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The rapidly growing social demand for water and land, along with increasingly
constraining economic and social development, have intensified the conflicts
between regional production, living, and ecological spaces (PLES). Water and land
resources have become major obstacles to long-term growth in arid and semi-
arid regions. Therefore, we propose a scenario-based framework for a production,
living, and ecological spaces water resource assessment, integrating patch-
generating land use simulation (PLUS), Shared Socioeconomic Pathways (SSPs),
and multiple regression equations to analye the spatial and temporal variability of
these resources on the northern slopes of the Tianshan Mountains (NSTM) and
assess the future development of water resources. The results show: 1) from
2000 to 2020, land use types on the northern slopes of the Tianshan Mountains
were dominated by ecological land, which decreased to 11,793 km2; production
and domestic land use increased. Water for production and ecological use
accounted for approximately 93% and a minor proportion of the total water
use, respectively. 2) Production land is mainly influenced by population density
and Gross Domestic Product (GDP), living land by population density, and
ecological land by precipitation and topographic factors. 3) The PLUS model
had good applicability, with a kappa coefficient, overall accuracy, and FoM of 0.81,
0.88, and 0.28, respectively. 4) The total water use in the northern slopes of the
Tianshan Mountains will increase under all three scenarios between 2030 and
2050, but by varying degrees. Production water use accounts for the most
significant proportion (93%), with its use decreasing by 305 million m3 under
the SSP3 scenario. Domestic water use shows a slow increase under all three
scenarios. Further development of the northern slopes of the Tianshan Mountains
should take account of regional ecological vulnerability, and water use for
production should be controlled based on existing water resources and
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ecological capacity to reduce pressure on the environment and provide essential
ecological protection and sustainable development.

KEYWORDS

plus model, land use, water resource, shared socioeconomic pathways, sustainable
development

1 Introduction

For many years, sustainable development of arid and semi-arid
areas has been a critical research topic (Bryan et al., 2018).
Environmental problems, such as human activities, climate
change, and land desertification, have increased ecological and
environmental pressures, resulting in negative impacts on
sustainable development (Pokhrel et al., 2021). As the primary
carrier of terrestrial ecosystems, the land is an important site for
human activities and plays a vital role in human production and life
(Jiang et al., 2022a; Lin & Peng, 2022). Since the 1980s, the rapid
growth of society has led to tension in human–land relations and the
emergence of competition in production and living ecological spaces
(Fu et al., 2021; Wang & Wang, 2022). The rapid expansion of
production and living space has led to the narrowing of ecological
space. The disorderly development of land restricts sustainable
development and may lead to a decline in regional development
competitiveness and affect the ecology and living environment (Hou
& Braham, 2021; Lu et al., 2021; Wang et al., 2021). In terms of
water, resources in arid ones are in short supply, with the proportion
of water used for production reaching as high as 79.8%. In
comparison, water used for ecological purposes accounts for only
5.3% of the total water consumption (Chen et al., 2019). The
allocation of water resources is dominated by the economic
development planning department, which pays more attention to
production and domestic water and ignores ecological water (Hu
et al., 2021; Lu et al., 2021; Xu et al., 2022). The misuse of water
resources has worsened the ecological environment in fragile inland
areas (Eaton et al., 2021).

In terms of land use simulation, the main models for simulating
future land use include the CLUE-S model (Stanley et al., 2023), CA-
Markovmodel (Philip et al., 2023), and FLUSmodel (Lin et al., 2022;
Xiang et al., 2022), which are more suitable for simulation studies in
small areas, not accurate enough in larger scale simulations, poor
simulation effects, and limited to the analysis of the quantity and
spatial structure, ignoring the interactive application between
models, and not enough for influencing land use The PLUS
(Patch-generating Land Use Simulation Model) model (Liang
et al., 2021) is a new land use prediction model developed to
solve the accuracy problem of larger-scale land use data
simulation, which has a better explanation of the influencing
factors of various land use changes and higher accuracy of
simulation results (Halima and Hiroaki, 2022; hao et al., 2022).
Li et al. (2021) used a coupled GMOP-PLUS model to analye the
spatial and temporal evolution of the ecological barrier ESV in
Sichuan and Yunnan, China, using LULC and other data from 2000,
2010, and 2018, which can improve the assessment of
socioeconomic and environmental factors. Shi et al. (2021)
studied to determine the impact of different future land use/
cover scenarios on the Ili River, China watershed, and analyed

synergistic response characteristics to inform site-specific decisions
for implementing ecological projects. hai et al. (2021) investigated in
depth the spatial and temporal patterns of land use/cover change
under urbaniation inWuhan, China, based on continuous time in an
attempt to understand the development pattern of Wuhan over
20 years, and the results showed rapid urbaniation, which triggered
large LUCC with the increased floor area.

A scenario framework was developed by the Intergovernmental
Panel on Climate Change (IPCC) in 2010 that described the
potential paths of different socioeconomic groups (O’Neill et al.,
2017; Wang & Sun, 2022). In 2012, the Chinese government
formulated the “Production-Living-Ecological Space (PLES)”
strategy in land space planning to achieve sustainable
development of the region and ecological environment (Fu et al.,
2021). Therefore, many scholars have combined land use with the
SSPs. hou et al. (2022) used a spatial-temporal geographically
weighted regression (GTWR) model to analye the spatial-
temporal evolution characteristics of PLES and its drivers in
73 prefecture-level cities in the middle reach of the Yangte River
from 2005 to 2020. Cui et al. (2022) analyed the spatial and temporal
characteristics, coupling coordination, spatial autocorrelation, and
influencing factors of PLES in China from 2000–2020. The urban
expansion of Hohhot-Baotou-Erdos-Yulin from 2017 to 2050 was
simulated by Song et al. (2020) using SSP scenarios and land use;
Jiang et al. (2022b) simulated henghou’s PLES and ecological effects
based on SSPs and multiple methods, and Bao et al. (2022) used
linear equations to establish a relationship between land cover type
and water use to estimate ecological and agricultural water use in
Lake Ebey in 2035.

A glance at the development of land use change and land and
water resources research at home and abroad shows that land use
change has changed from relying on traditional methods to
combining with emerging technologies, which is also an
inevitable requirement of the development of the times. After a
long period of theoretical research, the configuration of soil and
water resources has formed a relatively perfect academic system;
with various numerical models as the basic method and the
continuous development of innovative soil and water resources
information systems, in recent years, the large-scale study of soil
and water resources configuration has become more and more
accurate and detailed with the support of information technology
and 3S system. However, considering the sustainable development
of the ecological-social-economic integrated system, the current
methods for optimal allocation of soil and water resources still
have shortcomings. Most of the existing research methods for land
use change are still in the study of the quantification of land use type
conversion, and the study of the intrinsic and extrinsic drivers of its
conversion is still relatively superficial, and the predictive analysis
models used for future land use change aren’t mature enough,
without considering The models used for predicting and analying
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future land use change aren’t mature enough and do not consider
the influence of the interaction and change trends of ecosystems and
economic and social systems on land use change, so the selection of
models should take into account the ecological, economic and social
factors and the advantages of model adaptation range and model
accuracy. Studies on the optimal allocation of water or land
resources alone are predominant, and studies combining the
interactions and constraints of the two are limited. The exchange
of water and land resources is necessary to consider the interaction
of the two, which should be planned, evaluated, protected, and
utilied in order to optimie the allocation of resources.

Based on the above problems, this study proposes a research
framework for multi-scenario water resource prediction based on the
PLUS model and SSPs, which provides a method for water resource
assessment. We analyed the spatial and temporal changes in water and
land resources on the northern slopes of the Tianshan Mountains
(NSTM) from 2000 to 2020 and calculated the contribution rate of
driving factors to the dynamic change in land cover. We predicted the
water consumption for PLES on the NSTM based on three scenarios of
the SSPs. The specific objectives of this study were: 1) to analye the
characteristics of water and soil resource changes on the NSTM and
explain the reasons for land resource changes, and 2) to analye the
temporal and spatial changes of PLES water use on the NSTM under
different scenarios from 2020 to 2050. The proposed optimiation
method helps to explore regional water and land resource changes. It
provides a fundamental basis for the rational planning regional water
and land resources and ecological and environmental protection.

2 Materials and methods

2.1 Regional overview

The NSTM is located in an arid one of the Asia-Europe continental
hinterland on the southern edge of the Junggar Basin, with the
geographical coordinates of 79°53′E−96°06′E and 42°49′N-47°15′N.
The NSTM is a crucial area of the Belt and Road Initiative. The
main landforms in the south are high mountains, the central part

belongs to the oasis, and the north is mainly desert, forming a typical
mountain-basin system. At the end of 2020, the total population of
NSTM was 8,399,700, accounting for 32% of Xinjiang’s population
(Fang et al., 2019). We divided the NSTM into three sections based on
topographic and climatic features: western, middle, and eastern, as
shown in Figure 1.

2.2 Data sources

The SSP data were obtained from the Nanjing University of
Information Science and Technology. The data mainly included land
use, socioeconomic [population density, Gross Domestic Product
(GDP)], road and water system (railways, roads, rivers), climate
(rainfall, temperature), and topographic data (Table 1). The
geographical coordinate system was unified as D_WGS_1984 with a
resolution of 1 km, and the number of data rows and columns was
identical. Production, domestic, and ecological water use data were
obtained from the Statistical Yearbook and Water Resources Bulletin.

2.3 Research methods

The framework proposed in this study consists of three main parts
(Figure 2). Firstly, the spatial and temporal analysis of land and water
resources on the NSTM is based on dividing them into three parts:
production, living, and ecology; secondly, the PLUS model is used to
simulate future changes in the quantity and spatial distribution of land
resources on the NSTM, and finally, scenarios are set up to simulate
future changes in water resources under different SSP scenarios. In this
study, SSPs, PLUS, and multiple regression equations were coupled to
predict the water consumption of land use types on the NSTM from the
perspective of PLES.

2.3.1 Classification of the dominant functions of
land use

The land use data were classified from the perspective of land use
cover types, with a total of six primary classifications and

FIGURE 1
Geographical location and segmental boundary on the northern slopes of the Tianshan Mountains.
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25 secondary classifications (Liu et al., 2017). With research on the
ecological environment, many scholars have proposed a
classification scheme for ecological land from an environmental
perspective (Wang J. et al., 2017), and a land use classification
scheme based on the perspective of industrial structure and
economic development (Liu et al., 2018). This classification uses

the above ideas and classification schemes for reference and adopts
dominant function classification. For example, forestland can
produce fruits, has ecological functions, and may also have the
life function of tourism. However, the dominant function of
forestland is to maintain the ecological environment, so it is
classified as ecological land (Deng and Yang, 2021; Cui et al.,

TABLE 1 Data type and sources.

Data type Details Data sources

Land use/cover data Seven periods of data from 2000 to 2020 are selected. Spatial
Resolution: 30 m

Resource and environment science and data centre (http://
www.resdc.cn)

GDP and population grid data Select the interpolation data of GDP and population
(2000–2020), Spatial Resolution: 1 km

Resource and environment science and data centre (http://
www.resdc.cn)

Road network data sets Road data includes railways, main roads, secondary roads,
and tertiary roads. The river system is the main river

OpenStreetMap (https://www.openstreetmap.org/)

Meteorological data sets Including annual average temperature and annual
precipitation (2000–2020)

China Meteorological Data Network (http://data.cma.cn)

Digital elevation model (DEM) Aster GDEM V2 data, Spatial Resolution: 30 m Geospatial data cloud (http://www.gscloud.cn)

Soil datasets China’s soil dataset (v1.1) based on the world soil database
mainly obtains soil texture, type, and component percentage
content

Resource and environment science and data centre (http://
www.resdc.cn)

SSPs date Resolution: 0.5 × 0.5 Nanjing University of Information Science and Technology
(https://geography.NUIST.Edu.CN/)

Water consumption for production, living, and
ecology

IStatistical yearbookJandIWater Resources BulletinJ Statistics Bureau of Xinjiang Uygur Autonomous Region
(http://tjj.xinjiang.gov.cn/)

FIGURE 2
Research framework.
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2022; hou et al., 2022). Based on the perspective of PLES and land
use leading functions, the classification scheme of PLES land use
leading functions was established by summing up land use types in
land use data (Table 2).

2.3.2 Land use dynamics and land transfer matrix
The dynamic degree of land use can quantitatively reflect the

change speed of land use quantity in the study area (Yuan et al.,
2022), and the formula is as follows:

Rt � ∑n
i�1 Syi − Sxi
∣∣∣∣ ∣∣∣∣

2 × ∑n
i�1Sxi

×
1
T
× 100% (1)

where Rt is the comprehensive land use dynamic degree, Sxi and Syi
are the areas of type I land in the early and later stages, km2, n is the
number of land use types, and T is the time difference between two
adjacent periods, a.

The land use transfer matrix can quantitatively analye the
transformation between unearthed land use types and reflect land
use change trends (Wang, 2022). The expression is:

Dxy �
D11 D12 / D1n

D21 D22 / D2n

..

. ..
.

1 ..
.

Dn1 Dn2 / Dnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where D is the land area, km2, x and y are the land use types before
and after the transfer, and n is the number of land use types in the
study area.

2.3.3 Construction and simulation of the land use
PLUS model

With the PLUS model, we can examine the driving factors
behind land type expansion at patch scales, as opposed to other
land use simulation models, and t is possible to obtain greater
simulation accuracy by analying potential land use conversion rules
(Liang et al., 2021). Consequently, the model was used in this study
to analye the spatial pattern of land use in the study area from
2000 to 2020, as well as to simulate and predict future land use
patterns.

Following are the steps and parameters.

(1) Land Expansion Analysis Strategy Module (LEAS): A total of
twelve factors (Figure 3) inputs were gathered from four aspects:
climate factor, social natural factor, and accessibility factor.
Samples were selected by random sampling, the sampling
rate and the number of decision trees were set to defaults,
and four parallel threads were used (Liang et al., 2021).

(2) CA-based on muitiple random patch seeds (CARS) parameter
settings: The domain effect was set as the default value of the
system. The lower the attenuation coefficient, the more difficult
it is to convert land types. Therefore, 0.5 was chosen, the
diffusion coefficient was set to 0.1, and the probability of
random patch seed was set to the default value (Liang et al.,
2021).

(3) Weighting of used land neighborhoods: agricultural production
land is 0.3, industrial production land is 0.9, forestland
ecological land is 0.5, grassland ecological land is 0.6, water
ecological land is 0.8, urban living land is 0.9, rural living land is
0.9, and other ecological lands are 0.2 (Jiang et al., 2022b).

2.3.4 Model accuracy validation
In this study, a new index (DISO) is selected to describe the

overall performance of different models or simulations. This new
index is a collection of other statistical indicators, including
correlation coefficient (r), absolute error (AE), and root-mean-
square error (RMSE), which has the advantage of quantifying the
overall performance of different models compared to other indices
(Hu et al., 2019). For the observed time series (A = [a1, a2, . . ., an])
and the model-simulated time series (B = (b1, b2, . . ., bn)], the r, AE,
and RMSE are calculated as follows:

r � ∑n
k�0 ai − �a( ) bi − �b( )�����������∑n

k�0 ai − �a( )2
√ �����������∑n

k�0 bi − �b( )2√ (3)

AE � 1
n
∑n

k�0 ai − bi( ) (4)

RMSE � 1
n
∑n

k�0

��������
ai − bi( )2

√
(5)

TABLE 2 Land use types based on the dominant function.

Classification of production–living–ecological land Secondary classification of the land use classification
system

Primary land use type Secondary land use type

Production land Agricultural production land Paddy fields and dry land

Industrial production land Construction land for factories, mines, and salt fields

Ecological land Forestland ecological land forest land, shrubbery land, sparse forest land, and other forest lands

Grassland ecological land High-coverage grassland, medium-coverage grassland, and low-
coverage grassland

Water ecological land Rivers, lakes, reservoirs and pits, glaciers, and permanent snow deposits

Other ecological lands Sandy land, Gobi, saline-alkali land, marshland, and bare land

Living land Urban living land Urban land

Rural living land Rural residential area
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where �a and �b are the means of A and B, respectively, and n is the
length of the time series. To eliminate the influence of dimensions,
AE and RMSE are normalied (divided by the absolute observation
mean (|�a|)). DISO is then defined as:

DISO �
������������������������
r − 1( )2 +NAE2 +NRMSE2

√
(6)

where N indicates normalied values of AE and RMSE. The
simulation is close to the observation when DISO is close to 0.

2.3.5 Water consumption estimation
The SSPs consist of five future scenarios: a sustainability scenario

(SSP1), a middle route scenario (SSP2), a regional competition scenario
(SSP3), an inequality scenario (SSP4), and a conventional fossil fuel and
development scenario (SSP5) (O’Neill et al., 2017). Each pathway
projects regional economic, demographic, and other factors and
covers possible future development patterns in different regions,
aiming to explore different levels of climate change adaptation and
mitigation challenges (O’Neill et al., 2014). Referring to the relevant
literature and taking into account the actual conditions on the northern
slopes of the Tien Shan, the inequality scenario (SSP4) and the
traditional fossil fuel and development scenario (SSP5) do not
correspond to the future development trends on the northern slopes
of the Tien Shan. In this study, SSP1, SSP2, and SSP3 were selected as
the actual conditions of the NSTM and pathway route scenarios.

To estimate the future water consumption of production,
living, and ecological land on the NSTM, we constructed a
multiple regression equation using historical data. The

relationship between the demand for water for the three
different types of life is established using GDP, population,
and land use type. An equation was developed using historical
data of population, GDP, and land use type area on the NSTM
from 2000 to 2020 as dependent variables and water
consumption as the independent variables. The expression is
as follows:

WRproduction � 68.965GDPi − 1770.866POPi + 16.485landtypei

+ 1471124.53

(7)
WRdomestic � 0.86GDPi − 64.72POPi + 2.3landtypei − 12740.32

(8)
WRecology � 1.96GDPi + 168.65POPi + 1.12landtypei − 3617.89

(9)
where WR is the total water consumption, POP is the total
population in the year (104 people), GDP is the value of GDP
in the year (100 million RMB), and land type is the land use type
(km2) in the year. The R2 of the multiple equations WR production,
WR domestic, and WR ecology were 0.91, 0.86, and 0.89, respectively.
After the t-test, p < 0.05, indicated that the multiple regression
coefficients were significant at the 5% level. The land use type
area was predicted according to the population and GDP data
predicted by different SSPs and the PLUS model. The water
consumption of different land types in the future was predicted
and calculated using Eqs 7–9, and the coupling of SSPs and the
PLUS model was realied.

FIGURE 3
Driving factors affecting land use.
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3 Results

3.1 Spatial and temporal variation of land and
water resources

The productive, living and ecological land areas in the NSTM
were counted in the western, middle, and eastern areas (Figure 4).
The results show that in each of these regions, the NSTM is
dominated by ecological land, distributed in the southern and
northern parts of each section, and mainly composed of other
ecological lands (49%) and ecological land for graing (48%).
During 2000–2020, ecological land decreased from 116,858 km2

to 109,214 km2 at a rate of 382.2 km2/a in the western area, by
3,559 km2 at a rate of 177.95 km2/a in the middle section, and by
29.5 km2/a in the eastern area. The central oasis developed around
rivers and lakes, consists mainly of agricultural production land
(96%), with the western area increasing by 7,047 km2 at a rate of
352.35 km2/a and multiplying from 2000 to 2010 at a rate of
558.5 km2/a. Living land is mainly located in the central oasis,
surrounded by agricultural production and ecological
pastureland. It has increased rapidly over the last 20 years, with
the western, middle, and eastern sections of the living land
increasing by 83.5%, 49.9%, and 147.9%, respectively.

During the past 20 years, the surface water volume on the NSTM
has been stable (Figure 5A). The total water use has been growing,
with an increase of nearly three billion m3 over 20 years, with the
most significant proportion of water used for production, with an
average value of approximately 93% (Figure 5B), whereas the water

consumption per 10,000 RMB of GDP showed a decreasing trend
(Figure 5C). The GDP of the NSTM increased 10.7 times between
2000 and 2020, and its population increased by 2,622,000 people
(Figure 5C). With the economic development and population
growth of the NSTM, the land-use pattern has also significantly
changed. According to the dynamic attitude of each section of the
NSTM from 2000 to 2010 and 2010–2020 (Figure 5D), the eastern
section had the most significant change in living land use from
2000 to 2010 with a dynamic attitude of 7.06%. As shown in Figures
5E, F, the transfer of grassland ecological land and other ecological
land to agricultural production land on the NSTM from 2000 to
2010 was 10,157 km2. From 2010 to 2020, the area of grassland
ecological land and forestry ecological land increased by 13,042 km2

and 2,120 km2, respectively, and the area of subsistence land
increased by 1,768 km2, mainly agricultural production land
(55.09%) and grassland ecological land (18.21%).

3.2 The driving factors of land use on the
NSTM

The evolution of land patterns is the result of a combination of
many drivers, and the degree of contribution of the drivers varies
(Figure 6). Arable land changes are mainly influenced by
topographic factors and population density. Woodland was
mainly influenced by temperature (21.89%), rainfall (21.32%),
and soil type (14.91%) in 2000–2010, while the degree of each
driver was more balanced in 2010–2020, not influenced by a single

FIGURE 4
Land use distribution and area on the northern slopes of the Tianshan Mountains from 2000 to 2020.
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factor, and the development was more stable and coordinated.
Grassland was more influenced by population density (15.24%)
and rainfall (11.97%) in 2000–2010, while the population density
factor decreased to 7.73% in 2010–2020. The dominant driver for
both urban sites and rural settlements was population density, which
was 43.77% and 25.45% in 2010–2020, respectively. Industrial and
mining land is influenced more by GDP (18.07%), distance to the
railroad (11.52%), and annual rainfall (11.05%). The dominant
factors influencing the change in unused land were soil type
(12.67%) and precipitation (11.85%), which were mainly
influenced by annual precipitation (14.45%), topographic factors
(12.59%), and population density (11.23%) from 2010 to 2020.

3.3 Future land use simulation on the NSTM

The land use distribution in 2020 was simulated using 2010 land
use data and compared with the actual land use distribution in
2020 to verify that the PLUS model is applicable to the NSTM
(Figure 7). The results showed that the kappa coefficient was 0.81,

and the overall accuracy was 0.88. As a further validation of the
model’s simulation accuracy, the coefficient of merit (FoM) was
introduced with FoM = 0.28. In the simulation comparison, the
PLUS model was found to be more applicable to modeling land and
spatial changes in the NSTM over the long term.

Based on the PLUS model simulation, we obtained the land
dynamics of the study area from 2030 to 2050 (Figure 8) and
counted the areas of production, living, and ecological land by
section. Between 2030 and 2050, the production land in the
western section increased by 993 km2, the middle section
increased by 1948 km2, the eastern section increased by 168 km2,
and agricultural production land in the production land increased
by approximately 90%. The area of living land in the western section
was the largest, increasing by 444 km2, and the area of the eastern
section increased by 56 km2. The data indicate that ecological land
continues to decrease, with the western section decreasing by
approximately 1,168 km2 and the eastern section decreasing by
147 km2, among which the middle section is grave, decreasing by
2,193 km2, accounting for approximately 2.5% of the ecological land
area in the middle section.

FIGURE 5
(A) The total water resources, surface water, and water consumption (B) Water consumption for production, living, and ecological purposes; (C)
GDP, population, water consumption per capita, and water consumption per 10,000 RMB of GDP; (D)Dynamic attitudes for the periods 2000–2010 and
2010–2020; (E) (F) is land use transfer matrix from 2000 to 2010 and from 2010 to 2020.
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3.4 Prediction of water use in three lands use
SSP scenarios for the NSTM

During 2030–2050, water use for production (Figure 9A) will
continue to increase under the SSP1 and SSP2 scenarios, with
SSP2 increasing by 2,407 million m3, while water use decreases
under the SSP3 scenario by 305 million m3. It is noteworthy that
water consumption per 10,000 RMB of GDP (Figure 9E) shows a
decreasing trend, with SSP3 decreasing the most, by 49.37 m3,
indicating that under the regional competition path, the NSTM is
generating less water to create economic value. Regarding
domestic water use (Figure 9B), the three scenarios showed a
slow growth trend, with the most significant increase of
101 million m3 in the SSP2 scenario. The growth of domestic

water use is slow owing to the completion of the demographic
transition in the SSP2 scenario, where the population grows
slowly and gradually plateaus. The per capita domestic water
consumption (Figure 9F) does not differ much among the three
scenarios, ranging from 159.4 L/d to 177.04 L/d. In terms of
ecological water use (Figure 9C), SSP2 increased the most at
362 million m3, indicating that under the middle path, it
maintains a similar path to the historical period and continues
to develop, striving to achieve sustainable development in terms
of the ecological environment and human wellbeing. At the same
time, the other scenarios also showed an increasing trend. In
terms of the total water consumption (Figure 9D), all three
scenarios increased, but the degree of increase varied greatly,
with SSP3 increasing by only 132 million m3.

FIGURE 6
(A) The percentage of driving factors of land use changed from 2000 to 2010. (B) Contribution percentage of driving factors of land use types from
2010 to 2020.
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4 Discussion

4.1 Factors affecting land change

Land use drivers are dynamic organic systems in which many
factors inside and outside the system interact to influence land use
type/cover change (Chen et al., 2006). At the same time, land use
change is not entirely passive and independent; the results of land
use change eventually also affect drivers through various pathways,
thus creating feedback (hao et al., 2014; Ouedraogo et al., 2015). The
drivers of land use include natural and human drivers, with natural
drivers, including changes in the characteristics and processes of the
natural environment, and human drivers, including factors such as
population change, economic growth, proximity to roads, and
policy-making. In this study, the driving forces were analyed
based on land use/cover changes in the NSTM from 2000 to
2020. Factors such as topographic factors and soil type played a
dominant role in forming land use patterns (Wang et al., 2019).
These factors are relatively stable and have cumulative effects on
productive and ecological land. In contrast, anthropogenic factors,
such as population density, economic growth, and transportation,
are relatively active and play a decisive role in the formation of short-
term land use patterns, such as for living land (hang et al., 2017;

Lamqadem et al., 2019). Fluctuations in meteorological factors affect
the spatial and temporal patterns of various types of land. The
NSTM is in an arid one, and it is a typical “mountain–oasis–desert”
mountain basin system. It has been shown that the average annual
precipitation growth rate on NSTM is 10.67 mm/10a. The average
temperature growth rate is 0.32°C/10a (Li et al., 2018), with a general
trend of continued slow warming and humidification, which is
closely linked to the expansion of snow and ice melt water and
lake areas, significantly increasing the reservoir area, and indirectly
affecting the expansion of the oasis arable land area (Wang N. et al.,
2020).

With the implementation of the national strategy of Western
development and the construction of cotton plantation bases, land
development has been encouraged from a policy perspective (Wang Y.
et al., 2017). Simultaneously, the market economy’s developmental
needs and the population’s economic growth have made land
reclamation a fast and effective means of increasing income (Chen
et al., 2020). However, the NSTM is in an arid inland region with little
rainfall and high evaporation; increased land reclamation in this area
consequently led to a water shortage problem. In the 1980s, large-scale
mulched drip irrigation was introduced to improve the utiliation
efficiency of farmland water resources. The measures of area drip
irrigation by the Xinjiang Production and Construction Corps

FIGURE 7
Comparison of simulated land use and actual land use in 2020.
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FIGURE 8
Land use distribution and area on the northern slopes of the Tianshan Mountains from 2030 to 2050.

FIGURE 9
(A–D) show the total amount of production, domestic, ecological, and water consumption of the northern slopes of the Tianshan Mountains from
2030 to 2050. (E) Water consumption per 10,000 RMB of GDP. (F) Per capita domestic water use.
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exceeded 82.4% (Wang . et al., 2020). Applying water-saving irrigation
and facility agriculture technologies has led to changes in land use types;
farmland has appeared in desert areas previously considered unsuitable
for reclamation, and land use types have changed, with technological
drivers becoming the motivation for regional land use changes. Natural
drivers are essential for land use distribution and play a dominant role
in long-term land change. In contrast, human factors played a decisive
role in short-term spatial and temporal land use changes.

4.2 Uncertainty analysis in model simulation
studies

In terms of model simulation, this study uses the FOM index to
quantify the accuracy of the land change model, which is more
advantageous than the kappa index. The FOM index provides a
unit-by-unit comparison between the simulation and the actual
situation, which can increase the reliability of the simulation.
Regarding the accuracy indicators of the simulations, using the
DISO metric, we were able to determine the level of model
performance and summarie the overall evaluation of individual
simulations. The PLUS model simulated the slightest deviation for
the living land with a DISO value of 0.25, followed by the ecological
land, and the most deviation for the production land with a DISO value
of 0.37 (Table 3). In terms of the data used, a total of 12 indicators in two
aspects, human activities, and natural factors were selected to drive the
model to simulate a more realistic land type change, but some factors,
such as policy factors and technology, which are difficult to quantify and
fail to study comprehensively may have some errors. In addition, the
water use of land types is also a complex system involvingmany factors,
which this study fails to consider comprehensively, and has some bias in
the numerical estimation. Typical climate scenarios and development
models should be chosen for further studies, and a model framework
should be established to improve accuracy. As such, we will continue to
refine the impact of future land use change on water resources under
various scenario models to accommodate the application requirements
for future scenarios.

5 Conclusion

This study proposes a research framework for multi-scenario
water resource prediction based on the PLUS model and the SSPs,
which simulates and analyes the spatial and temporal changes in
water and soil resources on the NSTM from 2030 to 2050, predicts
the productive, domestic, and ecological land use from 2030 to 2050,
quantifies the contribution of each driver to the dynamic changes in
land cover, and predicts the water use of the NSTM under the SSPs

based on the water consumption for production, living, and ecology.
The following conclusions were drawn.

(1) TheNSTM ismainly ecological land,which shows a decreasing trend,
whereas production and living land show an increasing trend. Land
transfer is mainly concentrated between agricultural production land,
grassland ecological land, and other ecological lands. The change in
production land was mainly influenced by population density
(10.05%) and GDP (14.47%), living land was mainly influenced
by population density, and ecological land was influenced by annual
rainfall (16.33%) and topographic factors (12.07%).

(2) The PLUS model has better applicability in simulating land and
spatial changes in the NSTM, with a Kappa coefficient of 0.81, an
overall accuracy of 0.88, and an FoM of 0.28. The total future water
use in the simulated NSTM increased in all three scenarios, with
production water still accounting for the largest share, and
production water decreased in the SSP3 scenario with a
decrease of 305 million m3. Domestic water uses: The three
scenarios show a slow growth trend. In terms of ecological
water use, SSP2 increased the most at 362 million m3.
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