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Urban heat islands (UHI) are developing due to increasing urbanization and loss of
vegetation in major cities in India. Increased urbanization modifies the urban
microclimate that leads to significant land-use changes resulting in surface
conversion and heat release, which poses serious risks to human health,
environment and the ecosystem of the Himalayan ecosystem. Hence, mitigating
UHI becomes important and requires a better understanding of underlying
associated biophysical processes. In the study an attempt has been made to
demonstrate the impact of urbanization on land surface temperature (LST) in
Shimla and Dehradun, capitals of the Western Himalayan states, India using
satellite data and spatial metrics. The process was analyzed using urban coverage
patterns obtained from Landsat 5, 7, and 8 and corresponding sensors from TM,
ETM+, and OLI. The Built-up and Non-Built-up areas were extracted and the
biophysical parameters NDVI, NDBI, NDWI and LST were calculated to capture
different features of urban growth. The result indicated, that the built-up area
increased from 32.19 km2 (2000) to 68.37 km2 (2016) in Dehradun and from
12.38 km2 (2000) to 29.47 km2 (2016) in Shimla during the study period, resulting
in an increase in NDBI and LST and Reduction and NDVI and NDWI. Results showed
that temperature hotspots were largest in urban areas, followed by vegetation and
water bodies. A significant correlation (p < 0.05) was observed between LST and
biophysical parameters -NDVI, NDBI, NDWI. Spatial metrics at the class and
landscape levels show that increased urban growth from 2000 to 2016 has made
the landscape fragmented and more heterogeneous. The Identified trends and
changes in landscape patterns and their impact on heterogeneous urban areas
suggest that the study is feasible to estimate LST, NDVI, NDBI and NDWI with
reasonable accuracy that will likely have influence on policy interventions.
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1 Introduction

An increase in surface temperature on account of the reduction in vegetated surface and its
conversion into impervious surfaces in urban areas is one of the most pressing issues cities
confront nowadays (Mallick et al., 2008). These changes affect numerous aspects of cities,
including land use, transportation, infrastructure and the environment (Weng et al., 2004;
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Mallick et al., 2008). Urbanization being a global process and is
occurring at an escalating rate in developing countries and
continuously modifying the land use pattern (Sharma and Joshi,
2012). Increased urbanization contributes to environmental
degradation, one of the primary drivers of climate change (Chen
et al., 2006; McCarthy et al., 2010). Large-scale urbanization has a
distorting effect on the climate in cities and the areas around them (Liu
et al., 2018). Conversion of vegetated surfaces to urban land use
categories and urban areas experienced an increase in surface
temperature and on the verge of developing urban heat islands
(Giridharan et al., 2004; Neteler, 2010; Ogashawara and Bastos,
2012; Grover and Singh, 2015).

An important factor in comprehending the land-surface process at
both the regional and global scales is the land surface temperature
(LST), which serves as a primary indication of the Earth’s energy
balance (Dewan et al., 2009; Peng et al., 2018). LST is influenced by
vegetation and the amount of water in the soil, which provide
important information about how numerous environmental
systems are operating (Weng et al., 2004; Rashid et al., 2022).
Using meteorological data to predict long-term land surface
temperature (LST) change is challenging because of the insufficient
and sparse availability of meteorological stations in these regions
(Zhou et al., 2019). Remote sensing has proved to be one of the
vital technologies for providing valuable information such as temporal
land cover change analysis and risk analysis at various scales (Punia
and Singh, 2012; Guha et al., 2020) and modeling the urban growth
patterns (Bhatta, 2009). Satellite images are frequently utilizing to
investigate the rate and scope of urbanization on a global and regional
scale (Keles et al., 2007; Mishra et al., 2020; Ashwini and Sil, 2022). It
provides more detailed view of the human landscape (Carlson, 2003)
when superimposed on demographic or geographic data (Joshi et al.,
2001; Roy and Tomar, 2001; Rawat and Kumar, 2015).

Several researches have been conducted on assessing the urban
built-up and the relationship of NDVI, NDWI, NDBI on LST in
foreign nations. There have not been many studies done in India, and
those that have been done have primarily focused on megacities like
Delhi (Mallick et al., 2013), Mumbai (Grover and Singh, 2015),
Chennai (Lilly Rose and Devadas, 2009), Jaipur (Jalan and Sharma,
2014), Bangalore (Ramachandra et al., 2012b), and Hyderabad
(Wakode et al., 2014). In the Himalayan foothills, new urban areas
are growing at the expense of agricultural and forested land, changing
the region’s environment (Munsi et al., 2009). However, a few studies
have been conducted for cities in the Himalayan region that
determined the degree of relationship between water, vegetation,
and built-up areas on LST (Kuldeep and Kamlesh, 2011; Pal and
Ziaul, 2017). These human activities have resulted into modification of
the environment and consequent habitat loss and fragmentation of
landscape (Midha et al., 2010). The anthropogenically caused urban
development patterns and their effects on forest health are
characterized by means of landscape metrics (Munsi et al., 2010;
Srinivasan et al., 2022). Many scholars have used landscape spatial
analysis in conjunction with geographic information systems as a
useful method for tracking urban planning and growth (Pham and
Yamaguchi, 2011; Triantakonstantis and Stathakis, 2015; Annes et al.,
2018).

Therefore, it’s become critical to minimize the rise in land surface
temperature and consequent emergence of UHI through monitoring
and implementing appropriate land-use plans. In view of this, the
present study examines the relationship between surface biophysical

parameters and surface temperature variation (LST) which have
occurred in the mountain regions in the past few decades, and also
to estimate the role played by the urbanization on LST in space and
time. The study is primarily focused on the dynamics of urban growth
using Landsat TM, ETM, OLI satellite data and spatial metrics for two
Indian Himalayan cities Dehradun and Shimla from 2000 to 2016.
These two cities have witness drastic changes in land use categories
primarily on account of increased built-up areas, conversion of
agriculture and forest land, and economic developmental projects
in the last 2–3 decades. Moreover, we assessed how vegetation
(NDVI), Hydrology (NDWI) and Built-up (NDBI) have an impact
on LST. Spatial and temporal fragmentation of these two cities have
also been studied using landscape metrics to quantify the structure of
the landscape. The findings of this study may prove beneficial for city
planners and policymakers for the sustainable management of these
two Himalayan cities.

2 Material and methodology

2.1 Study area

Dehradun, the capital of Uttarakhand, is 450 m above sea level and
situated in the Doon valley in the Garhwal region of northern India
between the latitudes of 29°58′N and 31°2′N and 77°34′E and 78°18′E.
(Figure 1). The area is home to important national parks and wildlife
refuges such Rajaji National Park, BenogWildlife Sanctuary, and Asan
Conservation Reserve. It falls within the category of a humid
subtropical climate. While the average winter temperature ranges
from 1–20°C, the summer temperature can reach 44°C for a few
days. Dehradun had 1,696,694 residents in 2011 according to the
census conducted in India (http://censusindia.gov.in). The state of
Himachal Pradesh in northern India, which is situated in the foothills
of the Himalayas, has Shimla as its capital. Seven distinct hills in total
comprise Shimla and is located between 31.61 N and 77.10 E. The
district, which is located at an elevation of 2206 m and is surrounded
by Mandi, Kullu, Kinnaur, and Uttarakhand state (Figure 1).
According to the Koppen’s climate classification, it has a
subtropical highland climate. In the summer, the average
temperature ranges from 19°C–28°C, and in the winter, it ranges
from −1–10°C. Shimla city had an estimated 814,010 residents as per
the 2011 India census (http://censusindia.gov.in). The two cities being
states capitals and also a tourist place have undergone remarkable
changes in land use categories resulting into conversion of forested
and agriculture lands into built-up areas. This necessitated having a
scientific understanding of current land use categories so as to
formulate proper policy framework for sustainable management of
the two Himalayan cities.

2.2 Acquisition of satellite data

The United States Geological Survey (USGS) Earth Explorer
(http://earthexplorer.usgs.gov/) was used to collect data for the
Landsat series satellites over a 16-year period (2000–2016). Table 1
lists the path/row and other characteristics of the satellite data. Landsat
data were chosen because of their wider availability in the public
domain-spatially and temporally at medium resolution besides
containing thermal bands that were used in calculating land surface
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temperature to understand urban dynamics and thermal behavior of
the environment focusing on surface physical characteristics in the
form of temperature. Google Earth images were additionally employed
in the study for visual interpretation and confirmation.

2.3 Image processing

Satellite data when taken has some form of errors associated with
it. This error should be removed by using appropriate algorithms for
scene matching and change detection analysis. Satellite data

pre-processing include atmospheric correction, geometric
correction, and radiometric correction. The acquired data were
geometrically and atmospherically corrected and layer stacked
using ERDAS IMAGINE 9.1. The boundary layer of Shimla and
Dehradun city was procured and a buffer of 5 km was created and
clipped for each image from their respective stacked images using the
Arc GIS 10.3. Later on and false color composite (FCC) images were
created. All the clipped images were classified using the unsupervised
nearest neighborhood classification technique wherein the software
disparate a large number of obscure pixels based on the reflectance
values into classes without direction from the user (Tou Gonzalez,

FIGURE 1
Study area location map with buffer zone of 5 Km.

TABLE 1 List of cities with specifications of satellite data.

City Date Satellite/Sensor Path/Row Resolution (m)

Dehradun 25-Nov-2000 Landsat 7/ETM+ 146/39 30

Shimla 15-Oct-2000 Landsat 7/ETM+ 147/38 30

Dehradun 12-Oct-2008 Landsat 5/TM 146/39 30

Shimla 15-Oct-2008 Landsat 5/TM 147/38 30

Dehradun 12-Oct-2016 Landsat 8/OLI 146/39 30

Shimla 04-Nov-2016 Landsat 8/OLI 147/38 30
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1974). The statistical groupings in the data were controlled by a
clustering algorithms application. Each image was divided into five
classes: forest, agriculture, open land, water body, and urban area. The
classified images were afterwards adjusted with Google Earth, recoded
with the ERDAS recode option, and then divided into two classes,
Built-up and Non-Built up areas. According to the following
equations, biophysical parameters including LST, NDVI, NDWI,
and NDBI as well as spatial matrices were calculated.

2.4 Calculation of LST from thermal bands

2.4.1 Conversion from DN to spectral radiance (Lλ)
Every object above absolute zero (K), emits electromagnetic

radiation in the form of Thermal Energy. Spectral radiance was
calculated using Eq. 1 (Landsat Project Science Office, 2002;
Chander et al., 2009).

Lλ � Gain XDN + Bias � L max − L min

255
( )XDN + Bias (1)

where, Gain = Slope of radiance/DN conversion function, Lλ =
Spectral radiance at the sensor’s aperture (Wm−2sr−1µm−1), Bias =
L min, Lmax and Lmin = Spectral radiance maximum and minimum for
band 6 at DN 0 and 255 respectively (obtained from the metadata file),
DN = digital number or pixel value or brightness value.

2.4.2 Conversion of radiance to top of atmosphere
reflectance (TOA)

The depletion in between-scene variability was achieved by the
normalization process for solar irradiance by changing spectral
radiance to the top of atmosphere reflectance. The combined
surface and atmospheric reflectance of the image was calculated
following Eq. 2 (Chander et al., 2009).

ρp λi( ) � π X d2 X Lλ
ESUN X COS θ (2)

where, ρp(λi) = Planetary TOA reflectance, Lλ = spectral radiance at
the sensor’s aperture, d = Earth-Sun distance in astronomical units
(0.9967616), ESUN = Mean Exoatmospheric solar irradiance and Ɵ =
solar zenith angle in degrees (45.240).

2.4.3 Calculation of at-sensor brightness
The effective at-sensor brightness temperature (Tb) also known as

black body temperature was derived from the spectral radiance using
Plank’s inverse function. At-sensor brightness temperature under the
assumption of uniform emissivity was calculated following (Weng and
Lu, 2008).

Tb � K2

ln K1
Lλ
+ 1( )

(3)

Where, Tb = brightness temperature in Kelvin, Lλ = radiance of
thermal band and K1 and K2 are the pre-launched calibration
constants.

2.4.4 Calculation of NDVI
For calculation of LST, emissivity corrected images were required

which were calculated using a modified NDVI threshold method using
Eq. 4 (Sobrino et al., 2004).

NDVI � λNIR − λRED
λNIR + λRED

(4)

where, λNIR =Wavelength of NIR band (band 4 of TM and ETM + and
OLI band 5) and λRED = Wavelength of Red band (band 3 of TM and
ETM + and OLI band 4)

Values between 0 and 1 indicate vegetation cover, nearer to
1 indicate higher vegetation density.

2.4.5 Emissivity correction
The temperature readings from above are expressed in terms of a

black body. As a result, spectral emissivity (ε) modifications were
required based on the kind of land cover. The thermal band data was
transformed from effective at-sensor brightness temperature to at-
sensor spectral radiance. Therefore, emissivity effects are taken into
account if the Earth’s surface is a blackbody and includes air effects
(absorption and emission along the path). The method for emissivity
adjustment that is most frequently employed is the NDVI threshold
method. Using a spatial model maker in the ERDAS, the NDVI
generated pictures were applied for the emissivity adjustment.

2.4.6 Calculation of LST from emissivity
The land surface temperature was calculated using Eq. 5 (Artis and

Carnahan., 1982)

LST � Tb

ln ε σλTb
hc( ) + 1

(5)

where, Tb = Brightness temperature, ε = Final Emissivity, λ = Effective
wavelength, σ = Boltzmann constant (1.38*10−23 J/K), h = Plank’s
constant (6.626*10−24Js) and c = velocity of light in vacuum
(2.998*108 m/s).

Finally, to comprehend easily, the derived LST was converted to °C
using the relation 0°C = 273.15 K.

2.5 Normalized difference built-up index
(NDBI)

NDBI automatically maps built-up features of urban areas which
were computed following the method devised by Zha et al., 2003). The
method takes advantage of the spectral feature of built-up areas and
other land covers (He et al., 2010).

NDBI � λMIR − λNIR
λMIR + λNIR

(6)

Where, λNIR and λMIR are the wavelengths of Near-Infrared (TM band
4, ETM + band 4 and OLI band 5) and Middle Infrared band (TM
band 5, ETM + band 7 and OLI band 6) respectively.

2.6 Normalize difference water index (NDWI)

NDWI is an index that estimates the moisture content of the
vegetation canopy. It uses two NIR channels (Gao et al., 1996). It
provides important information regarding the conversion of a
vegetated area to a non-vegetated area.

NDWI � λNIR − λSWIR

λNIR + λSWIR
(7)
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Where, λNIR and λSWIR are the wavelengths of the near-infrared (band
4 of TM and ETM + and OLI band 5) and short-wave infrared (band
5 of TM and ETM + and OLI band 6) band respectively.

2.7 Degree of association between NDBI,
NDVI, NDWI and LST

More than 100 points from the LST image were randomly picked,
and the NDVI, NDBI, and NDWI values associated with those points
were calculated in order to assess the association between LST and

these metrics. Analysis of correlations between LST values and each
biophysical parameter’s related values was done. Additionally,
regression analysis for NDVI, NDBI, and NDWI was performed to
determine how variations in land-use intensity through time and space
affect LST.

2.8 Spatial metrics analysis

Spatial metrics are a crucial tool for measuring and quantifying
urban sprawl (Herold et al., 2005) and have been used to explicitly

TABLE 2 Details of class and landscape level metrics used in the study, following (McGarigal, 2015).

Metrics Formula Range Description

Edge Density
ED � ∑m

k�1eik
A (10, 000) (class level) or ED � E

A (10, 000)
(landscape level)

ED > 0, No limit ED equals the sum of the lengths (m) of all edge
segments involving the corresponding patch type (class
level) or the landscape level divided by the total
landscape area (m2), multiplied by 10,000 to convert
into hectare. Higher value indicate the increasing
fragmentation of corresponding class

eik = total length (m) of edge in landscape involving patch
type (class) i; includes landscape boundary and
background segments involving patch type i

E = total length (m) of edge in landscape A = total
landscape area (m2)

Contiguity Index
CONTIG � [∑

z

r�1 cijr
aij

]−1
V−1

0 ≤ CONTIG ≤1 CONTIG equals the average contiguity value for the
cells in a patch minus 1, divided by the sum of the
template value minus 1. It assesses the spatial
connectedness, of cells within a grid-cell patch to
provide an index on patch boundary configuration and
thus shape (LaGro 1991)

Cijr = Contiguity value for pixel r in patch ij, V= Sum of
the value in 3 by 3 cell template aij = area of patch ij in
terms of number of cells

Total Edge TE � ∑m

k�1eik
TE > 0 Without limits TE equal the sum of the lengths (m) of all edge

segments involving the corresponding patch type. TE at
class level is an absolute measure of the total edge length
of a particular patch type

Eik = total length (m) of edge in landscape involving
patch type (class) i, includes landscape boundary and
background segments involving patch type i

Perimeter area ratio PARA � Pij

aij
PARA>0 PARA equals the ratio of the patch perimeter (m) to

area (m). It is measures of shape complexity

Pi = perimeter (m) of patch ij

aij = area (m) of patch of ij No limits

Shape Index SHAPE � 0.25 pij��
aij

√ SHAPE ≥1 Without limits SHAPE equals patch perimeter (m) divided by the
square roots of patch area (m2), adjusted by a constant
for a square standard. It is 1 when the patch is square
and increases without limit as patch shape becomes
more irregular

Pi = perimeter (m) of patch ij

aij = area (m) of patch of ij

Shannon’s Diversity SHDI � −∑m

i�1(Pi*lnPi) SHDI ≥0 No limit SHDI equal minus times the sum, across all patch types,
of the proportional abundance of each patch type
multiplied by that proportion. Higher value indicates
higher landscape diversity

Pi = Proportion of the landscape occupied by class i, m =
NP types (classes) present in the landscape

Simpson’s Diversity SIDI = 1-∑m

i�1pi
2 0 ≤ SIDI <1 SIDI equals 1 minus the sum, across all patch types, of

the proportional abundance of each patch type squared.
It is 0 when the landscape contains only 1 patch. SIDI
approaches 1 as the number patch types increases and
the proportional distribution of area among patch type
become more equitable

Pi = Proportion of the landscape occupied by patch type
(class) i

Simpson’s Evenness Index
SIEI � 1−∑m

i�1pi
2

1−( 1
m)

0 ≤ SIEI ≤1 SIEI equals 1 minus the sum, across all patch types, of
the proportional abundance of each patch types
squared, divided by the number of patch types. It is
expressed such that an even distribution of area among
patch types results in maximum evenness

Pi = Proportion of the landscape occupied by patch type
(class) i

m = number of patch types (classes) present in the
landscape, excluding the landscape border if present
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capture spatial variation and the morphological aspects of urban
formations (Herold et al., 2003; Prastakos et al., 2012). It is a
spatial pattern analysis application for quantifying landscape
structure, created for category maps to work with geospatial data
and assist the user in categorizing landscape patterns and metrics as
well as identifying the region where land use activities have led to
fragmentation (Martin Balej, 2012). At the patch, class, and landscape
levels in landscape ecology, spatial metrics measures offer valuable
numerical descriptions (Yu and Ng, 2006; Martin Balej, 2012;
McGarial, 2013). Utilizing FRAGSTATS 4.2 (McGarial and Mark,
1995), landscape metrics were computed at the landscape and class
level to better understand the factors influencing urban transitions.
Altogether six metrics were used for landscape-level (Table 2) namely
Total Edge (TE), Edge density (ED), Shape Index (SHAPE), Shannon’s
index (SHDI) (Shannon and Weaver, 1949), Simpson’s index (SIDI),
Simpson’s Evenness Index (SIEI) and five metrics at class level namely
Contiguity Index (CONTIG), Perimeter area ratio (PARA), Edge
density (ED), Total Edge (TE) and shape index (SHAPE) are
computed to know land-use changes which can be correlated with
the degree of urbanization (Dasgupta et al., 2009). The specified
parameters are helpful in locating the primary factors that
represent urban dynamics. Edge density (ED) is the length of the
edge per unit area. The best way to think of edge metrics is as a
representation of the landscape. CONTID is used to create the
landscape aggregate (Herold et al., 2002). The total number of
edges in a landscape is correlated with its level of spatial variability.
The shape index (SI) measures the complexity of the patch shape with
a standard shape. Landscape composition is quantified through
diversity measures. SHDI, SIDI and SIEI were computed to
understand the fragmentation because of urban sprawl (Joshi et al.,
2006; Fenta et al., 2017). Simpson’s index gives the likelihood that any
two patches when selected at random will be of different types. The
higher the SIDI value, the greater would be the diversity.

2.9 Method adopted for validation

500 testing points that were uniformly dispersed over the whole
region of interest chosen at random and used to evaluate the
accuracy of the data. These measurement locations points were
employed for each time period, NDBI, NDVI, NDWI, built-up and
non-built-up conditions. A field survey and Google Earth were
used as the foundation for the validation. We estimated overall
accuracy (Story and Congalton, 1986) for validation as we had two
classes to validate. The overall accuracy was computed as overall
accuracy (%) = Number of correct samples/total samples × 100%
(Congalton and Green, 1999). Based on the meteorological station
data obtained from the World Meteorological Station Climate
Explorer data (https://climexp.knmi.nl/start.cgi), the Land
Surface Temperature Model for both Dehradun and Shimla was
validated. The daily temperature data was selected for October and
November for the years 2000, 2008 and 2016 and compared against
the mean temperature derived from the land surface temperature
model. The LST model was also verified from the climate research
unit (CRU) time series high resolution (0.5° × 0.5°) gridded
temperature datasets (Harris et al., 2020). The monthly
temperature data from the CRU was retrieved for the respective
month and year of satellite data collection and compared against
the mean LST model derived temperature.

3 Result and discussion

3.1 Land cover change analysis

Considering the interest of the study two classes i.e. built-up
and Non-built up have been generated for the two cities. Dehradun
has ascribed the conversion of non-urban regions including forests,
grasslands, fallow land, and agricultural land to built-up areas over
a sixteen-year period to an increase in population (Figure 2A). The
area that was considered to be urbanized in 2000 was 32.19 km2,
and that area expanded to 55.94 km2 in 2008 and then to 68.37 km2

in 2016. In the city’s center, the built-up area became more
concentrated. The sprawl surrounding the city’s center
continued in 2008 and reached the outside of the city limits.
Urban areas clearly grew between 2000 and 2008, which is
linked to the rise in population. However, in 2016 both the
central city and the surrounding areas saw a concentration of
urban expansion. The center of the city now has a higher
concentration of built-up areas. Shimla’s urban sprawl map
divides the area into two categories: built-up and non-built-up
(Figure 2B). The built-up area underwent a leapfrogging effect
between 2000 and 2008, which indicates a quick transformation.
The pattern of urbanization has become more dispersed and less
concentrated throughout the central area. Urbanization was
calculated for an area of 12.38 km2 in 2000. By 2008, that area
had nearly doubled to 23.63 km2, and by 2016, it had grown even
more to 29.47 km2. Several studies in the Himalaya highlighted
similar changes in land use land cover changes by Gautam et al.
(2002); Mishra et al. (2020); Ashwini and Sil, (2022). Bhatt et al.
(2017) have also found significant land use changes to urban area
during 2004–2014 in the Dehradun city resulting in sharp decline
in agriculture, fallow and vacant land.

Based on a random selection of 500 testing points for each city and
time period, the accuracy of the classified images, LST, and other
biophysical parameters such as NDVI, NDBI, and NDWIwere verified
and compared. Overall accuracy was determined to be 93.2% (2000),
94.8% (2008), and 96.7% (2016) for Dehradun and Shimla,
respectively, and to be 95% (2000), 96.6% (2008), and 97% (2016)
for Dehradun. Overall NDVI accuracy was found to be 92.72% (2000),
94.72% (2008), and 95.81% (2016) for Dehradun, and 95.2% (2000),
93.4% (2008), and 92.2% (2016) for Shimla. In terms of overall
accuracy, NDBI was reported to be 91.81% in 2000, 96.18% in
2008, and 95.27% in 2016. For Shimla, it was 96% in 2000, 94.4%
in 2008, and 94.2% in 2016. The NDWI accuracy for Dehradun was
95.81% (2000), 96.72% (2008), and 96.54% (2016), and that it was
92.8% (2000), 92.4% (2008), and 93.6% (2016) for Shimla. The
accuracy of the classified map shows increasing trend over time for
both the cities possibly because of the availability of higher resolution
imageries in recent times. The Pearson’s correlation between the
temperature deduced from LST and the daily temperature data for
October and November was calculated for LST validation and assessed
at the 0.01 level of significance. Dehradun’s correlation coefficient
values were determined to be 0.4602, 0.562, and 0.634 in 2000, 2008,
and 2016 correspondingly, while Shimla’s values were 0.485, 0.62, and
0.586 in those same years. At the 0.01 level, each of these values was
significant. Additionally, a 2–4°C temperature disparity was noted
between the LST model and meteorological station temperature.
Additionally, it was discovered that the monthly temperature
obtained from gridded climatic records varied by 3–6°C. It can be
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inferred that LST-derived temperature is reliable as a result of these
strong correlations.

3.2 Degree of association of different
biophysical parameters with LST

The association between LST and various biophysical factors
(Table 3) was examined in order to statistically characterize the
variation in LST. At 5% and 1% confidence levels, the Pearson’s
correlation values were considered significant. The built-up areas have
the most influence over LST, according to the correlation coefficient
(R) between various LST deriving factors and LST (R of LST vs. NDBI
ranges from 0.57 to 0.69 for Dehradun and from 0.17 to 0.68 for
Shimla), followed by water bodies (R of LST vs. NDWI ranges
from −0.07 to −0.29 for Dehradun and from −0.17 to −0.68 (R of
LST vs. NDVI range from −0.45 to −0.73 for Dehradun and
from −0.1 to −0.70 for Shimla). Therefore, it is clear that the LST
is positively connected with NDBI and negatively correlated with
NDVI and NDWI. As a result, greater land surface temperatures are
observed in places with less vegetation and water, whereas higher
built-up areas suffer lower LST.

3.3 Change in land surface temperature (LST)

The regional distribution of the surface temperature in
Dehradun is depicted in Figure 3A. The LST for Dehradun varies
from 11.68°C to 32.64°C in 2000 (mean 23.68°C and SD 1.58),
11.42°C–32.85°C in 2008 (mean 26.49°C and SD 4.26) and
13.67°C–33.41°C in 2016 (mean 24.54°C and SD 1.16). According
to Figure 3B, the temperature in Shimla ranged from 11.2°C to
28.34°C (mean 33.67°C and SD 5.80) in 2000, 13.0°C–30.6°C (mean
32.31°C and SD 4.74) in 2008, and 11.5°C–32.8°C (mean 24.78°C and
SD 2.49) in 2016. It has been noted that the central region has high
temperatures, which may be related to the area’s dense urbanization,
while the forested regions saw moderate temperatures. The radiant
temperature is lowered by natural plants or forests because they
decrease the amount of heat that is absorbed into the soil through
evapotranspiration. Shimla has seen similar patterns as more and
more forested areas are turned into urban areas, which has led to an
increase in temperature. LST is impacted by a variety of other factors
in addition to changes in land use, which together cause changes in
LST. These factors are natural and human. Natural factors that
influence the LST include changes in the local hydrological cycle,
global climate change, and a wide range of others. In terms
anthropogenic, population growth has been a significant factor in
addition to economic activities. In the past 2 decades, the population
of the Dehradun and Shimla has multiplied, increasing both the
urban population and urban clusters.

3.4 Association of NDBI with LST

Figures 4A, 5A in the NDBI classifications for Dehradun and
Shimla, respectively, demonstrate the spatial distribution and intensity
of urban areas for the years 2000, 2008, and 2016, respectively. Both
the spatial extent and intensity of urbanization were reported to have

FIGURE 2
Classified map of Dehradun (A) Shimla (B).

TABLE 3 Pearson’s correlation between LST and biophysical parameters.

Dehradun Shimla

Parameters 2000 2008 2016 2000 2008 2016

NDBI 0.512** 0.527** 0.692** 0.170 0.682** 0.320**

NDVI −0.405** −0.463** −0.730** −0.164 −0.708** −0.330**

NDWI −0.077 −0.297* −0.242* −0.39 −0.596* −0.186

*Correlation is significant at 0.05 level of confidence.

**Correlation is significant at 0.01 level of confidence.

Frontiers in Environmental Science frontiersin.org07

Gupta et al. 10.3389/fenvs.2023.1122935

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1122935


increased temporally. The patterns shown supported the findings that
urbanized areas retain the most LST. Similar results were determined
by Weng and Yang (2004) wherein they argued that less vegetation
covers leads to increased LST. Xiao andWeng, 2007 have also reported

that built-up area positively correlates with land surface temperature
in Beijing, China.

The obtained coefficient of determination (R2) for Dehradun was
R2 = 0.26 in 2000, increased to R2 = 0.27 in 2008, and further increased

FIGURE 3
Change in LST of Dehradun (A) and Shimla (B).

FIGURE 4
Change in NDBI (A) and degree of association of NDBI with LST (B) for Dehradun.
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FIGURE 5
Change in NDBI (A) and degree of association of NDBI with LST (B) for Shimla.

FIGURE 6
Change in NDVI (A) and degree of association of NDVI with LST (B) for Dehradun.
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to R2 = 0.47 in 2016. Linear regression models between the NDBI and
LST were fitted (Figure 4B). Similar trends were seen in Shimla, where
the R2 value in 2000 was R2 = 0.02 and grew to R2 = 0.10 in 2008 and
then to R2 = 0.46 in 2016 (Figure 5B). According to the coefficient of
determination, LST and NDBI scores positively influenced each other
over the study period.

3.5 Association of NDVI with LST

NDVI was utilized to distinguish between vegetated and non-
vegetated areas in order to characterize the effect of changes in land
cover on temperature trends. For Dehradun (Figure 6A) and Shimla,
the geographical pattern and distribution of NDVI computed from
Landsat images are displayed in Figure 7A. The NDVI measurements
for Dehradun were found to range from −0.52 to 0.80 for 2000, with a
mean of 0.00959 and a standard deviation of 0.0738; from −0.12 to
0.71 for 2008; from 0.1534 and 0.1356; and from −0.02 to 0.58 for
2016, with a mean of 0.1584 and a standard deviation of 0.0921. A low
NDVI value (Yellowish area) indicates high and densely populated
areas, mostly in the city’s central region, which increased steadily
between 2008 and 2016. High NDVI values (dark blue) are seen close
to the buffer area’s edge. On the outskirts of Dehradun, mediumNDVI
values (yellowish blue) are seen. The NDVI values for Shimla were
found to range from −0.07 to 0.68 in 2000, with a mean of −0.170 and a
standard deviation of 0.1541; from −0.6 to 0.51 in 2008; and
from −0.02 to 0.58 in 2016, with a mean of 0.182 and a standard
deviation of 0.091. Shimla and Dehradun both show similar NDVI
trend lines. Due to the presence of steep slopes in the city, which forces
people to relocate to nearby hilly areas, the difference in those densely

built-up areas was more concentrated in smaller areas that were
decentralized to the outer area in 2008 and 2016. This is explained
by the fact that vertical expansion is not desirable up to a certain extent
in these situations. As documented earlier, NDVI and LST trend
negatively for both the cities and for all the years during the study
period as indicated by the R2 value for Dehradun (Figure 6B) and
Shimla (Figure 7B). Mallick et al., 2008 documented a strong
relationship between NDVI and LST while studying land surface
temperature in Delhi, India and established that LST can be
predicted through NDVI values. The study area has undergone
significant changes in land use categories and LST over the past
16 years, from 2000 to 2016, as indicated above in the results
section. The Normalized Difference Vegetation Index showed
similar changes (NDVI). The rapid economic development and
shifting economic structure of Dehradun and Shimla, population
growth and the ensuing rise in settlements and infrastructure
activities, and to some extent the absence of government policies
regarding land use change are primarily to blame for these rapid
changes.

3.6 Association of NDWI with LST

The spatial pattern and distribution of NDWI for Dehradun and
Shimla are shown in Figures 8A, 9A, respectively. NDWI provides the
moisture content in areas where the temperature is typically lower
than in other land uses (Zhang & Huang, 2015). The LST of water
body in general lower than other kind of land use categories (Rao and
Pant, 2001; Zhang & Huang, 2015). The level of NDWI control over
LST for both cities throughout all time periods is shown in Figures 8B,

FIGURE 7
Change in NDVI (A) and degree of association of NDVI with LST (B) for Shimla.
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FIGURE 8
Change in NDVI (A) and degree of association of NDVI with LST (B) for Dehradun.

FIGURE 9
Change in NDWI (A) and degree of association of NDWI with LST (B) for Shimla.
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9B. It was discovered that NDWI adversely controls LST in every
instance. For Dehradun, the R2 value increased from R2 = 0.05 in
2000 to R2 = 0.08 in 2008 and then to R2 = 0.58 in 2016. Like this,
Shimla’s R2 value exhibits rising patterns from 2000 (R2 = 0.02) to 2008
(R2 = 0.10) and further in 2016. (R2 = 0.35). In the city’s center, a lower
NDWI value was discovered, demonstrating the masking impact of
built-up characteristics. Higher NDWI was noticed outside the core
zone in all the periods for both cities.

3.7 Spatial metrics

3.7.1 Landscape fragmentation analysis at class level
A solid conceptual and theoretical foundation for evaluating

landscape structure, function, and change is quantified through the
examination of class- and landscape-level measures. Landscape
metrics allow to establish the relationship between the spatial
properties of patches or landscapes and biological processes by
focusing on changes in the area’s geometry, class size and land
cover fragmentation (Nagendra et al., 2004). Area and edge metrics
are concerned with the size of the patches and the amount of edge that
each patch makes up. The lengths of all edge segments involving the
relevant patch type are roughly added up to form Total Edge (TE).
Figure 10 provides the class-level indicators for Dehradun and Shimla.
To determine the shape complexity of the classified maps, the Shape
Index was calculated. Greater shape complexity and hence greater
changeability are indicated by a higher shape index. The patch is more
susceptible to the edge effect as the shape index rises. Shimla’s ED,
which measures the total edge of any class relative to the entire
landscape (Seto and Fragkias, 2005), rises significantly from
2000 to 2016, while Dehradun’s rises strongly from 2000 to
2008 and then slowly from 2008 to 2016. This is caused by an

increase in urban edge pixels, which shows the development of
new urban edges and intricate structures. The total edge of any
patch type at the class level or of all patch types at the landscape
level is measured by TE (McGarigal and Mark, 1995). TE for
Dehradun has increased during the study period showing the rapid
expansion of the city with an increase in built-up structures while for
Shimla it increases from 2000 to 2008 due to expansion of the city and
then decreases which may be attributed to aggregation of built up
structures as horizontal expansion can’t take place due to steep slopes
of the hilly region. CONTIG measures the degree of spatial
connectedness and urban dispersion. High CONTIG means low
sprawling as it is related to the discontinuity of urban growth
(Triantakonstantis and Stathakis, 2015). Over the course of the
study period, CONTIG displays increased tendencies for both cities
that show an increase in the connection of urban structures and a
corresponding decline in sprawl. Although SI and PARA both
measure shape complexity, SI is more representative of shape
complexity because the former lacks uniformity. The SI for both
cities has increased over the course of the study, which shows that
urban areas are developing more intricate patterns. An increase in
anthropogenic disturbances will result in increased fragmentation,
which will indirectly result in a reduction in the area’s forest cover
(Aditya et al., 2018).

3.7.2 Landscape fragmentation analysis at landscape
level

SHDI is a metric for gauging a community’s diversity. It rises as
there are more and more varieties of patch. Figure 11 provides the
landscape-level measures (SHDI, SIDI, and SIEI) for Dehradun and
Shimla. For the years 2000–2016, the SHDI, SIDI, and SIEI showed
rising trends for Dehradun and Shimla. The accelerated rate of urban
sprawl may be to blame for this. This makes reference to the sprawling

FIGURE 10
Changes in spatial metrics at Class level for Dehradun and Shimla.
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pattern as well. The build-up of Dehradun city has increased quickly
and unevenly. This holds true over the course of the investigation.
Although the development in built-up areas in Shimla is spatially
scattered, it has also led to an increase in size and density. Shimla’s
built-up area has been steadily expanding, followed by its size and
population density.

4 Conclusion

Using change detection and landscape metrics, this study sought
to understand and document how urbanization has affected the LST
across Dehradun and Shimla. The two Himalayan cities of
Uttarakhand and Himachal Pradesh in India are rapidly becoming
urbanized. Land surface temperatures are rising as a result of the
increased urbanization, which is causing land surfaces to be
fragmented and covered in concrete and other impermeable
materials. These cities are now experiencing higher temperatures
than usual. The LST of the study area has increased as result of
decline in land use classes such as forest, agriculture land and
waterbodies and increase in concretization in the form of
settlement. Increased urbanization impacts the general health of the
landscape and makes it more vulnerable to fragmentation, which
could significantly alter the area’s ecological functions and processes.
We noticed urbanization and landscape fragmentation were occurring
haphazardly. The outcome showed that the landscape in the research
area was fragmented and heterogeneous from 2000 to 2008, after
which it has aggregated and grown more heterogeneous. Except for
aquatic bodies, lower LST were observed in areas with higher NDVI
values, whereas greater LST were found in populated areas. Similar to
other Indian cities, urban heat islands are emerging in the Himalayan
cities too. According to this study, these changes were primarily
attributable to shifts in natural variables like climate and

anthropogenic changes such as population growth and its pressure,
a rapidly expanding and structurally changing economy, a lack of land
use planning, and ineffective implementation of existing policies.
Decentralizing urban built-up areas and population distribution by
radical urban infrastructure development policies toward the outskirts
of the city can greatly mitigate the consequences of rising
temperatures. The findings of this study demonstrate that,
especially over the past few decades, human intervention in natural
systems has multiplied. Even ecologically delicate ecosystems, like
those in the Himalayas, are experiencing these massive human-
environmental interactions, which have huge ramifications. In
order to reduce population pressure and the strain on land
resources, there is an urgent need to transition from horizontal to
vertical housing construction. Laws that oppose the haphazard
conversion of land resources particularly the conversion of forested
land, should be introduced. The analysis of LST, land use and
landscape fragmentation directed meticulous planning and policy
implementation by concern authorities in order to preserve and
maintain the rich ecological diversity of the two Himalayan cities.
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