Zhao et al., 2018; Liu et al., 2021). Therefore, systematic
studies on the characteristics and radiation effects of dust aerosols
during intense dust storms are necessary to develop strategies for
mitigating the impacts of dust storms on radiation balance,
ecosystems, and human health (Middleton, 2017; Middleton &
Kang, 2017).

For dust storms, numerous studies have focused on examining
dust source regions, weather background, spatial–temporal
distribution, and characteristics and irradiation effect of dust
aerosols (Huang et al., 2008; Ashpole and Washington, 2013; Qi
et al., 2013; Saeed et al., 2014; Kedia et al., 2018; Filonchyk et al.,
2019; Kaskaoutis et al., 2019; Nguyen et al., 2019; Gao et al., 2022;
Qin et al., 2022; Zhang et al., 2022). Most of these studies have been
performed based on ground observation and satellite remote sensing
data (Gehlot et al., 2015; Maghrabi & Al-Dosari, 2016; Maghrabi,
2017; Tian et al., 2018; Bi et al., 2022). Nonetheless, the uneven
distribution and the limited number of ground monitoring stations
cannot obtain continuous spatial coverage information. Moreover, it
is difficult to effectively reflect the spatial and temporal evolution
characteristics of related factors (Kaufman et al., 1997; Huang et al.,
2020). Satellite remote-sensing observation covers a wide area, with
the advantages of macroscopic, economic, and long-term dynamic

monitoring, which can compensate for the limitations of ground
monitoring stations in spatial distribution (Huang et al., 2008;
Huang et al., 2020). However, satellite remote-sensing inversion
remains a difficult problem for the Xinjiang region with its vast
territory, complex underlying surface, multi-mountain snow, desert,
and other bright background regions. For instance, a large area with
missing data makes it difficult for satellite remote-sensing data to
completely reflect the occurrence, development, transport
characteristics, and climate effects of dust aerosols (Wang et al.,
2010). Particularly, the absence of observation data limits the
operation simulation of meteorological/environmental models,
which ultimately leads to the rarely quantitative effect evaluation
of dust storm transport on environmental factors such as
temperature and humidity in the downstream area (Wang et al.,
2013).

Numerical simulation technology considering dust processes is
an important tool for studying dust emission, transport, deposition,
and interactions with meteorological factors (Sugimoto et al., 2013;
McClintock et al., 2019); however, not all numerical models meet
our research needs. Mahowald et al. (2010) showed that the
Community Climate System Model (CCSM) could not capture
dust changes in five research regions (Australia, North Africa,
North America, South America, and Middle East/Central Asia) in
the 1920s. Because the dust size distribution was biased toward small
particles in CMIP5 models, Evan et al. (2014) and Wu et al. (2018)
found that the CMIP5 climate model could not reproduce the basic
aspects of dust emission and transport over the second half of the
20th century over North Africa and the decrease of dust event
occurrence over East Asia between 1961 and 2005. Moreover, the
common dust prediction models, including Community Multi-scale
Air Quality (CMAQ) and Weather Research and Forecasting-Dust
(WRF-Dust), were used for unidirectional coupling sand; the lifting
scheme with mesoscale weather model is unsuitable for simulating
the long-distance transport process of dust and cannot analyze the
feedback of the radiation effect of dust aerosol on the meteorological
field and the effect of climate change (Su et al., 2022). In contrast, the
regional climate models (RegCMs), developed by the National
Center for Atmospheric Research (NCAR) since 1989 (Dickinson
et al., 1989) and improved by the International Center for
Theoretical Physics (ICTP, Trieste, Italy) (Giorgi & Mearns,
1999), have higher spatial resolution and provide additional
details about regional physical processes. This consequently
improves the capacity to simulate mesoscale events (Frei et al.,
2003). They can not only present spatial and temporal distribution
characteristics of dust aerosol, temperature, humidity, radiation, and
other environmental meteorological elements but also be used to
analyze the interaction and effect mechanism among various
elements. The RegCMs have compensated for the shortcomings
of existing research methods (Tummon et al., 2010; Yan et al., 2011;
Nabat et al., 2012; Solmon et al., 2012) and have been widely used to
study climate change and prediction, water cycle, and radiation
budget (Pu et al., 2017; Li et al., 2018; Xie et al., 2019).

In the spring of 2015, a black storm with extremely high-speed
wind, high intensity of dust aerosols, and a large area of influence
was observed in Xinjiang, China. The air quality index (AQI) in
Urumqi, the capital city of Xinjiang, reached the “hazardous level”
based on the U.S. EPA (2016) for several hours on April 27, and its
air quality ranked last among 607 cities in China. It was not only the
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first dusty weather since 2015 but also the first strong dust episode
observed after more than 30 years in Xinjiang. Therefore, this study
presents the pollution situation, weather background, and backward
trajectory during the black storm process based on the regional
climate model RegCM version 4.6 (RegCM 4.6) and the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model,
combined with MODIS satellite retrieval, meteorological, and
environmental observational data. We analyzed the
temporal–spatial distribution of dust aerosols, radiation effect,
and temperature response under this extreme weather condition.
We aimed toward providing a scientific basis for further
understanding of the occurrence and development mechanism of
extra-strong sandstorms; quantitative assessment of the impact of
dust aerosol on the meteorological and environmental elements in
the involved areas; and improvement in pollution level with early
warning, forecast, and prevention and control capabilities. This
paper is structured as follows: the data, model, and methodology
are introduced in Section 2. The results and discussion are presented
in Section 3, followed by a conclusion in Section 4.

2 Data, model, and methodology

2.1 Data

The hourly AQI and particulate matter (PM10 and PM2.5, which
include particles less than 10 or 2.5 μm in diameter, respectively)
concentrations in Urumqi (Figure 1) were obtained from the
Xinjiang Environmental Protection Department.

As for satellite data, the EOST/MODIS satellite data after
projection for dust remote-sensing monitoring were processed by
SMART software of China Satellite Meteorological Center. In
addition, unlike the performance of MODIS AOD retrievals with
the Dark Target (DT) algorithm, Tao et al. (2017) and Huang et al.
(2020) found the Deep Blue (DB) AOD to be more suited for the arid
and semi-arid areas with a bright background. Therefore, we

extracted the Level 2 Collection 6 MODIS Aqua (MYD) and
MODIS Terra (MOD) DB AOD product (550 nm) at 10-km
spatial resolution with high quality (Quality Assurance = 2, 3)
during April 25–29 in eastern Asia (18–54°N, 73–145°E). The
daily average value of MOD and MYD AOD that averaged over
the 50 × 50 kmwindow size was used to analyze the transport path of
the black storm and confirm the simulation results.

To further analyze the occurrence and development of this black
storm, the circulation situation and influence system during the
black storm were analyzed based on the synoptic principle and
synoptic dynamics diagnosis and analysis method using the
National Centers for Environmental Prediction (NCEP) 2.5°x 2.5°

reanalysis data every 6 h. Moreover, this study used the HYSPLIT
model, combined with 1°x 1° meteorological field data from the
NCEP Global Data Assimilation System (GDAS) to calculate the
48 h backward and forward transport trajectories of airflow over
Urumqi at 19:00 on April 27. The track initiation point of the
trajectory was Urumqi (43.46°N, 87.36°E), and the origin time was
19:00 on April 27 (Beijing time). The simulation was conducted for
48 h backward (20:00 on April 25 to 19:00 on April 27) and forward
(19:00 on April 27 to 18:00 on April 29), with a time interval of 6 h.
The height of the air mass trajectory was 100 m, 500 m, and 1,000 m,
respectively.

2.2 Model

2.2.1 The RegCM 4.6 model description and
evaluation

The simulation was conducted using the regional climate model
RegCM 4.6, a sigma vertical coordinate model (18 layers), within the
hydrostatic version of the 5th generation of the Mesoscale Model
MM5 as the dynamical core, developed by the Abdus Salam
International Centre for Theoretical Physics (ICTP). Unlike
previous versions, RegCM 4.6 improved in describing physical
processes, including new land schemes and additional

FIGURE 1
Geographical location and terrain of Xinjiang region.
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modifications of cumulus convection, radiative transfer, and
planetary boundary layer schemes (Liu et al., 2021).

In RegCM 4.6, the aerosol scheme included dust, sea salt, black/
anthropic carbon, and sulfate aerosols. It also included atmospheric
wind advection, turbulent diffusion, vertical transport of deep
convection, surface emission, dry and wet removal processes, and
chemical conversion mechanism of gas and liquid phases (Solmon
et al., 2006; Liu et al., 2021). The shortwave radiative transfer was
calculated using the Community Climate Model (CCM3), which
followed the δ-Eddington approximation stated by Kiehl et al.
(1998). The dust shortwave radiative effect was calculated with
extinction coefficient, asymmetry factor, and single-scattering
albedo based on the Mie theory. Additional details about RegCM
4.6 have been described and documented by Giorgi (2011).

To evaluate the simulation results of RegCM 4.6, our research
team conducted a validation study of RegCM 4.6 based on the
surface observation data (Liu et al., 2020; 2021). In our previous
validation study, the basic data used for validation were the daily
averaged quality-assured (accuracy less than ±0.01) and cloud-
screened Level 2 AOD data at the Dalanzadgad (43.58°N,
104.42°E) site (downloaded from the AErosol RObotic NETwork/
AERONET website: http://aeronet. gsfc.nasa.gov). Meanwhile, the
fixed grid point from the RegCM simulation that was closest to
Dalanzadgad was selected for validation. From the statistical
information between the daily averaged model and AERONET
AOD at Dalanzadgad station (as shown in Table 1), the linear
correlation coefficient (R) was 0.23 and passed the 0.05 significance
test. This indicates that the model AOD was significantly and

linearly correlated with the observation. Data distribution was
relatively concentrated with the root-mean-square error (RMSE)
of 0.17. Generally, the model underestimated the AOD with the
mean absolute error (MAE) of 0.11 and the relative mean bias
(RMB) of 0.80 (Liu et al., 2021).

Figure 2 shows the comparison of monthly mean AOD between
AERONET observations (at 500 nm) and model simulation results
at Dalanzadgad station. As shown, the average difference in monthly
AOD between the two was −0.03. Although discrepancies can be
found on individual times, the simulated AOD was in line with the
observations. Specifically, the seasonal and interannual variations of
AOD were well-captured at the site (Liu et al., 2021). According to
the aforestated observations, the difference between the model and
AERONET AOD may come from two aspects. One is that the
AERONET AOD accounted for all types of aerosols; however, the
model AOD only included dust aerosols. The other is that the
AERONET AOD was obtained from sun/sky radiometers and only
included daytime AOD. In addition, Su et al. (2022) showed that the
RegCM 4 model simulated results of dust concentration and that
dust optical depth was consistent with the observed distribution,
which echoes our findings.

2.2.2 Model set up
The model domain in this study covered the whole eastern

Asia region (−1°N~70°N, 5°E~175°E) with (40°N, 90°E) as the
center (Figure 3); the horizontal resolution was 50 km, and the
top level was at 50 hPa. We adopted the National Center for
Atmospheric Research (NCAR) Community Climate Model 3
(CCM3) (Kiehl et al., 1998) as the radiative transfer scheme;
Emanuel (1991) was used as the cumulus convective scheme;
Holtslag et al. (1990) was employed as the planetary boundary
layer scheme. Relaxation, an exponential technique, was employed
as the lateral boundary conditions scheme. The Zeng scheme was
adopted as the ocean flux scheme; the Explicit moisture scheme
was used for moisture; and the Use full fields scheme was used
for pressure gradient acquisition. Moreover, the NOAA Optimum
Interpolation Sea Surface Temperature (OISST) dataset and Global
Multi-resolution Terrain Elevation Data (GMTED, Lambert
projection) were used as sea surface temperature and terrain
data, whereas the EIN15 dataset of the ECMWF (European
Centre for Medium-Range Weather Forecasts) global reanalysis
data was used to drive the initial field and side boundary field of
RegCM 4.6.

The simulation ran between 1 March 2015 and 31 May 2015,
where the first month was the initialization time, and the simulation
results were the output every 3 h on average. We only analyzed the
simulation results between April 25 and April 29 during the black
storm. We designed two experimental schemes, of which the mode
settings remain unchanged except for the aerosol module, i.e., 1)
DUST scheme—open aerosol module based on the DUST04 scheme

TABLE 1 Statistics describing the relationship of daily averaged dust AOD between AERONET and simulation at Dalanzadgad (43.58°N, 104.42°E) station during
spring from 2012 to 2014.

n R MAE RMSE RMB

234 0.23* 0.11 0.17 0.80

Note. The character “n” represents the number of samples, and the * indicates passing the 0.05 significance test.

FIGURE 2
Comparison of monthly mean AOD between AERONET
observations (at 500 nm) andmodel simulation results at Dalanzadgad
station (43.58°N, 104.42°E).
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and 2) NODUST scheme—closed aerosol module to simulate the
situation without dust aerosols.

2.3 Methodology

The RegCM 4.6 simulated (RCM) AOD, net short-wave
radiation at the top of the atmosphere (NSRTOA), net short-wave
radiation at the Earth’s surface (NSRSUR), net short-wave radiative
forcing of dust aerosols at TOA and the Earth’s surface (ADRFSUR,
ADRFTOA), and the TRSUR were selected as parameters for analysis.
The calculation scheme of ADRFSUR, ADRFTOA, and TRSUR are as
follows:

ADRFTOA � NSRTOA Dust( ) −NSRTOA 0( ), (1)
ADRFSUR � NSRSUR Dust( ) −NSRSUR 0( ), (2)

TRSUR � TSUR Dust( ) − TSUR 0( ). (3)
NSRTOA(Dust), NSRSUR(Dust), and TSUR(Dust) represent the

NSRTOA, NSRSUR, and temperature at 2 m near the ground when
there are dust aerosols, respectively. NSRTOA(0), NSRSUR(0), and
TSUR(0) represent the corresponding three parameters when there is
no dust aerosol, respectively.

3 Results and discussion

3.1 Pollution status of this black storm
episode

During April 26–29, 2015, a black storm with extremely high-
speed wind, high intensity of dust aerosols, and a wide range of
influence occurred in Xinjiang, China. In total, 57 of the
105 meteorological observation stations in Xinjiang had observed
sand and dust weather of varying degrees; among them, sandstorms
appeared in 16 stations. All the meteorological departments in

Xinjiang had sounded 14 early warning signals. Specifically, the
visibility of Moyu County and Yutian County in Hotan was zero.

Figure 4 shows the temporal variation of the AQI and particulate
mass concentrations in Urumqi during April 26–29, 2015. The
period from 0:00 on April 26 to 06:00 on April 27 was slightly
polluted, during which the AQI fluctuated slightly around 80–150,
and the particulate mass concentrations showed a slow
accumulation trend. At 07:00 on the 27th, with the emergence of
the black storm, the AQI and particulate mass concentrations
increased and reached their respective peaks at noon when the
dust storm was the most serious, AQI = 500, PM10 concentration =
1000 μg•m-3, and PM2.5 concentration = 628 μg•m-3 (upper limits of
the instrument that detect AQI and PM10 concentration are 500 and

FIGURE 3
Simulation area and its terrain distribution (unit of altitude: m).

FIGURE 4
Temporal variation of the AQI and particulate mass
concentrations in Urumqi during April 26–29, 2015. The black, red,
and green lines represent the AQI, PM10 concentration, and
PM2.5 concentration, respectively.
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1000 μg/m3 respectively, and the corresponding value of the upper
limit is displayed when the meter needle exceeds the upper limits).
The air was still heavily polluted until 19:00 on the 27th, when all of
the above indices were at high levels, with AQI >374, PM10

concentration >478 μg•m-3, and even gone off the charts for
several hours. As shown in Figure 2, PM2.5 concentration was
also significantly higher than that without dust, but the increase
was not as significant as that of PM10. After 20:00 on the 27th, as the
dust weather weakened, the AQI and particulate mass
concentrations decreased significantly, the air quality became
good, and the pollution process appeared to end. In addition, the
ratio of PM2.5 to PM10 had different performances at different stages.
When there was no dust, the ratio of PM2.5 to PM10 in Urumqi was
mostly concentrated at 0.25–0.40 (the average ratio in the 10 days
before and after this dust storm was 0.34). However, when the black
storm appeared, the ratio of PM2.5 to PM10 decreased to 0.11–0.15,
with a large number of coarse dust particles in the atmosphere,
making PM10 the major pollutant.

Figure 5 is the EOST/MODIS monitor of dust in the south
region of Xinjiang at 13:13 on April 27(a) and 13:01 on April 29(b);
the spatial resolution is 250 m. As shown, during the black storm
process, a large area of dust appeared in the southern Xinjiang Basin,
and the main dust body showed a transmission trend from east to
west in southern Xinjiang from 27th to 29th.

Meanwhile, based on the meteorological observations, the dust
first appeared in the western part of northern Xinjiang at 05:00 on
April 27th. The extent of dust in northern Xinjiang expanded at 08:
00, with strong dust appearing along the Tianshan Mountains. At
17:00 on April 27th, a large range of strong dust appeared in the
eastern part of the southern Xinjiang Basin, and at the same time,
sandstorms or blowing sand were in eastern Xinjiang. In summary,

the black storm started in the western part of northern Xinjiang; the
dust moved eastward along the Tianshan Mountains and crossed
into the eastern part of southern Xinjiang before moving east to
eastern Xinjiang.

3.2 Weather background and airflow
trajectory during this black storm episode

Figure 6 shows the circulation situation of 500 hPa from April
26th to 29th, 2015. During the early stage of the process, the
circulation situation of “two troughs and two ridges” was in
Europe and Asia, upper westerly jet active (Figure 6A). Western
Siberia and Central Asia were active regions of the low-pressure
trough, with dense contour lines and isotherms behind the trough
and a large gradient. The temperature trough was behind the height
trough, and the strong cold flat flow was transported to the trough
after the low trough, with the low-pressure trough further
developing. At this time, Xinjiang was controlled by the high-
pressure ridge. As the development of the upper European high
ridge moved eastward, the eastward movement of the low trough
intensified in Western Siberia and Central Asia. From 27th to 28th
(Figures 6B, C), the convergence of the low trough in the high
and middle latitudes strengthened in the Balkhash Lake region,
and the short wave at the bottom of the trough quickly moved
into northern Xinjiang. The strong cold air moved eastward
and southward, causing a wide range of wind and dust weather.
At the same time, the Central Asia trough moved eastward into
the Tarim Basin, and with the cold air moving westward, gale
and dust weather appeared in the southern Xinjiang Basin. On
the 29th (Figure 6D), the trough of low pressure moved eastward,

FIGURE 5
EOST/MODIS monitor of dust in the south region of Xinjiang at 13:13 on April 27 (A) and 13:01 on April 29 (B).
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and the northwest wind gradually changed to the westerly wind,
which was conducive to the transmission of dust to the downstream
areas.

Combined with the sea-level pressure field view (Figure 7), the
surface high pressure was located in the Caspian Sea and the Aral Sea
on the 26th (Figure 7A), and the high pressure continued to increase

FIGURE 6
500 hPa potential height field (black contour lines, unit: dagpm), temperature field (red dashed line, unit: °C), and wind field (blue vector, unit: m·s -1)
during April 26–29, 2015 [(A) April 26th; (B) April 27th; (C) April 28th; and (D) April 29th].

FIGURE 7
Sea-level pressure field (contour lines, unit: hPa) during April 26–29, 2015 [(A) April 26th; (B) April 27th; (C) April 28th; and (D) April 29th].
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to 1,027 hPa as it moved northeast on the 27th (Figure 7B). The cold
front entered Xinjiang, and the isobars behind the front were dense.
A large pressure gradient was noted between the warm and cold air
masses before and after the cold front, resulting in a surface wind. At
the same time, under the effect of the low pressure of 1,005 hPa, a
notable area of large value of pressure gradient was evident between
high and low pressure, and the pressure gradient formed strong
gradient wind, causing gale and dust weather in the northwest. As
the upper-level system moved eastward, the cold front passed
through on the 28th (Figure 7C), and the dust arrived with the
wind. During the development and movement of the high pressure
to the northeast, the high-pressure center split into two centers,
i.e., the north and south. The north high pressure quickly introduced
cold air into the area, and the cold air accumulated along the
Tianshan Mountains, causing gale and dust weather along the
Tianshan Mountains. The cold air then crossed the Tianshan
Mountains and entered the Tarim Basin. In addition, the cold air
from the south moved westward, and the gale from the northwest
caused sandstorm weather in the west and north of the basin.
Additionally, during the northeast movement of the surface high
pressure, the cold air entered from the east and caused the
sandstorm weather in the east of the basin. The cold air invaded
the basin from the east, the west, and the mountain, and the wind
and dust scopes were further expanded, forming large-scale
sandstorm weather. The high-altitude influence system gradually
moved eastward on the 29th (Figure 7D), and the strong front area
moved eastward out of the northwest region.

In conclusion, this process was caused by the surface cold high
pressure and frontal transit under the background of the upper-air
circulation of “two troughs and two ridges.” In addition, during
spring in northwest China, the soil was dry and loose, with
less vegetation cover (Chi, 2020); the dust was easily raised by
the wind, creating optimum conditions for the occurrence of
strong dust storms. As the cold front moved eastward, the
dust carried by the wind was transported to the upper air along
with the updraft. The prevailing westerly winds in the upper air

constantly transmitted the dust aerosols to Inner Mongolia, North
China, and other regions downstream, affecting a large region of
East Asia.

The HYSPLIT backward (Figure 8A) and forward (Figure 8B)
trajectories of Urumqi air at 19:00 on April 27th (48 h) were
represented to further analyze the occurrence and transportation
of this air pollution episode. The red, blue, and green lines represent
the path of air masses at 1,000 m, 500 m, and 100 m, respectively. As
shown in Figure 8A, the high-altitude air masses crossed
Turkmenistan and Uzbekistan from the northwest of
Turkmenistan to Kazakhstan at 20:00 on the 25th and entered
Xinjiang at 08:00 on the 27th. The air masses at 500 m started from
the Caspian Sea region, passed through the three Central Asian
countries, and entered Xinjiang at 08:00 on the 27th. Meanwhile, the
low-altitude air masses entered Kazakhstan from the northeastern
end of Uzbekistan on the air stream and entered Xinjiang at 07:00 on
the 27th. Subsequently, under the action of air currents, air masses at
various heights passed throughmany cities in northern Xinjiang and
reached Urumqi at 19:00 on the 27th. As illustrated, the three air
masses at different heights had similar transport trajectories during
this black storm process; all showing that exogenous pollutants
primarily originated from the west of Xinjiang and entered the north
of Xinjiang almost synchronously under the action of southwest
airflow before reaching Urumqi along the north slope of Tianshan
Mountains.

According to the Figure 8B, from 19:00 on the 27th to the early
morning of the 29th, the air masses at different heights had similar
transport trajectories, all piled up along the Tianshan Mountains
before turning over the mountains into the southern Xinjiang Basin,
which was consistent with theMODIS observation results. However,
since the early morning of the 29th, the three air masses began to
move in different directions, i.e., the high-altitude air masses moved
west to the east end of Atushi before turning north; the air masses at
500 m followed the southern foot of the western Tianshan
Mountains to Atushi and Kashi, the low-altitude air masses
follows the southwest into the desert hinterland.

FIGURE 8
HYSPLIT backward (A) and forward (B) trajectories of Urumqi air at 19:00 on April 27th (48 h).
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FIGURE 9
Spatial distributions of MODIS AOD (A, C, E, G, and I) and RCM AOD (B, D, F, H, and J) in eastern Asia during April 25–29, 2015.
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3.3 Temporal–spatial distributions of MODIS
AOD and RCM AOD during this black storm
episode

Figures 9A, C, E, G, I show the spatial distributions of MODIS
AOD (the average value of the MOD AOD and the MYD AOD)
during April 25–29 in eastern Asia. As shown, satellite remote-
sensing retrieving under bright background remains an extremely
difficult problem, as described by Huang et al. (2020) and Tao et al.
(2017). The northwest of China is a vast region dominated by arid
and semi-arid landforms such as deserts, wastelands, and sparse
vegetation—specifically Xinjiang, with unique topographical
features and two of the largest basins in China, i.e., Tarim Basin
and Junggar Basin (Figure 1). In addition, in the period of more
clouds or when the satellite inversion grid is completely covered by
clouds, there will be a large number of non-randommissing cases in
satellite remote sensing AOD, and even the corresponding aerosol
inversion results cannot be obtained (Jia et al., 2021). The complex
underlying surface and cloud coverage make the satellite retrieval
missing area (the white areas in Figures 9A, C, E, G, I) large, which is
difficult to completely present the aerosol spatial distribution and
obtain the transport process of dust aerosols. However, it can be
roughly seen that the sandstorm appeared in Xinjiang from April
27 to 29, 2015, and the dust aerosols showed a trend of movements
from east to west in the Xinjiang region. From April 25 to 26,
the AOD of Xinjiang was relatively small, around 0.1. Dust
aerosols entered Xinjiang on April 27, with high AOD areas
(AOD >1.3) appearing in the north of Tianshan Mountains. On
April 28, a high-value zone of AOD (AOD = 1.9) appeared at the
junction of the southern Tarim Basin and Altun Mountains, and the
high-value area, with the AOD lower than that on the 28th (between
1.0–1.4), was transferred to the western region of Xinjiang on
April 29.

The RegCM 4.6 simulated results (the mean value between 9:
00 a.m. and 3:00 p.m. local time), which could resolve the limitation
of satellite retrieval under the complex underlying surface
conditions, were used to present a wider range of AOD spatial
distribution. From the spatial distributions of RCM AOD on April
25–29 (Figures 9B, D, F, H, J), the spatial distribution of AOD was
significantly affected by the underlying surface conditions; the high-
value areas were predominant mostly in desert regions and basins,
whereas the low-value areas mainly were in mountainous areas with
relatively high altitude. Tarim Basin and Junggar Basin are the key
areas of wind–sand activities, and their unique topography endows
them with more dust emission conditions; under the influence of
atmospheric circulation and meteorological conditions during
sandstorms, there would be secondary or multiple dust
generations. In addition, the AOD in the whole Xinjiang region
was lower on April 25 and increased during 26–29. On the 25th,
there was a high AOD area (AOD reached 1.3) in the Sarayye Siktra
Desert in Kazakhstan; however, the AOD in the entire Xinjiang
region was less than 0.5. On the 26th, the AOD high-value area
(0.9–1.2) appeared in the Taklimakan Desert and the Gurbantungut
Desert in Xinjiang, whereas that of the Taklimakan Desert was above
1.0 on the 27th. On the 28th, the high AOD area moved eastward to
the Gurbantungut Desert and southern Mongolia and the western
Gobi Desert, and AOD was small across Xinjiang on the 29th.
Although the characteristics of aerosol transport from east to west in

the Xinjiang region were not prominent, the dust was evidently from
Kazakhstan and entered Xinjiang along the Tianshan Mountains.

As evident, the AOD from the simulation was generally lower
than that retrieved by MODIS, particularly in eastern China. The
primary reason for the underestimation is that the MODIS detected
all types of aerosols, including black carbon, sulfate, and
anthropogenic organic carbon, which were excluded in the
current simulation. Moreover, the simulated AOD was also
smaller than MODIS retrievals over the main desert areas
(Qaidam Basin, Gobi Desert, Taklimakan Desert, etc.), partly
because the MODIS overestimates the AOD magnitude over the
semi-arid area due to large uncertainty related to the assumed
surface reflectance (Remer et al., 2005; Levy et al., 2013). Overall,
the spatial pattern of AOD from RegCM 4.6 simulation was similar
to that fromMODIS over the dust source region; however, the AOD
was generally smaller. The dust emission is activated in the grid cell
when the friction velocity, resolved as a function of RegCM
4.6 simulated wind speed and surface roughness, is higher than
the minimum friction velocity threshold calculated with surface
roughness and soil moisture (Zakey et al., 2006). The overestimated
areas were between the Tianshan and Altay mountains, while the
underestimated area was distributed in the Taklimakan Desert. The
bias should be caused by complex topography and atmospheric
circulation in the region which the model cannot effectively deal
with (Liu et al., 2021).

3.4 Temporal–spatial distribution of NSR
during this black storm episode

From the spatial distributions of the NSRSUR during April 25–29
(Figures 10A, C, E, G, I), the NSRSUR under the cloud-free condition
was with a zonal distribution of “high in the south and low in the
north.” Solar radiation was weak in high latitudes but strong in low
latitudes (Liu et al., 2006). Xinjiang, the Himalayas, and the Saryesik
Atyrau Desert in Kazakhstan had lower radiant fluxes, and the
strong scattering effect of dust aerosols on solar radiation caused a
decrease in NSRSUR (Zhang et al., 2018). On the 25th, there was an
apparent low-value area of the NSRSUR, which was between
160–180 W•m-2 and simultaneously corresponded to the high-
value area of AOD in the Atyrau Desert of Sareyesik. On the
26th, the NSRSUR in the central Tarim Basin of Xinjiang and the
northern Junggar Basin, with high AOD values, were both small
(below 170 W•m-2). On the 27th, the low-value area of NSRSUR in
Xinjiang and Kazakhstan was enlarged, NSRSUR in most areas of
Xinjiang was between 170–180 W•m-2, and there was a low value
below 170 W·m-2 in the central part of the Tarim Basin. From
28–29th, the low-value area of NSRSUR moved eastward, and the
range of the low-value area in western Inner Mongolia expanded on
the 29th.

From the spatial distributions of NSRTOA under the cloud-free
condition on April 25–29 (Figures 10B, D, F, H, J), the NSRTOA was
generally higher than the NSRSUR. The basin and the Himalayas
were still the low-value areas, whereas the low-value areas in
Kazakhstan were relatively inconspicuous. The NSRTOA of the
Tarim Basin was low on April 25 (260–280 W•m-2), and the low-
value area expanded during April 26–27, with the NSRTOA falling
below 240 W•m-2. Meanwhile, the radiation flux in the Saray Atyrau
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FIGURE 10
Spatial distributions of NSRSUR (A, C, E, G, and I) andNSRTOA (B, D, F, H, and J) under the cloudless condition in eastern Asia during April 25–29, 2015.
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FIGURE 11
Spatial distributions of ADRFSUR (A, C, E, G, and I) and ADRFTOA (B, D, F, H, and J) from dust aerosols in eastern Asia during April 25–29, 2015.
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Desert in Kazakhstan decreased to approximately 290 W•m-2. On
April 28–29, the NSRTOA of Xinjiang was higher than that on April
27–28, and the low-value area over Kazakhstan disappeared.

3.5 Temporal–spatial distribution of ADRF
during this black storm episode

According to the spatial distributions of ADRFSUR onApril 25–29
(Figures 11A, C, E, G, I), the dust aerosols had a significant cooling
effect on the ground. All of the ADRFSUR corresponding to the high-
value areas of AOD was negative, whereas the ADRFSUR of the areas
with fewer dust aerosols was close to 0. On April 25, the ADRFSUR in
the Saryesik Atyrau Desert in Kazakhstan was the largest (up
to −91W•m-2). On April 26, the ADRFSUR was more significant
in the Sareysike Atyrau Desert, the Gurbantungut Desert in the
Junggar Basin, and the western part of the Taklimakan Desert,
where the AOD was greater than 0.9, with ADRFSUR ranging
between −65 and −78W•m-2. On April 27, the ADRFSUR was
between −19 and −32W•m-2 in some areas of Xinjiang, where the
AOD was between 0.4 and 0.7. On April 28, a high-value area of

ADRFSUR appeared in the Junggar Basin, up to −80W•m-2, and there
was a palpable correspondence with the high-value area of AOD in
spatial distribution. ADRFSUR was above −70W•m-2 in areas where
the AOD value was higher than 0.7. With regard to the spatial
distributions of the ADRFTOA on April 25–29 (Figures 11B, D, F,
H, J), the maximum ADRFTOA was above −24W•m-2, which was
approximately a quarter of ADRFSUR. On April 25–28, the Saryesik
Atyrau Desert in Kazakhstan was an area with high ADRFTOA,
particularly during April 25–27; the ADRFTOA in this area was
higher than −24W•m-2. ADRFTOA in most parts of Xinjiang was
approximately between 0 and −12W•m-2. On April 29, the western
part of Inner Mongolia was the high-value area of ADRFTOA with a
clear correspondence with the high-value area of AOD.

As for the dust-induced radiative forcing, Kaskaoutis et al. (2019)
examined the multiple dust storms that hit the eastern Mediterranean
and Greece during March 2018; consequently, the ADRF estimates
revealed a significant impact of dust on the radiation budget, with
large (~−40 to −50W•m−2) decrease in SSR and an overall cooling
effect at the TOA (~−5 to −30W•m−2). Wang (2013) noted that along
with a heavy dust storm in northwestern China during April 24–30,
2010, for the Minqin and Semi-Arid Climate and Environment

FIGURE 12
Spatial distributions of TRSUR in eastern Asia during April 25–29, 2015 [(A) April 25th; (B) April 26th; (C) April 27th; (D) April 28th; and (E) April 29th].
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Observatory of Lanzhou University (SACOL) sites, the net dust
aerosols direct radiative forcing ranged
between −6 and −31W•m−2 at the surface and 6–36W•m−2 at the
TOA. Huang et al. (2009) found that the average daily mean ADRF
during a dust storm over the Taklimakan desert was
44 and −42W•m−2 at the TOA and surface, respectively.
Comparatively speaking, the black storm in our study had a
stronger effect on radiation, and the resulting dust aerosols caused
a greater degree of the radiation attenuation with a more significant
cooling effect at the TOA and surface.

3.6 The near-surface temperature response
to dust aerosols

Under the influence of the cold air accompanying the dust
weather, the near-surface temperature in most areas decreased
significantly, with a descending range of about 3.69°C–11.09°C.
The near-surface temperature in Urumqi decreased from 16.00°C
on the 25th to about 5.00°C on the 28th to 29th.

To further analyze the effect of dust aerosols produced by the
black storm on near-surface temperature, we conducted two
simulations under the condition that mode settings except the
aerosol module remained unchanged; consequently, the TRSUR of
dust aerosols was obtained. From the spatial distributions of TRSUR

in eastern Asia during April 25–29, 2015 (Figure 12), a cooling
phenomenon was observed in Xinjiang and Kazakhstan, affected by
dust aerosols from the black storm. On April 25, the temperature in
Xinjiang when dust aerosol appeared was 0.40°C–1.10°C lower than
when there was no dust. On April 27, the area with a significant
temperature decrease wasTarim Basin, where the temperature
decreased by 0.30°C–1.60°C, and its center temperature decreased
by 1.60°C–2.90°C. The region with a significant temperature
decrease corresponded to the high-value region of ADRFSUR
because the sensible heat flux entering the atmosphere can
balance the surface shortwave radiative forcing of sand and dust
for the cooling effect to be more pronounced in the region with
significant surface shortwave radiative forcing. On April 29, sand
and dust particles moving to western Inner Mongolia cooled down
the region between 0.60°C–1.10°C. This further shows that dust
aerosols have a cooling effect near the ground and that cooling of
more than 2.00°C could occur in areas with high dust content.
Researchers have analyzed the effect of eastern Asia dust aerosols on
temperature and found that the ADRF can influence the rate of local
temperature change and relative humidity; in addition, dust aerosols
decrease the surface temperature in entire eastern Asia by
approximately 0.21°C (Su et al., 2016; 2017).

4 Conclusion

Atmospheric dust aerosols from dust storms can strongly scatter
and absorb solar radiation, influencing the amount of solar radiation
at the TOA and surface, and consequently, the near-surface
temperature. Based on RegCM 4.6 simulation, combined with
MODIS satellite retrieval, meteorological, and environmental
observational data, this study reported the pollution situation,
weather background, and backward trajectory during the black

storm in Xinjiang during April 26–29, 2015. We also analyzed
the temporal–spatial distribution of AOD, the effects of dust
aerosols on solar radiation, and the near-surface temperature
under this extreme weather condition.

This black storm, with PM10 as the major pollutant, was most
severe on the 27th for the capital city of Xinjiang, Urumqi; the AQI,
PM10, and PM2.5 increased, reaching their respective peaks of 500,
1,000 μg•m-3, and 628 μg•m-3, respectively. In addition, during the
black storm, a large area of dust appeared in the southern Xinjiang
Basin, and the main dust body displayed movement from east to
west in southern Xinjiang from 27th to 29th. From the weather
background, we can deduce that this process was caused by the
surface cold high pressure and frontal transit under the background
of the upper-air circulation of “two troughs and two ridges.” The
climatic conditions in spring provided abundant sand sources for
the occurrence of this black storm. The eastward movement of the
cold front and the upper westerly winds continuously transmitted
the dust aerosols carried by the dust to Inner Mongolia, North
China, and other regions downstream, affecting a large range of East
Asia. The backward trajectory showed that the air masses with the
pollutants primarily originated from Xinjiang and Central Asia,
entered Northern Xinjiang under the action of southwest airflow,
and reached Urumqi along the north slope of Tianshan Mountain
before pouring east into southern Xinjiang Basin.

Combined with the AOD from the satellite remote sensing and
model simulation, we found that the dust of this black storm was
from Kazakhstan, entered Xinjiang on April 27, and moved from the
east to west in the Xinjiang region. Under the effect of geographical
and climatic conditions, the areas with high AOD were mostly in
desert regions and basins, including the Taklimakan Desert, whereas
the low-value areas were primarily mountainous areas with
relatively high altitudes. The AOD from RegCM 4.6 was
generally lower than that of MODIS since the aerosol models of
the MODIS and RegCM 4.6 are different and influenced differently
by different underlying surfaces and climatic conditions.

Moreover, the dust aerosols from this black storm caused a
significant decrease in NSR both at the TOA and surface, which was
more significant at the surface. The cooling effect was more
prominent in the regions with high AOD. ADRFSUR was
above −70 W•m−2 in areas where the AOD value was higher
than 0.70. The cooling effect at the TOA was not as significant
as that at the surface; the maximum ADRFTOA was
above −24 W•m−2, which was approximately a quarter of the
surface. Moreover, the ADRF from dust aerosols decreased the
near-surface temperature decrease, and the region with a
significant temperature decrease corresponded to high-value areas
of ADRFSUR/AOD. During this black storm, the near-surface
temperature response to dust aerosols with high AOD was
approximately 0.40°C–2.90°C; specifically, the TRSUR was above
2.00°C and the maximum reaching 2.90°C at the center of the
black storm, with the near-surface temperature in most areas
decreasing to approximately 3.69°C–11.09°C because of cold air.
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