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Evaluating the impact of the digital economy on carbon emission intensity has
great significance in promoting sustainable development. Based on the panel data
of 30 provinces in China from 2013 to 2019, the level of the digital economy is
estimated by using entropy weight and the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS) model. The panel vector auto-regressive
(PVAR) model is used to analyze the impact of the digital economy on carbon
emission intensity. The results show that, first, the comprehensive development
level of the digital economy in China is not high, and it tends to rise slowly from
0.208 in 2013 to 0.221 in 2019. Second, the carbon emission intensity of China
shows a downward trend from0.720 in 2013 to 0.607 in 2019. There are significant
differences in carbon emission intensity among different regions, and a decreasing
trend is seen from the western region to the eastern region. Third, there is a long-
term equilibrium relationship between the digital economy and carbon emission
intensity. Fourth, the digital economy has a long-term negative effect on carbon
emission intensity, but carbon emission intensity has no negative effect on the
digital economy. According to the research conclusion, this study puts forward
some suggestions.
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1 Introduction

Since the reform and opening up in 1978, China’s economy has developed rapidly. In
2010, China’s economy jumped to the second place in the world for the first time (Hou et al.,
2021). Although China has made some progress in economic development, the economic
development of China mainly relies on fossil fuel consumption. According to the data from
the China Energy Statistical Yearbook (2021), the total energy consumption of China was
4.5 billion tons of standard coal in 2020, and the total coal consumption accounted for 62.2%.
China’s long-term coal-based energy consumption structure has caused serious
environmental problems (Zhong et al., 2022). However, with the development of the 5G
network, e-commerce, artificial intelligence, and other technologies, the global economy has
entered the digital age, and the digital economy has gradually penetrated various fields, such
as society and ecology. The digital economy has shown strong carbon emission reduction
potential, which has become an important way to alleviate environmental pressure (Yin et al.,
2022). In 2021, the scale of the digital economy accounted for 39.8% of China’s GDP, ranking
second in the world (Yang W et al., 2022). With the huge dividends released by the digital
economy, China’s economy has gradually changed from extensive development to green and
low-carbon development (Zhang et al., 2022). Theoretically, the digital economy is the main
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engine of high-quality economic development (Li, 2019; Yin and Yu,
2022). The digital economy has a great impact on people’s
production and life, but there is little research on the relationship
between the digital economy and carbon emission intensity. Can
digital economy help to curb carbon emissions? Answering this
question has practical significance for promoting economic
development and reducing carbon intensity. Therefore, based on
the provincial panel data of China, this study uses the panel vector
auto-regressive (PVAR) model to analyze the relationship between
the digital economy and carbon emission. Compared with the
existing literature, the contributions of this study are as follows:
First, the determination of evaluation indicators is more scientific,
and this paper constructs the index system of the digital economy
level based on the input and output dimensions. Second, the
research perspective of this paper is more comprehensive, and
this paper uses the PVAR model to analyze the relationship
between the digital economy and carbon emission intensity.

The arrangement of this paper is as follows: The second part is a
literature review, which includes the related literature on the digital
economy and carbon emission. The third part is the research design,
including introducing the research methods and data sources. The
fourth part is the research results, which analyze the level of the
digital economy in China, the carbon emission intensity, and the
relationship between them. The fifth part is the conclusion, which
summarizes this research and puts forward suggestions based on the
research findings of this paper.

2 Literature review

Research on the digital economy can be traced back to the late
1990s, when economist Don Tapscott first proposed the concept
of “digital economy,” pointing out that digital technology can
produce new economic forms (Ma and Zhu, 2022). Subsequently,
many countries accelerated the formulation of development
strategies for the digital economy and actively promoted the
development of a digital economy based on information
networks and data resources (Sorescu and Schreier, 2021).
With the emergence of the new generation of digital
technologies, the digital economy not only accelerates the
upgrading of the traditional industrial structure but also
accelerates the process of digital governance (Sama et al.,
2022). Compared with the rapid development of the digital
economy, the research on how to measure the development
level of the digital economy lags behind. Therefore, academia
began to research the index construction and measure the
development level of the digital economy (Liu, 2022). Li and
Liu (2021), based on the cross-sectional data of eight
comprehensive economic zones in China in 2018, evaluated
the digital economic level from the aspects of digital
infrastructure, digital industry development, and digital
application, and found that the development level of the
digital economy in China was low. Furthermore, some
scholars used the analytic hierarchy process (AHP), an
entropy method to calculate the level of the digital economy
in China, and found that the digital economy in China was on the
rise, and the main influencing factors included the construction
of digital infrastructure and the application of digital technology

(Yang and He, 2022). Considering the regional differences in the
development of the digital economy, Shi (2022) used the Theil
index to analyze the differences in the digital economy in seven
regions of China and found the differences in the digital economy
among regions were obvious, and the overall trend was on
the rise.

In the field of carbon emissions, the academia mainly focuses on
how to measure carbon emission measurement, influencing factors
of carbon emission, spatial characteristics, and carbon emission
reduction paths, and the research objects are provinces, city clusters,
and high energy consumption industries. There are many pieces of
research measuring carbon emission, carbon emission intensity, and
carbon emission efficiency (Cai et al., 2019; Cary, 2020). Through
analysis of the influencing factors of carbon emissions, it is found
that the factors that promote carbon emissions include the level of
industrialization (Wang and Ma, 2018), economic income (Han
et al., 2022), energy consumption (Vujović et al., 2018), etc., while
the factors that inhibit carbon emissions include activity intensity
(Wang et al., 2018), technological input (Wen et al., 2020),
environmental regulations (Zhang et al., 2021), etc. Considering
the spatial distribution characteristics of carbon emissions, Su et al.
(2018) found the regional differences in urban carbon emissions in
China showed a downward trend. Yu et al. (2022a) took the Yangtze
River Delta region as the research area, used a spatial correlation
network model to analyze the spatial correlations of land-use carbon
emissions, and found that land-use carbon emissions in the Yangtze
River Delta had a spatial correlation and spillover effects. In
addition, it is important to reduce the carbon emissions of the
construction industry (Dong et al., 2023). Buildings are considered
the last mile toward the carbon-neutral century, and studying the
decarbonization potential of commercial building operations has
become another mainstream topic (Probst et al., 2021; Xiang et al.,
2022).

In terms of the relationship between the digital economy and
carbon emissions, there are two different opinions about the
relationship between the digital economy and carbon emissions.
Some scholars believe the digital economy can curb carbon
emissions (Yu et al., 2022b). With the development of the
digital economy, more and more cities are implementing the
concept of low-carbon development because the digital economy
encourages the development of digital inclusive finance and
green innovative technologies (Ma et al., 2022a; Zheng and Li,
2022). However, the effect of the digital economy on emission
reduction is significantly different in different regions. The effect
of the digital economy on emission reduction in eastern China is
more prominent than in central China and western China (Yi
et al., 2022). In addition, the spatial spillover effect of the digital
economy on carbon emissions has also become a hot issue in
academia. Improving the development level of the digital
economy has a significant impact on the reduction of carbon
emissions in neighboring areas (Zhou et al., 2022). Other scholars
believe the development of the digital economy contributes to the
increase in carbon emissions (Avom et al., 2020). The digital
economy accelerated China’s import trade, resulting in an
increase in consumer demand, which amplified consumption-
based carbon emissions (Ma et al., 2022b). Liu et al. (2022) found
the increase in information and communication technology can
increase carbon emissions. In addition, some scholars found the
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impact of the digital economy on carbon emissions presents an
inverted U-shaped non-linear relationship (Yang Z et al., 2022),
which accords with the hypothesis of the environmental Kuznets
curve (EKC) (Li et al., 2021).

To sum up, academia has made great achievements in the research
of digital economy and carbon emissions, but there are still some
research gaps in this field. First, there are many studies on designing
digital economic indicators from the perspective of input, but there are
few studies on measuring the level of the digital economy from the
perspective of input and output. Second, few pieces of literature used the
PVAR model to analyze the interactive relationship between the digital
economy and carbon emission intensity. The PVAR model not only
follows the advantages of the VAR (vector auto-regressive) model but
also effectively solves the endogenous and individual heterogeneity
problems and accurately reflects the influence of one variable and its lag
term on other variables in the model (Dai et al., 2022). Therefore, based
on the panel data of 30 provinces in China from 2013 to 2019, this paper
first uses the entropyweight–TOPSISmethod to evaluate the level of the
digital economy in China, then calculates the carbon emission intensity
based on the carbon emission coefficient method, and finally, uses the
PVAR model to explore the relationship between the digital economy
and carbon emission intensity.

3 Research methods and variable
description

3.1 Research methods

3.1.1 Entropy–TOPSIS model
In this paper, the entropy weight method and TOPSIS model are

combined to evaluate the level of the digital economy in China. The
main idea is to standardize the processing of index data, then use the
entropy weight method to determine the index weight, and finally
use the TOPSIS model to determine the ranking of the digital
economy level (Deng et al., 2020; Li S et al., 2022). The process
of the entropy–TOPSIS method is as follows (see Figure 1).

Step 1: Standardization of raw data.

Positive indicators: yjn �
xjn −m xjn( )

M xjn( ) −m xjn( ) 1< j< i, 1< n<m( )
(1)

Negative indicators: yjn �
m xjn( ) − xjn

M xjn( ) −m xjn( ) 1< j< i, 1< n<m( )
(2)

FIGURE 1
Entropy–TOPSIS model.
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In Formulas 1 and 2, xjn represents the sample value of the n-
th index in the j-th object, M(xjn) is the maximum value of the
sample values, and m(xjn) is the minimum value of the sample
values.

Step 2: Calculating the index weight.

Hn � − 1
ln j( )[ ]∑i

j�1
yjn∑i
j�1yjn

× ln
yjn∑i
j�1yjn

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ (3)

wn � 1 −Hn∑m
n�1 1 −Hn( ) (4)

In Formulas 3 and 4, Hn represents the entropy value of each
index, and wn represents the weight of each index.

Step 3: Calculating the Euclidean distance and relative
closeness.

First, we construct a standardized weighting matrix Q.

Q � qjn � wn ×
yjn∑i
j�1yjn

(5)

Second, we determine the positive ideal solution Q+ and
negative ideal solution Q-.

Q+ � q+1 , q
+
2 , ..., q

+
m[ ] (6)

Q− � q−1 , q
−
2 , ..., q

−
m[ ] (7)

Third, we calculate the Euclidean distances D+ and D-.

D+ �
�������������∑m

n�1 Q − Q+( )2
√

(8)
D− �

�������������∑m

n�1 Q − Q−( )2
√

(9)

Fourth, we calculate the relative closeness P.

P � D−

D+ + D− 0<P < 1( ) (10)

3.1.2 Panel vector auto-regressive model
This study chose the PVAR and Gaussian mixture model

(GMM) methods to analyze the relationship between the digital
economy level and carbon emission intensity. The PVAR

model not only follows the advantages of the vector auto-
regressive (VAR) model but also effectively solves the
endogenous and individual heterogeneity problems and
accurately reflects the influence of one variable and its lag
term on other variables in the model (Dai et al., 2022). The
formula is as follows:

Zit � β0+∑n

j�1βjZi,t−j + f i + gt + hit i � 1, 2, ..., 30; t � 1, 2, ..., 7( )
(11)

In Formula (11), Zit is an endogenous variable, including
digital economy level (CE) and carbon emission intensity (CO2).
β0 represents the intercept term, j represents the lag order, fi
represents the individual effect, gt represents the time effect, and
hit represents the random error term.

3.2 Variable description and data sources

3.2.1 Digital economy level
Ding et al. (2021) pointed out that the digital economy is the

economic output brought by the digital input. Combined with
China’s digital economy development report, this study designs
two criteria layers of input and output. Furthermore, it is
subdivided into four first-level indicators, the digital input is
represented by digital infrastructure and digital innovation
elements, and the digital output is represented by digital
industry and industrial digitalization (see Table 1). Referring
to the research of Li and Wang (2022), digital infrastructure
includes telephone penetration rate, the number of internet
broadband access ports, and the number of domain names.
Referring to the research of Zhao et al. (2022a), innovative
elements include the number of scientific research and
experimental development (R&D) personnel, the proportion
of R&D funds to gross domestic product (GDP), etc.
Referring to the research of Wang and Shi (2021), the digital
industry refers to software business income and telecom
industry income, and industrial digitalization refers to the
number of websites owned by every hundred enterprises and
e-commerce sales. The data of this paper comes from China
Statistical Yearbook (2014–2020), and some missing data are
filled in by interpolation.

TABLE 1 Digital economic index system.

Target layer Criteria
layer

Primary index Secondary indicators (units)

Digital economy Invest Digital infrastructure Telephone penetration rate (mobile/hundred people), number of internet broadband access ports (10,000),
Number of IPV4 addresses (10,000), number of domain names (10,000)

Digital innovation
elements

Proportion of scientific expenditure to fiscal expenditure (%), number of R&D personnel (person),
proportion of R&D funds to GDP (%), number of patent applications (pieces), average number of students in

higher education per 100,000 population (person)

Output Digital industry Software business income (10,000 Yuan), telecom business income (100 million Yuan), income from express
delivery business (10,000 Yuan)

Industrial digitalization Number of websites owned by each hundred enterprises (pieces), E-commerce sales (100 million Yuan), the
proportion of enterprises with e-commerce activities (%)
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3.2.2 Carbon emission intensity
Carbon emission intensity is measured by the proportion of

carbon emissions to GDP (gross domestic product). The specific
formula is as follows:

CO2 � Ci

GDP
(12)

In Formula(12), referring to the research of Zhao et al.
(2022b), this paper selects the eight kinds of carbon sources,

TABLE 2 Development level of the digital economy in China from 2013 to 2019.

Region Province 2013 2014 2015 2016 2017 2018 2019

Eastern China Guangdong 0.869 0.789 0.879 0.879 0.881 0.890 0.896

Jiangsu 0.580 0.516 0.624 0.619 0.609 0.643 0.660

Zhejiang 0.480 0.615 0.523 0.513 0.511 0.539 0.552

Beijing 0.478 0.695 0.474 0.477 0.464 0.452 0.450

Shanghai 0.454 0.622 0.481 0.470 0.460 0.459 0.468

Shandong 0.501 0.337 0.441 0.450 0.451 0.428 0.401

Fujian 0.242 0.435 0.280 0.269 0.281 0.292 0.294

Liaoning 0.248 0.388 0.275 0.265 0.262 0.269 0.270

Tianjin 0.205 0.281 0.221 0.206 0.199 0.207 0.198

Hebei 0.137 0.183 0.159 0.150 0.158 0.165 0.166

Hainan 0.101 0.256 0.099 0.094 0.092 0.099 0.106

Average 0.390 0.465 0.405 0.399 0.397 0.404 0.406

Central China Anhui 0.184 0.136 0.197 0.192 0.192 0.203 0.203

Hubei 0.166 0.169 0.179 0.171 0.173 0.182 0.181

Henan 0.157 0.144 0.164 0.159 0.159 0.168 0.169

Hunan 0.140 0.115 0.156 0.149 0.155 0.165 0.165

Jiangxi 0.110 0.099 0.139 0.134 0.149 0.153 0.156

Shanxi 0.096 0.188 0.113 0.106 0.106 0.109 0.106

Heilongjiang 0.112 0.169 0.105 0.103 0.106 0.101 0.093

Jilin 0.075 0.213 0.088 0.083 0.082 0.086 0.086

Average 0.130 0.154 0.143 0.137 0.140 0.146 0.145

Western China Sichuan 0.184 0.180 0.201 0.195 0.198 0.205 0.206

Shaanxi 0.118 0.257 0.128 0.119 0.118 0.126 0.126

Chongqing 0.117 0.183 0.129 0.120 0.121 0.130 0.127

Inner Mongolia 0.069 0.292 0.086 0.076 0.072 0.082 0.083

Xinjiang 0.059 0.262 0.076 0.069 0.065 0.071 0.072

Ningxia 0.072 0.234 0.077 0.070 0.066 0.074 0.076

Guangxi 0.079 0.053 0.086 0.083 0.084 0.084 0.084

Qinghai 0.049 0.228 0.059 0.053 0.048 0.056 0.059

Yunnan 0.067 0.077 0.069 0.068 0.070 0.072 0.073

Gansu 0.053 0.115 0.055 0.049 0.049 0.054 0.053

Guizhou 0.049 0.090 0.051 0.049 0.049 0.051 0.051

Average 0.083 0.179 0.093 0.087 0.086 0.091 0.092

National average 0.208 0.277 0.221 0.215 0.214 0.220 0.221
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such as coal and natural gas, to calculate the carbon emission (Ci)
in combination with the carbon emission coefficient. The
formula is as follows:

Ci � ∑8

i�1Ei × αi × μi (13)

In Formula (13), Ei represents the energy consumption, αi
represents the carbon emission coefficient, and μi represents the
standard coal conversion coefficient. The data comes from China
Energy Statistics Yearbook (2014–2020), and some missing data are
filled in by interpolation.

TABLE 3 Carbon emission intensity in China from 2013 to 2019.

Region Province 2013 2014 2015 2016 2017 2018 2019

Eastern China Guangdong 0.298 0.276 0.258 0.240 0.227 0.217 0.194

Jiangsu 0.401 0.367 0.354 0.334 0.299 0.276 0.263

Zhejiang 0.352 0.328 0.311 0.280 0.270 0.244 0.228

Beijing 0.188 0.183 0.167 0.142 0.129 0.123 0.105

Shanghai 0.403 0.338 0.330 0.294 0.276 0.247 0.220

Shandong 0.630 0.628 0.631 0.629 0.592 0.587 0.649

Fujian 0.338 0.359 0.322 0.273 0.258 0.254 0.230

Liaoning 0.801 0.762 0.741 0.964 0.943 0.933 1.043

Tianjin 0.444 0.393 0.369 0.324 0.313 0.322 0.434

Hebei 0.948 0.872 0.856 0.797 0.735 0.765 0.793

Hainan 0.621 0.627 0.655 0.582 0.513 0.495 0.466

Average 0.493 0.467 0.454 0.442 0.414 0.406 0.420

Central China Anhui 0.571 0.546 0.517 0.465 0.436 0.408 0.332

Hubei 0.418 0.384 0.353 0.320 0.303 0.269 0.245

Henan 0.556 0.517 0.489 0.444 0.383 0.345 0.282

Hunan 0.369 0.325 0.321 0.296 0.287 0.254 0.232

Jiangxi 0.415 0.386 0.380 0.350 0.330 0.313 0.284

Shanxi 1.783 1.813 1.798 1.709 1.684 1.765 1.835

Heilongjiang 0.745 0.726 0.720 0.722 0.698 0.625 0.788

Jilin 0.613 0.574 0.527 0.493 0.487 0.457 0.607

Average 0.684 0.659 0.638 0.600 0.576 0.554 0.576

Western China Sichuan 0.412 0.399 0.358 0.316 0.273 0.230 0.216

Shaanxi 0.847 0.817 0.794 0.756 0.683 0.599 0.615

Chongqing 0.349 0.336 0.308 0.270 0.249 0.222 0.193

Inner Mongolia 1.298 1.266 1.258 1.251 1.482 1.574 1.754

Xinjiang 1.543 1.564 1.567 1.598 1.508 1.395 1.328

Ningxia 2.237 2.129 2.087 1.912 2.160 2.210 2.368

Guangxi 0.472 0.435 0.387 0.373 0.390 0.367 0.372

Qinghai 0.904 0.779 0.692 0.751 0.709 0.636 0.609

Yunnan 0.609 0.505 0.425 0.388 0.372 0.395 0.317

Gansu 1.011 0.939 0.920 0.836 0.817 0.766 0.733

Guizhou 1.027 0.865 0.758 0.718 0.615 0.527 0.477

Average 0.974 0.912 0.868 0.833 0.842 0.811 0.817

National average 0.720 0.681 0.655 0.627 0.614 0.594 0.607
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4 Results and discussion

4.1 Comprehensive evaluation of the
development level of digital economy

The entropy weight–TOPSISmethod is used to evaluate the level
of the digital economy. The specific results are shown in Table 2.

As can be seen from Table 2, the level of the digital economy in
China increased from 0.208 in 2013 to 0.221 in 2019, with an
increase of 6.25%, indicating the level of the digital economy is
slowly rising. Specifically, the level of the digital economy rose
sharply from 2013 to 2014, reached 0.277 in 2014, then showed a
downward trend from 2014 to 2017, and slowly rose from 2017 to
2019. In addition, there are significant differences in the level of the
digital economy in China, which is consistent with the research of
Xu et al. (2021). In 2019, the average value of the digital economy
was 0.221 in China, 0.406 in eastern China, 0.145 in central China,
and 0.092 in western China. The level of the digital economy in
eastern China is higher than the national average, while that in
central China and western China is significantly lower than the
national average, which shows the development among regions is
unbalanced, and the level of the digital economy decreases from the
eastern region to western region. It is because the eastern region has
a superior geographical location and a good economic and talent
base, which creates conditions for technological innovation.
However, the economic development level in central China and
western China is low, which leads to a weak foundation of digital
economy development and a slow growth rate. Second, Guangdong
Province in eastern China ranked first in digital economy level, and
Hainan Province ranked 19th, which is far behind other provinces in
eastern China. The average values of the digital economy in
Xinjiang, Ningxia, Guangxi, Qinghai, Yunnan, Gansu, and
Guizhou in the western region are below 0.1, and while Sichuan
ranks 10th, Sichuan’s digital economy is growing faster than other
provinces in the western region. As can be seen from Table 2, there
are great differences in the development of digital economy in
different provinces.

4.2 Measurement of carbon emission
intensity

Based on the carbon emission coefficient method, this study
evaluates the carbon emission intensity of different provinces in
China from 2013 to 2019, and the results are shown in Table 3.

As can be seen from Table 3, China’s carbon emission intensity
shows a downward trend, with the carbon emission intensity
decreasing from 0.720 in 2013 to 0.607 in 2019. This is
consistent with the research conclusion by Wang and Zheng
(2021). It is worth noting that the carbon intensity levels of
Shanxi and Ningxia in 2013 and 2019 were at high levels. The
reasons are as follows: First, Shanxi and Ningxia have great
responsibilities in safeguarding national energy, so the coal
development intensity is high, but the economic level is low, and
the growth rate is slow, resulting in the high carbon intensity.
Second, it is difficult to transform the energy consumption
structure and the industrial structure. The carbon emission
intensity of Inner Mongolia increased from 1.298 in 2013 to

1.754 in 2019, an increase of 35.13%. According to the resource
curse theory (Wu et al., 2021), Inner Mongolia is constrained by a
heavy industrial structure, which has the development dilemma of
high energy consumption and low output value. In addition, the
preferential electricity price policy in Inner Mongolia has also
promoted the transfer of high energy-consuming industries,
resulting in the carbon intensity of Inner Mongolia rising instead
of falling. In addition, the carbon emission intensity of China has a
discrepancy, showing a decreasing trend from western China to
eastern China. This is because a series of projects, such as power
transmission from western China to eastern China and gas
transmission from western China to eastern China, have been
started after the western development, and the rapid economic
development in western China has caused air pollution. Because
the projects have the characteristics of a long cycle and large scale, it
is difficult to reduce the carbon emission intensity in western China.

4.3 The relationship between digital
economy and carbon emission intensity

4.3.1 Unit root test
To ensure the accuracy of this paper and avoid false regression

caused by unstable variables (Duan et al., 2022), this paper uses the
unit root test, including the Levin–Lin–Chu test (LLC), different
root Im–Pesaran–Shin test (IPS), and short panel Harris–Tzavalis
test (HT). The results show that the LLC, IPS, and HT tests of the
digital economy level (lnCE) all reject the original hypothesis at a 1%
significance level. In other words, the original sequence is stable, and
the unit root test is passed. The original sequence of carbon emission
intensity (lnCO2) failed the IPS and HT tests. This means the
original sequence has a unit root. The results in Table 4 show
that the digital economy and the carbon emission intensity that the
first-order difference data have passed LLC, IPS, and HT tests. It
indicates that the two variables are first-order single integration,
which can be used for the co-integration test.

4.3.2 Co-integration test
Based on the single integration of the same order, the co-

integration test is used to further analyze whether there is a long-
term co-integration relationship between variables (Li Z et al.,
2022). This paper used the Pedroni and Kao tests to test the co-
integration relationship between the digital economy and carbon
emission intensity. The original assumption is that there is no
co-integration relationship between variables. The results in
Table 5 show that the Pedroni and Kao tests reject the
original hypothesis at 1% significance level. In other words,
there is a long-term equilibrium relationship between digital

TABLE 4 Unit root test.

Variable LLC IPS HT

lnCE −26.206 (0.000) −9.589 (0.000) −0.501 (0.000)

lnCO2 −6.108 (0.000) 2.919 (0.998) 0.176 (0.500)

ΔlnCE −42.311 (0.000) −24.029 (0.000) −0.466 (0.000)

ΔlnCO2 −8.428 (0.000) −2.183 (0.015) −0.077 (0.000)
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economy level and carbon emission intensity, and the PVAR
model can be used.

4.3.3 Optimal lag order test
Before using the PVAR model, it is necessary to discriminate

the optimal lag order of variables. Among them, the optimal lag
order is determined according to the minimum value of AIC
(Akaike information criterion), BIC (Bayesian information
criterion), and HQIC (Hannan–Quinn information criterion)
(Yuan et al., 2022). The results in Table 6 show that the
optimal lag order selected by BIC is first order and the
optimal lag order selected by AIC and HQIC is second order.
According to the majority vote principle, the optimal lag period
of the model is determined to be second order.

4.3.4 GMM estimation based on the PVAR model
GMM is used to estimate the parameters of digital economy

level (lnCE) and carbon emission intensity (lnCO2), and the
estimated results are shown in Table 7. Column (1) is the
regression result which takes the digital economy level as the
explained variable. The result shows that the coefficient between
carbon emission intensity lagging by two periods and the digital
economy level is negative, but it fails to pass the significance level
test, which indicates that the effect of carbon emission intensity
on the digital economy level is not strong in the short term.
Column (2) is the regression result which takes carbon emission
intensity as the explained variable. The result shows that the
digital economy level lagging by two periods has a significant
inhibitory effect on carbon emission intensity, indicating that the
higher the digital economy level the lower the carbon emission
intensity. This is because the digital economy is driving the
economy from factor-driven to innovation-driven, which not
only helps to optimize the industrial structure, but also helps
to improve energy efficiency. This transformation stimulates the
high-quality development of the economy and reduces carbon
emission intensity. It is consistent with the research of Wang et al.
(2022a). In other words, the digital economy has a significant
negative effect on carbon emissions. The difference between the
research of Wang et al. (2022b) and this study is that this paper
considers endogenous variables and uses the PVAR model to
analyze the two-way interactive relationship between the digital

economy and carbon emissions, deepening the relevant research
results.

4.3.5 Impulse response analysis
To analyze the impact changes between digital economy level

and carbon emission intensity, the impulse response function is
used for dynamic analysis. Referring to Wang et al. (2022a), the
number of sample periods set by the model is 10. Combined with
the Monte Carlo method, the number of repetitions of data
simulation is 500, and the impulse response function results
are shown in Figure 2. In Figure 2, the horizontal axis
indicates the number of lag periods, the vertical axis indicates
the degree of the impulse response, the upper and lower dashed
lines indicate the upper and lower bounds of the 95% confidence
interval, and the solid line in the middle indicates the impulse
response value of the response variable after being impacted by a
standard deviation unit.

As can be seen from Figure 2A, the level of the digital
economy has a positive response to itself, reaching the
maximum value in the current period and showing a
downward trend as a whole. In the second period, the
maximum negative response is reached, and it begins to show
an upward trend. In the third period, it rises to zero. It shows that
the level of the digital economy is strengthened by itself and has a
long-term promoting effect. As can be seen from Figure 2B, the
impact of the digital economy on carbon emission intensity is
negative and gradually becomes stable. Specifically, the level of
the digital economy has a negative impact on carbon emission
intensity from the current period, reaching the maximum
negative impact in the second period. However, the overall
trend rises and is kept stable below zero level. It shows that
the improvement of the digital economy can inhibit carbon

TABLE 5 Co-integration test.

Test Statistical indicators Statistics p value

Pedroni Modified Phillips–Perron t 4.502 0.000***

Phillips–Perron t −29.770 0.000***

Augmented Dickey–Fuller t −135.919 0.000***

Kao Modified Dickey–Fuller t 4.500 0.000***

Dickey–Fuller t −6.901 0.000***

Augmented Dickey–Fuller t 6.624 0.000***

Unadjusted modified Dickey −3.341 0.004***

Unadjusted Dickey–Fuller t −22.182 0.000***

***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the robust standard error is in brackets.

TABLE 6 Test results of optimal lag order.

Lag AIC BIC HQIC

1 −0.539 −25.671* −10.369

2 −7.925* −24.679 −14.479*

3 −6.381 −14.759 −9.658

*The optimal lag order selected by the corresponding criteria.
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FIGURE 2
Impulse response function. (A) IRF of CE to CE, (B) IRF of CE to CO2, (C) IRF of CO2 to CE, (D) IRF of CO2 to CO2.

TABLE 7 GMM parameter estimation results.

Variable (1)lnCE (2)lnCO2

L2.lnCE −0.038** [0.019] −0.699* [0.041]

L2.lnCO2 −0.022 [0.085] 0.098 [0.124]

***, **, and * represent significance levels of 1%, 5%, and 10%, respectively; the robust standard error is in brackets.
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emission intensity. On the whole, in the short term, the digital
economy plays a prominent role in restraining carbon emission
intensity, while in the long term, the impact of the digital
economy on carbon emission intensity has a certain time lag,
which indicates the impact of the digital economy on carbon
emission intensity is more lasting and far-reaching. Existing
studies have shown that the digital economy promotes green
economic development. For example, Song et al. (2022) found
that the development of the digital economy can improve urban
air quality. Kong and Li (2022) found that the development of the
digital economy is helpful in improving the efficiency of a green
economy. This study discusses the relationship between the
digital economy and carbon intensity and finds digital
economy contributes to the reduction of carbon intensity,
expanding related research. Figure 2C shows a downward
trend after the impact of carbon emission intensity on the
digital economy level and tends to be stable after the third
period, indicating carbon emission intensity has a long-term
inhibitory effect on the digital economy level. Figure 2D
shows that after the impact of one standard deviation of
carbon emission intensity, its effect begins to decline and
gradually becomes stable after reaching the maximum value in
the current period, which indicates carbon emission intensity has
a significant promoting effect on itself.

4.3.6 Variance decomposition
In this paper, variance decomposition is utilized to analyze the

contribution of various structural impulses to the fluctuation of the
digital economy level and carbon emission intensity. The results are
shown in Table 8.

As can be seen from Table 8, in terms of lnCE (digital economy
level), the contribution of lnCE to itself reaches 75.1% in period 10,
while the variance contribution of lnCO2(carbon emission intensity)
is 24.9%. It can be seen that the contribution rate of lnCE mainly
comes from itself and lnCO2. In terms of lnCO2, the variance
contribution of lnCO2 to itself is higher in period 10, which is
more than 99% stable, while the contribution rate of lnCE to lnCO2 is
lower in period 10, which is less than 1% stable. It indicates that the

self-strengthening ability of lnCO2 is stronger. From the results of
variance decomposition, we can see that the variance contribution
rate of the digital economy and carbon emission intensity mainly
comes from its own strengthening. In the long run, the impact of
carbon emission intensity on the level of the digital economy has
been strengthened over time.

5 Conclusion

Based on the data from 30 provinces in China from 2013 to
2019, this study analyzes the impact of digital economy
development on carbon emission intensity. The research
findings are as follows: 1) The development level of digital
economy development in China is not high but has a slow
upward trend. The development level of the digital economy in
China has significant differences in different provinces.
Specifically, the development level of the digital economy is
decreasing from eastern China to western China. This indicates
that while accelerating the development of the digital economy,
China needs to pay attention to the regional differences in the
digital economy. 2) China’s carbon emission intensity has
declined, and the regional differences are significant.
Specifically, the carbon emission intensity in eastern China is
the lowest, followed by central China, and highest in western
China. 3) Through the co-integration test, there is a long-term
equilibrium relationship between the digital economy and carbon
emission intensity. In addition, the optimal lag period of the model
is 2. The GMM estimation results based on the PVAR model show
the digital economy lagging behind two periods and significantly
inhibiting carbon emission intensity. 4) From impulse response
analysis, the digital economy has a long-term inhibitory effect on
carbon emission intensity. This shows the digital economy has a
certain climate improvement effect, and promoting the
development of the digital economy can reduce the carbon
emission intensity.

Based on the research findings, the following suggestions are put
forward:

TABLE 8 Variance decomposition.

Variable Variable contribution rate Variable Variable contribution rate

Stage lnCE lnCO2 Stage lnCE lnCO2

lnCE 1 1.000 0.000 lnCO2 1 0.000 1.000

2 0.970 0.030 2 0.001 0.999

3 0.931 0.069 3 0.004 0.996

4 0.899 0.101 4 0.005 0.995

5 0.869 0.131 5 0.006 0.994

6 0.842 0.158 6 0.006 0.994

7 0.817 0.183 7 0.006 0.994

8 0.794 0.206 8 0.007 0.993

9 0.772 0.228 9 0.007 0.993

10 0.751 0.249 10 0.007 0.993
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1) We should strengthen the construction of digital infrastructure
such as internet broadband, 5G base stations, and artificial intelligence
and, at the same time, actively apply digital technology to change
resource waste. 2) China should strengthen the input of digital
innovation elements. On the one hand, the government should
rationally arrange financial expenditure and improve the coverage
and innovation of information technology to empower the rapid
development of the digital economy. On the other hand, high-quality
digital talents should be cultivated to enhance the application ability of
information technology and to provide a talent guarantee for the
improvement of the digital economy. 3) We should steadily promote
the development of industrial digitalization and intensify the
development of the digital industry. In terms of industrial
digitalization, enterprises need to penetrate internet technology into
every link of production and operation to create a new format of
enterprise development. In terms of the digital industry, the current
development level is low, and the speed is slow. Therefore, the
government needs to increase the support of innovation policies to
create a good business environment for the development of the digital
industry. 4) Cooperation should be strengthened and digital economy
policies should be issued in line with regional characteristics. The eastern
region should increase investment in information technology innovation
capability, and the central and western regions should increase
investment in digital infrastructure and digital innovation elements,
thus helping the high-quality development of the digital economy.

This study analyzes the relationship between the digital economy
and carbon emissions of 30 provinces in China, but there are still some
shortcomings. First, there are significant differences in the digital
economy level and carbon emission intensity in different regions of
China, so it is a future research direction to study the relationship
between the digital economy level and carbon emission intensity in
different regions. Second, the factors related to the two variables of the
digital economy level and carbon emission intensity are diverse and
complex. In the future, other influencing factors should also be
considered to further improve the research conclusions. Third, the
study period of this paper is only 7 years, which can be appropriately
increased in the future.
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