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Urban fringes are of great significance to urban development as connecting hubs
between urban and rural areas. However, there are many problems in urban
fringes, including disorderly spatial layout, waste of social resources, and low
quality of human settlements. Rapid and accurate identification of urban fringes
has important practical significance for optimizing urban spatial layout, controlling
urban unlimited expansion, and protecting land resources. Given the lack of
suitable and high-quality fringe extraction models for small- and medium-
sized urban areas, this study was based on Gaofen-2 (GF-2) imagery, Suomi
National Polar-orbiting Partnership Visible Infrared Imager Radiometer Suite
(NPP-VIIRS) imagery, point of interest (POI) data, and WorldPop data, taking
the landscape disorder degree, POI kernel density, and night light intensity as
urban feature factors and constructing a fringe extraction model of small- and
medium-sized urban areas (FEM-SMU). Taking Hantai District in China as the study
area, the results of the model were compared to the landscape disorder degree
threshold method and POI kernel density breakpoint analysis method, while the
generality of the model was further tested in Shangzhou and Hanbin Districts. The
results show that the FEM-SMU model has evident improvements over the
conventional methods in terms of accuracy, detail, and integrity, and has
higher versatility, which can better meet the research needs of small- and
medium-sized urban fringes.
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1 Introduction

Since the reform and opening up, China has experienced unprecedented growth of
urbanization and completed the great transformation from a country dominated by an
agricultural population to an urban population (Chen et al., 2018; Feng et al., 2019). Rapid
urbanization not only promotes the implementation of urban-rural integration
development strategies, but also provides unprecedented development opportunities
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for urban fringes (Whitehand and Gu, 2017; Liu et al., 2018). The
urban fringe is a region located at the outer boundaries of a city and
serves as a transition zone between urban and rural areas,
encompassing suburban developments and rural lands
undergoing urbanization (Simon et al., 2004). As the
connecting hub between urban and rural areas, urban fringes
are the areas with the fastest change in land use and spatial
structure in the process of urban expansion, with the
characteristics of diversity, dynamics, and transition (Seto et al.,
2010; Gant et al., 2011; Wadduwage et al., 2017). However, many
problems have arisen in the urban fringe during the process of
urbanization in China, including disorderly spatial layout,
deterioration of ecological environment, waste of land resources
and so on (Zhao and Zhang, 2018; Ahani and Dadashpoor, 2021;
Lyu et al., 2022). Rapid and accurate identification of urban fringes
is of great practical significance for optimizing urban spatial
layout, protecting land resources, and promoting urban and
rural integration.

With the development of remote sensing (RS) and geographic
information system (GIS) technology in recent years, the
recognition of the urban fringe has broken through the early
empiricism of fuzzy definition and gradually changed into a
scientism of accurate identification (Peng et al., 2016;
Wadduwage et al., 2017; Wang Y. et al., 2021). Most existing
studies constructed index systems using elements closely relevant
to urban development to identify the urban fringe through
mathematical models (Chang et al., 2018; Wang Y. et al.,
2021; Dong et al., 2022). The identification methods of urban
fringe mainly include the urban-rural gradient view, threshold,
mutation/breakpoint analysis methods, and so on (Peng et al.,
2014; van Vliet et al., 2019; Yang et al., 2021). The urban-rural
gradient view method mainly identifies the urban fringe
according to the spatial gradient changes in regional land use,
socioeconomic status, and population density (van Vliet et al.,
2019). It is generally well accepted that the gradient change of
land use can determine the difference in landscape structure
between urban and rural areas and reduce the subjectivity of land
use variability measurements (Warren et al., 2011; Wadduwage
et al., 2017). Moreover, the gradient changes in the social
economy and population density can well reflect the
differences between urban and rural areas (Vizzari and Sigura,
2015). However, the urban-rural gradient view method has
difficulty in overcoming the subjectivity in determining the
dividing point in areas with a scattered landscape structure
(Peng et al., 2016; Sharaf El Din, 2020). As an alternative, the
threshold method determines the urban fringe according to the
threshold range of indicators such as distance from the built-up
area, population density, building proportion, and information
entropy (Imhoff et al., 2010; Peng et al., 2016; Yang et al., 2017).
The threshold method is simple and practical, but the
determination of the threshold usually requires repeated
experiments, which has some problems, such as low efficiency,
discontinuous results, and poor universality (Gao et al., 2014;
Peng et al., 2014; Yang et al., 2017). As the current mainstream
option, the mutation/break point analysis method is used to
determine the urban fringe by calculating the mutation/break
values of single or comprehensive indexes such as night light
intensity, the impervious surface index, and the landscape

disorder degree in different directions through the model
(Peng et al., 2016; Yang et al., 2017; Peng et al., 2018; Yang
et al., 2021).

At present, research on the identification of urban fringe is
mainly focused on larger cities (Peng et al., 2014; Peng et al., 2016;
Cai et al., 2017; Yang et al., 2017; Yang et al., 2021), while the
extraction model suitable for small- or medium-sized urban
fringes is rare. The fringes of large cities have higher population
density and more economic activities, while the fringes of small
and medium-sized cities are more remote and rural (Long et al.,
2022). At the same time, the fringes of small- and medium-sized
urban areas are smaller, and the spatial resolution of available data
related to urban development (economy, population, lighting
images, etc.) is lower. The existing models designed for large
cities are difficult to accurately identify the fringes of small-
and medium-sized urban. In recent years, the rapid
development of 3 S (i.e., GIS, RS, and global positioning system
(GPS)) technology has resulted in a large amount of urban spatial
data, including POI data, GPS data, and population migration data
(Li et al., 2019; Fang et al., 2020; Tu et al., 2020). These spatial data
can reflect the activity law of residents and the spatial
characteristics of the city, which is conducive to urban fringe
studies. At the same time, high-resolution RS satellite images such
as GF and Systeme Probatoire d’Observation dela Tarre (SPOT)
improve the richness of obtaining surface spatial information (Su,
2019; Tong et al., 2020). This study was based on GF-2 imagery,
NPP-VIIRS imagery, POI data, and WorldPop data, taking the
landscape disorder degree, POI kernel density, and night light
intensity as urban feature factors, and proposing an accurate fringe
extraction model for small and medium-sized urban areas,
hereafter FEM-SMU.

FIGURE 1
Location of the study area.
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2 Materials and methods

2.1 Study area

The study area of this study is Hantai District which is located in
the center of the Hanzhong Basin in the southwest of Shaanxi
Province in China, with the Hanjiang River to the south and the
Qinling Mountains to the north. The terrain of Hantai District is
high in the north and low in the south, and the north belongs to the
Qinling Mountains, with an elevation of 700–2000 m, accounting
for 34% of the total area; the central part is a hilly area, with an
elevation of 541–700 m, accounting for 28% of the total area; and the
south is the Hanjiang alluvial plain, accounting for 38% of the total
area (Wang L. et al., 2021). Hantai District is the largest commodity
distribution center in southern Shaanxi and the core area of the
Qinling and Bashan mountains, which has important economic and
ecological value. Since the urban construction in Hantai District is
mainly concentrated in the south, the study area is composed of the
administrative boundaries of nine towns in the south (Figure 1).

2.2 Data

This study utilized five types of data: GF-2 imagery, NPP-VIIRS
imagery, POI data, WorldPop data, and administrative boundaries.
The GF-2 satellite is the first civil optical RS satellite with a spatial
resolution better than 1 m independently developed by China, which
achieves sub-meter spatial resolution and multi-spectral
comprehensive RS data acquisition (Zhou et al., 2021). It has the
characteristics of high positioning accuracy, high spatial resolution,
and high time resolution. Four GF-2 images covering the study area
in July 2020 were used.

The data of POI comprises geographical objects that can be
abstracted as points, especially some geographical entities closely
related to people’s lives (Wenhao and Tinghua, 2015). In this study,
the POI map data was divided into 18 service categories: automobile,
motorcycle, catering, shopping, life, sports and leisure, healthcare,
accommodation, scenic spots, commercial residences, government
institutions and social organizations, science and education,
transportation facilities, financial and insurance, company
enterprises, road ancillary facilities, place name address
information, and public facilities. Given road ancillary facilities
and place names usually represent non-substantive information,
such as road section identification, administrative place names,
natural place names, and traffic place names, they were not selected.

The NPP-VIIRS data were obtained from the National
Geophysical Data Center (NGDC) of the United States and were
detected by the Suomi NPP satellite with a visible infrared imaging
radiation instrument (Shi et al., 2014). The monthly data of lighting
products in July 2020 were selected with a spatial resolution of
500 m.

TheWorldPop project, hosted by the Department of Geography
and the Institute of New Pathogens at the University of Florida, aims
to provide spatial population data sets for Central and South
America, Africa, and Asia to support development, disaster
response, and health applications (Tatem, 2017). Table 1 lists the
specific information of all the data used in this study.

2.3 Object-oriented support vector
machines (SVM) classification method

SVM is a classification algorithm based on the VC dimension
theory of statistical learning theory and the structural risk
minimization principle (Cortes and Vapnik, 1995). Compared
with traditional classification ideas based on neural networks or
statistics, SVM controls the complexity of the model through the
number of vectors and does not need to reduce the feature variables
through dimensionality reduction processing to control the
complexity of the model (Thaseen and Kumar, 2017). Therefore,
in the classification process, the SVM classifier will not lose the
feature information of ground objects and reduces the occurrences
of some over-fitting phenomena.

The basic principle of SVM is to transform the original feature
vector into a high-dimensional feature space and to solve the
optimal classification hyperplane in a high-dimensional space.
The classification accuracy depends on the distance between the
hyperplane and the boundary plane on both sides of the hyperplane.
The larger the distance, the higher the accuracy of the classifier and
the smaller the error. Given a sample set (xi, yi), i is 1, 2, 3.N, xiϵRn,
yiϵ −1, 1{ }, the classification line isH � ω · x + b � 0. ω is the normal
vector, x is the training sample, and b is the offset. The optimal
classification line needs to have the maximum classification interval,
that is, the maximum distance of 2

‖ω‖ between the two types of
samples, equivalent to finding the minimum value of the function.

φ ω( ) � 1
2
ω‖ ‖2 (1)

The classification of land use belongs to the linear inseparable
problem, so it is necessary to introduce the relaxation variable ξi and

TABLE 1 The specific information of data.

Data type Date Resolution/m Website

GF-2 image 07/08/2020 1 http://www.gscloud.cn/

POI data 2020 — https://lbs.amap.com/

Woldpop data 07/2020 100 https://www.worldpop.org.uk/

NPP/VIIRS image 07/2020 500 http://ladsweb.nascom.nasa.gov/data/

Administrative boundary 2020 — http://www.dsac.cn/
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the penalty parameter c into the above expression, which can then be
expressed as:

min
1
2
ω‖ ‖2 + c∑l

i�1
ξi + ξ*i( )⎡⎣ ⎤⎦, ξ i ≥ 0 i � 1, 2, . . .N( )

s.t.

ωxi( ) + b − yi( )≤ ε + ξi

yi − ωxi( ) + b( )≤ ε + ξ*i

ξi, ξ
*
i ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2)

where ε is the insensitive loss coefficient, and its value affects the
number of support vectors; ξi and ξ*i are relaxation variables,
indicating the extent to which the sample deviates from the ε-
insensitive region.

For optimization problems, it needs to be transformed into the
dual problem of the Lagrangian operator, and the final expression of
SVM is:

f x( ) � ∑n
i�1

αi − α*i( )k xi, x( ) + b (3)

where k(xi, x) is the kernel function, α and α* are Lagrange
multipliers.

The object-oriented classification method breaks through the
limitation of the traditional classification method which takes a
single pixel as the basic classification and processing unit, classifies
the image from the object level, and reduces the loss rate of semantic
information contained in the traditional pixel-based classification
method (Stumpf and Kerle, 2011). The object-oriented SVM
classification method takes into account the advantages of object-
oriented multi-scale segmentation and SVM. Firstly, multi-scale
segmentation is carried out according to the properties of the
object region on the image, which not only considers the spectral
information of the image, but also adds features such as texture,
geometric shape, and spatial topological relations, and then uses
training samples for SVM classification. The object-oriented SVM
classification method has obvious advantages in accuracy,
generalization, and high-dimensional data processing, and thus
has been widely used in RS image classification (Li et al., 2010;
Lin et al., 2018; Shen et al., 2020). To obtain the land use types in the
study area, this research utilized the object-oriented SVM
classification method to classify remote sensing images.

2.4 Landscape disorder degree

The landscape disorder degree can indicate the degree of
fragmentation and dispersion of urban landscapes, as well as
reflect the heterogeneity and homogeneity of landscape space
(Dong et al., 2010). The higher the heterogeneity of land use
patches per unit area, the greater the degree of landscape
disorder. Urban and rural areas usually have a single type of
land, mostly for construction or agricultural use, and the degree
of their landscape disorder is low. Since the urban fringe is an active
expansion zone between the urban landscape and agricultural
hinterland, it has various types of land use and a high degree of
landscape disorder (Scott et al., 2013; Yang et al., 2017; Sharaf El Din,
2020). Therefore, the scope of the urban fringe can be determined by

the differences in landscape disorder. The formula for the landscape
disorder degree is as follows:

W � −∑N

n�1Xn ln Xn( )(Vranken et al., 2015) (4)

Where W is the value of the degree of landscape disorder, Xn

represents the ratio of a certain type of land in the unit area, and n is
the number of land use type patches per unit area.

2.5 Kernel density estimation (KDE)

The KDE calculation is often used to evaluate the density value
of the neighborhood of point or line elements, and to simulate the
spatial distribution of elements, which is widely used in geospatial
analyses (Lin et al., 2021). Its main principle is that the estimated
density of elements decreases with an increase in distance within a
certain bandwidth. The kernel density at the center of the feature is
the highest, and the kernel density at the edge of the bandwidth is 0.
As KDE obeys the law of spatial correlation, the closer the distance
is, the greater the correlation is, hence the POI data also conform to
this law. The kernel density formula is as follows:

λ s( ) � ∑n
l�1

1
πr2

φ
dls

r
( ) (5)

where λ(s) is the estimated density at region s, r is the bandwidth set
by the kernel density function, n is the total number of elements
involved in the calculation, dls is the distance between POI points l
and s, and φ is the weight of the distance.

2.6 Geographical detector (Geodetector)

Geodetectors are a group of statistical methods used to detect
spatial diversity and explain the driving force behind it, including
factor, interaction, risk, and ecological detectors (Wang et al., 2010).
The main principle of the geodetector is to assume that the study
area is divided into several sub-regions; if the sum of the variance of
the sub-region is less than the total variance of the region, there is a
spatial difference; if the spatial distribution of the two variables tends
to be consistent, there is a statistical correlation between the two
variables. Geodetectors can evaluate spatial differentiation, detect
explanatory factors, and analyze the interaction between variables,
and therefore have been widely used in nature, environmental
science, human health, and other fields (Wang et al., 2010; Cao
et al., 2013; Liu et al., 2020). Based on the factor detector, this study
obtained the degree of landscape disorder, POI kernel density, and
night light intensity to explain the spatial distribution of population.

Of the detector components, the factor detector detects the
spatial differentiation of attribute Y and the explanatory power of
factor X to attribute Y, which is measured by q value. Given
population density is closely related to urban development (Liu
et al., 2012; Yue et al., 2013; Li et al., 2019), this study determined the
weight of each factor according to the explanatory power of
landscape disorder degree, POI kernel density, and night light
intensity on population spatial distribution. The value q can be
defined as:
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q � 1 − ∑L
h�1Nhσ

2
h

Nσ2
� 1 − SSW

SST
h � 1, 2 . . .( )

SSW � ∑L
h�1

Nhσ
2
h, SST � Nσ2

(6)

where L is the stratification of variable Y or factor X, that is,
classification or partition ; Nh and N are the numbers of units
in layer h and the whole region, respectively; σ2h and σ2 are the
variances of layer h and Y values of the whole region, respectively;
and SSW and SST are the sums of the variance of the layer and the
variance of the whole region, respectively.

2.7 Fringe extraction model of small and
medium-sized urban areas (FEM-SMU)

Taking the landscape disorder degree, POI kernel density, and
night light intensity as urban characteristic factors, this study
proposes the FEM-SMU model (Figure 2). The
spatial distribution of population density in an urban area is
reflective of the differences between the urban center, urban
fringe, and rural areas (Simon, 2008). The explanatory power of
individual factors (landscape disorder degree, POI kernel density,
night light intensity) on population distribution can reflect their
explanatory power on the differences in urban center, urban fringe,
and rural characteristics. Therefore, the relative weights of the
various factors can be established based on the ratio of the
explanatory power of a single factor to the sum of the
explanatory power of all factors. The implementation process of
the model is divided into the following three steps.

The first step was to calculate the degree of landscape disorder,
POI kernel density, and night light intensity. For the calculation of
landscape disorder degree: First, Envi 5.3 software was used to
perform atmospheric correction, fusion, mosaic, and cropping

operations on GF-2 images in the study area, then the object-
oriented SVM method was used for land use classification, and
finally, Eq. 4 was used to calculate the degree of landscape disorder.
For the calculation of POI kernel density: First, the POI data were
filtered and reprojected using ArcGIS 10.3 software, and then the
kernel density tool was used to evaluate the kernel density. For the
calculation of night light intensity: First, the NPP-VIIRS data of the
study area were reprojected, denoised, and cropped using ArcGIS
10.3, and then the DN value of pixels was obtained to represent the
night light intensity. It should be noted that the degree of landscape
disorder, POI kernel density, and night light intensity should be
normalized and resampled to a resolution of 10 m after calculation
to ensure accurate analysis.

The second step was to build a comprehensive index. First,
the Wordpop data were reprojected and cropped using ArcGIS
10.3. Second, the explanatory power of the landscape disorder
degree, POI kernel density, and night light intensity on
population spatial distribution was determined based on the
factor detector. Finally, the comprehensive index was
established after the weight was determined according to the
ratio of the explanatory power degree of a single factor to all
explanatory power degrees.

The third step was to extract the fringe of small- and
medium-sized urban areas. First, the comprehensive index
grid was divided into three categories by using the Natural
Breaks Classification (NBC) method, which represents the
urban core, urban fringe, and rural hinterland, and then the
classified results were transformed into vectors and smoothed to
obtain the range of the urban fringe. It is worth mentioning that
this paper determines the NBC method as the classification
method for the composite index through comparison of the
accuracy of equal interval method, NBC method, and standard
deviation method, and reference to literature (Xu et al., 2013;
Xiao et al., 2020).

FIGURE 2
The implementation process of the FEM-SMU model.
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3 Results

3.1 Results of landscape disorder degree
threshold method

Based on the preprocessed GF-2 imagery of the study area, the
land use was divided into four categories: vegetation (cultivated
land, forest land, and grassland), construction land, water, and
unused land, using the object-oriented SVM classification method
(Figure 3A). It can be seen from the figure that the construction
land was mainly distributed in the middle and south of the study
area, the water was distributed along the southern boundary, the
unused land was mainly distributed in the north, and the
vegetation was mainly distributed in the northwest, northeast,
and southeast. According to statistics, the vegetation area of the
study area was 80.34 km2, the construction land area was
60.83 km2, the water area was 6.95 km2, and the unused land
area was 3.31 km2.

To highlight the circular structure of landscape disorder in
the study area, a grid of 100 × 100 m was constructed as the scale
unit of spatial calculation. ArcGIS 10.3 was applied to calculate
the area ratios of vegetation, construction land, water, and
unused land in the cell grid, and the degree of landscape
disorder in the study area was calculated using Eq. 4;
(Figure 3B). As can be seen from the figure, the landscape
structure characteristics of the urban core area were
prominent, the landscape disorder degree was low, and there
were concentrated and contiguous low-value areas. After
repeated experiments, a threshold value of less than 0.46 was
used as the symbol to identify the urban core area. However, if
there was a large range of green spaces in the urban core area, the
degree of landscape disorder was higher, and the landscape
disorder degree threshold method could not identify the
complete urban core area. The difference in the degree of

landscape disorder between the urban fringe and rural
hinterland was not obvious, and the degree of landscape
disorder was higher. We consider that, compared with larger
cities, small- and medium-sized cities have fewer populations and
smaller villages; further, the study area is located in the
Hanzhong Plain, where villages are relatively concentrated and
cultivated land is relatively scattered. These circumstances
resulted in a higher degree of landscape disorder between the
urban fringe and rural hinterland. Although the landscape
disorder degree threshold method is currently widely used in
the identification of metropolitan fringes (Huang et al., 2016;
Wang Y. et al., 2021; Liu, 2021), in this study, the common
shortcomings of this as a single-factor threshold method, which
include discontinuity, lack of detail, and poor versatility, were
amplified obviously in the process of urban fringe identification
in the study area. Therefore, we conclude that the landscape
disorder degree threshold method is not suitable for the
identification of small- and medium-sized urban fringes.

3.2 Results of the POI kernel density
breakpoint analysis method

The setting of the bandwidth in KDE has an important
influence on the results. After referring to previous research
results (Heidenreich et al., 2013; Lin et al., 2021), the
distances of 500 m, 1000 m, and 1,500 m were selected for
KDE analysis (Figures 4A–C). It can be seen from the figure
that with the shortest bandwidth of 500 m, the KDE results were
fragmented and discontinuous, and the overall distribution of
urban POI was not obvious. On the other end of the spectrum,
with a bandwidth of 1,500 m, the local characteristics of the
overall distribution trend of urban POI were difficult to show,
and the details were insufficient. Finally, with the medium

FIGURE 3
(A) Results of land use classification based on the object-oriented SVM method. (B) Results of the landscape disorder degree threshold method.
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bandwidth of 1,000 m, the KDE results had good stability and an
obvious overall distribution, which can meet the analysis needs of
the urban fringe in the study area.

Taking this selected bandwidth, Figure 4D shows the result of
dividing the POI kernel density with a bandwidth of 1,000 m into
three categories by the NBC method. As can be seen from Figures
4B, D, the POI kernel density showed an obvious circular structure
distribution. The urban core area had a large area of continuous
high-density area, the density of the urban fringe was low, and the
density of most rural areas was close to 0. Compared with the
landscape disorder degree threshold method, the results of the POI
kernel density breakpoint analysis method can clearly and
completely identify the urban core area; however, both of them
had poor recognition results for the urban fringe area. Moreover, the
POI kernel density breakpoint analysis method identifies well-
developed villages with a large number of POIs as urban fringes.
As the urban fringe was in the stage of development, with less POI
data and slow updating speed, this led to obvious errors between the
results and the actual urban fringe. Different from larger cities, the
POI data integrity of small- and medium-sized urban fringe was
lower and the update speed was relatively slow, so we conclude that
the POI kernel density breakpoint analysis method had too much
difficulty in accurately extracting the urban fringe of the study area.

3.3 Results of the FEM-SMU model

Finally, the urban fringe of the study area was extracted using the
FEM-SMU model proposed in this study. First, the degree of
landscape disorder, POI kernel density, and night light intensity
were calculated. Then, the weight of each factor was determined by
combining the Geodetector andWorldPop data (landscape disorder
degree: 0.10, POI kernel density: 0.51, night light intensity: 0.39) to
construct a comprehensive index. Finally, the urban fringe was
identified by the NBC method, and the results were post-processed.

Figure 5A shows the result of dividing the comprehensive index
into three categories by the NBC method, and Figure 5B shows the
final result of the FEM-SMU model. As can be seen from the figure,
the FEM-SMU model could accurately and completely identify the
urban fringe of the study area. The urban fringe was mainly
concentrated in the north and east, with an area of
approximately 39 km2. Compared with the two single-factor
extraction methods, the performance of the FEM-SMU model
was a great improvement, especially for the results of the outer
boundary of the urban fringe. The overall pattern of the inner
boundary of the urban fringe (urban core area) extracted by the
FEM-SMU model and POI kernel density breakpoint analysis was
more consistent, and further, the former was more detailed. The

FIGURE 4
(A–C) The KDE results with bandwidths of 500 m, 1,000 m, and 1,500 m, respectively. (D) Results of dividing the POI kernel density with a bandwidth
of 1,000 m into three categories by the NBC method.
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difference between the results of the two methods was mainly
concentrated in the southwest in the Hanjiang New Area which
is still in the stage of rapid development with rapidly changing
landscape patterns, and the POI data updated slowly. Therefore,
there is a partial error between the inner boundary of the urban
fringe extracted by the POI kernel density breakpoint analysis and
the actual boundary. Nevertheless, the FEM-SMU model focuses on
the comprehensive performance of the regional landscape disorder
degree, POI kernel density, and night light intensity, and is less
dependent on the performance of a single factor, thus it can more
accurately identify the urban fringe.

4 Discussion

4.1 Accuracy evaluation of the FEM-SMU
model

As the landscape disorder degree threshold method makes it
difficult to identify the urban fringe of the study area, this study only
evaluates the accuracy of the POI kernel density breakpoint analysis
method and FEM-SMU model. Through detailed visual analysis in
Section 4, we found that the FEM-SMU model was significantly
stronger than the POI kernel density breakpoint analysis method in
detail and integrity. To further evaluate the extraction accuracy of
different methods, field verification and landscape pattern index

evaluations were used in this study. A total of 100 sample points
were evenly selected along the road around the urban fringe
(Figure 5B), and the accuracy of the extraction results was
analyzed by field verification (Table 2). It can be seen from the
table that the overall accuracy of the FEM-SMU model was
significantly higher than that of POI kernel density breakpoint
analysis method, reaching 98%. The POI kernel density
breakpoint analysis method had a relatively large number of
errors, with an overall accuracy of only 67%.

As another validation method, the landscape pattern index is
often used to evaluate the extraction accuracy of urban fringes (Peng
et al., 2016). After referring to previous research results (Vizzari and
Sigura, 2015; Yang et al., 2021), patch density (PD) and the Shannon
diversity index (SHDI) were selected to evaluate the accuracy of the
two methods at the grade and landscape levels. The PD value
indicates the degree of landscape fragmentation, and SHDI
represents the degree of richness and complexity of landscape
types. Generally speaking, the PD and SHDI in urban fringes
should be higher, while those in urban centers and rural areas
should be lower. Table 3 shows the PD and SHDI values of the two
methods in different regions calculated by the Fragstats 4.2 software.
It can be seen from the table that the PD and SHDI values of the
FEM-SMU model were significantly higher than those of the POI
kernel density breakpoint analysis method in the urban fringe. This
shows that the degree of landscape fragmentation, complexity, and
diversity in the urban fringe extracted by the former was higher than

FIGURE 5
(A) Results of dividing the comprehensive index into three categories by the NBC method. (B) Final results of the FEM-SMU model.

TABLE 2 Extraction accuracy of different methods.

Analysis method Error quantity Correct quantity Overall accuracy/%

POI kernel density breakpoint analysis method 33 67 67

FEM-SMU 2 98 98
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that of the latter, which can better reflect the characteristics of the
urban fringe. In the rural hinterland, the PD and SHDI values of the
FEM-SMU model were significantly lower than those of the POI
kernel density breakpoint analysis method. However, the PD and
SHDI values are approximate in the urban core areas because of the
relatively small difference between the boundaries extracted by the
two methods. In conclusion, the two evaluation methods show that
the FEM-SMUmodel has higher accuracy and can accurately extract
the urban fringe of the study area.

4.2 Generality analysis of the model

To further verify the applicability of the model proposed in this
study in different regions and different types of small- and medium-
sized cities, urban fringe identification was completed for Shangzhou
District in Shangluo City and Hanbin District in Ankang City
(Figure 6). Shangzhou District is a typical banded urban
structure, which is severely limited by resource conditions. As

shown in Figure 6A, the extraction result of the POI kernel
density breakpoint analysis method is incomplete, especially in
the southeast. The reason for this is likely that the southeast part
of Shangzhou District is mainly an industrial park, and the number
of POIs is small and scattered, which is not enough to support the
identification of the urban fringe. Hanbin District is separated from
the middle by the Hanjiang River, with the old urban area in the
southeast and the new urban area in the northwest, which is a multi-
center urban structure. As can be seen from Figure 6B, the extraction
result of the POI nuclear density breakpoint analysis was poor,
especially in the old urban area of the southeast. The main reason for
this is likely that the single-factor method requires high data quality
when extracting the fringe of multi-center cities, while the
development of the old urban area is relatively backward, the
population distribution is concentrated, and the POI data are not
complete. As a better option, the FEM-SMU model identifies the
urban fringe according to the comprehensive performance
differences of regional landscape disorder degree, POI kernel
density, and night light intensity combined, and is less dependent

TABLE 3 PD and SHDI values in different regions.

PD SHDI

Region Method Vegetation Water Construction land Unused land

Urban fringe POI KDE 28.66 6.34 11.28 4.22 0.87

FEM-SMU 34.01 6.68 11.80 6.93 0.92

Urban core POI KDE 44.64 9.30 2.37 2.14 0.42

FEM-SMU 44.23 9.23 2.24 2.20 0.42

Rural POI KDE 10.82 5.82 15.89 4.63 0.76

FEM-SMU 7.03 5.64 14.25 3.33 0.70

FIGURE 6
(A) Urban fringe of Shangzhou District extracted using different methods. (B) Urban fringe of Hanbin District extracted using different methods.
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on the performance of a single factor, thus it can adapt to different
regions and different types of small- and medium-sized cities.

5 Conclusion

This study proposes a FEM-SMU taking the landscape disorder
degree, POI kernel density, and night light intensity as urban
feature factors. The extraction results of the FEM-SMU model,
landscape disorder degree threshold method, and POI kernel
density breakpoint analysis method in Hantai District, China
were compared through experiments, and the generality of the
model was tested in Shangzhou and Hanbin districts, also in China.
The results show that although the landscape disorder degree
threshold method could reflect the landscape characteristics of
urban core areas, the recognition results of the rural hinterland and
urban fringe were poor. The overall pattern characteristics of
urban core areas extracted by the POI kernel density breakpoint
analysis method and FEM-SMU model were consistent, but the
former was poor in extracting urban fringe. In contrast, the urban
fringe extracted by FEM-SMU had obvious advantages in accuracy,
detail, and integrity, and can be applied to different areas and
different types of small- and medium-sized urban areas. The
research results have important practical significance for
optimizing urban spatial layout, controlling unlimited urban
expansion, and protecting land resources.
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