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Understanding the effects of thermal and water stress on maize yield in the
context of climate change is crucial to ensure food security in China. However,
very few studies looked into the combined effects of heat and water stress on
maize yield in China. Here, we utilized historical reanalysis data fromERA5 and four
future shared socioeconomic pathway scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0,
and SSP5-8.5) of the CoupledModel Intercomparison Project 6 (CMIP6)models to
predict the maize yield. We used the linear mixed-effects model to quantify the
grid cell sensitivity of vapor pressure deficit (VPD) and root-zone soil moisture to
maize yield in China during 2010–2016. The results infer that VPD and root-zone
soil moisture are excellent representatives of heat andmoisture stress. Maize yield
is beneficial only when the atmospheric moisture demand and soil moisture are in
relative balance. Based on the historical results’ polynomial function for VPD and
soil moisture, we predict the maize yield response to soil moisture and VPD in the
four SSPs. The results show that considering soil moisture in the future the
projected yield estimates reduce the overestimated yield loss by half compared
to considering only atmospheric moisture requirements. Maize yield will decrease
under representative SSPs due to an increase in temperature (1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0°C). This study suggests that both atmospheric moisture demand and
supply need to be considered when analyzing the specific influence of climate
change on crop yield to secure and assure global food supplies.
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1 Introduction

Maize is one of the most valuable food crops to ensure food security in the world (Jones
and Thornton, 2003; Lobell et al., 2013; Abera et al., 2018). Increased maize production is
essential for human livelihood, welfare, and the development of the national agriculture and
livestock industry. Themaize yield in China is probably 2.61 × 108 tons, accounting for 22.7%
of the total global maize production (FAOSTAT, 2020), making it the world’s second-largest
maize producer. Global warming, accompanied by an increase in the frequency and intensity
of extreme weather and climate extremes (droughts, heat waves, floods, etc.), will irreversibly
affect plant physiological and yield parameters (IPCC, 2021). Conversely, the impacts of
climate change and the intensification of associated hydrometeorological extremes will
exacerbate the maize production crisis, affecting food security and sustainability (Li et al.,
2021a).
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Vegetation growth and development at different stages are
subject to changes in temperature degree days (Schlenker and
Roberts, 2009), vapor pressure deficit (VPD) (Arve et al., 2011),
soil water (Siebert et al., 2014; Webber et al., 2016), CO2 (Lobell
et al., 2013) and solar radiation (Mercado et al., 2009). Moreover,
large-scale climatic phenomena such as the El Niño Southern
Oscillation (ENSO) (Zhu et al., 2018) and anthropogenic
interventions in the natural earth climate system can affect the
global vegetation growth (Reichstein et al., 2013). Air temperature
and soil moisture are two main controlling factors for rainfed maize
yield (Carter et al., 2016; Ortiz-Bobea et al., 2019). Therefore, the
specific air temperature and soil moisture range corresponding to
each growth stage contribute to the physiological growth of maize.
Fluctuation beyond the optimal threshold range adversely affects
biological production and grain yield (Zhang et al., 2022).
Excessively increasing air temperature triggers heat stress,
reducing maize yield (Schlenker and Roberts, 2009; Butler and
Huybers, 2013; Lobell et al., 2013; Butler and Huybers, 2015).
For another, excess soil moisture (e.g., flood, over-irrigation) also
produces waterlogging, damaging the plant root system and loss of
essential nutrients, causing maize yield damage (Rosenzweig et al.,
2002; Beier et al., 2012; Li et al., 2019; Lesk et al., 2020). On the
contrary, an increase in soil moisture also mediates the passive
influence of heat stress from an increase in temperature-related heat
losses or amplifies the losses when the soil moisture decrease. Air
temperature also has been shown to have similar influences onmaize
yield due to excess (deficit) soil moisture (Lobell et al., 2013). These
imply that air temperature and soil moisture jointly impact maize
yield.

However, predicting maize yield using the relationship
between maize yield, air temperature, and soil moisture may
not be the best choice. Rigden et al. (2020) found that the
collective influence of soil moisture and VPD can accurately
predict maize yield in the US, rather than soil moisture and air
temperature, demonstrating that VPD is more suitable for maize
yield prediction than the air temperature. This is because VPD,
determined by air temperature and specific humidity, can reflect
atmospheric demand more than air temperature (Hsiao et al.,
2019). Thus, the effect of VPD on vegetation growth has received
more attention. Meanwhile, Yuan et al. (2019) indicated that the
negative contribution of VPD limits global terrestrial vegetation
growth since 1998 even more than the CO2 fertilization effects.
Sulman et al. (2016) and Novick et al. (2016) pointed out that
VPD substantially affects vegetation growth more than soil
moisture. VPD affects vegetation growth because increasing
VPD leads to an increase evapotranspiration (Li et al., 2011;
Li et al., 2022). Consequently, vegetation prevents water loss by
closing its stomata, thus limiting vegetation growth. Rigden et al.
(2020) validated the accuracy of maize yield prediction based on
soil moisture and VPD. However, the results of this predicted
method have not been validated in China, where maize is widely
grown. China has a vast territory with diverse topography and
climate, and maize is grown in 90% of the provinces in the
country at a preliminary estimate (Wang, 2010). As the largest
grain crop, maize accounts for about 25% of grain sown area and
40% of grain output in China (NSBC, 2021). Meanwhile, China is
an important maize producer in the world. Based on these
aspects, we need to conduct studies on soil moisture and VPD

to preferable realize the effect of atmospheric moisture
requirement and supply on maize production in China.

There are three classic approaches to quantify the effects of
climatic variables on crop production: (1) process-based biophysical
crop simulation models (Whish et al., 2015; Chen et al., 2020), (2)
field trials (Nandram et al., 2013; Feng et al., 2020), and (3) statistical
models (Tao et al., 2012; Leng and Hall, 2020). Compared with field
trial methods and process-based crop models, yield estimation
methods by statistical regression are widely used and have a long
history because of inexpensive cost and easy application (Feng et al.,
2018). In addition, statistical regression models can explain specific
correspondence between independent (precipitation, etc.) and
dependent variables (maize yield, etc.), which can more directly
and accurately understand and quantify the relationship between
climate change and crop production (Peng et al., 2004). The linear
mixed-effects model belonging to the statistical model not only
eliminates the requirement for data independence and other
requirements of traditional linear statistical models but also
retains its normality assumptions, which greatly improves the
applicability of linear models.

In recent decades, few studies have quantified the influence of
climate variables on maize production at the grid scale in China due
to the limitation of maize yield availability. Some previous studies
were mainly carried out at the provincial level (Li et al., 2010; Chen
et al., 2015). Other site scales were on the basis of major maize-
growing belts of China in Northeast China (Zhao et al., 2015; Zhao
et al., 2016), Huang-Huaihai region (Liu et al., 2010), Southwest
region (Li et al., 2014). However, the trend of climatic factors and
warming affecting maize yields, especially in the future, are still
unclear. This study attempts to analysis climate variability effect on
maize production in the major maize-growing belts of China at the
grid point level using high-resolution data with a linear mixed-effect
model. We also estimate the optimal water balance of maize over the
historical period. Then a polynomial model is used to estimate how
maize yield will change under the different shared socioeconomic
pathway (SSP) in the warming future, compared to the preindustrial
period. This work is a reference for estimating the climatic variability
of maize production in China.

2 Materials and methods

2.1 Study area

The study focuses on mainland China, which is a well-known
maize producer and ranks second in the world. Its land coverage is
vast, and the terrain is complex and diverse, with geographical
locations between 73°40′–135°20′E and 3°52′–53°33′N. The climate
zones of China gradually transition from the southernmost
subtropical monsoon to a temperate climate in the north.
However, due to the wide area and diverse terrain, the actual
climatic states (temperature, precipitation and etc.) vary greatly
between regions (Liang et al., 2018; Yao et al., 2018). Under the
promotion of climate and other factors, China’s maize production
has gradually formed three regional patterns with distinct
characteristics after a long evolution process (Miao et al., 2014).
These include the northeastern production area, the northern
production area (Supplementary Figure S1), and the
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southwestern production area, which connect to a narrow maize
growing belt (Wang, 2010; Yang et al., 2017). The belt is the major
maize-producing district in China and the section of interest here.

2.2 Data

2.2.1 Maize yield data
The historical maize production data is derived from the Global

Dataset of Historical Yields for major crops (GDHY), which
integrates agricultural census statistics from the United Nations
statistical database (FAOSTAT) and multiple satellite products. This
global grid yield dataset with a spatial resolution of 0.5° contains four
major crops - maize, rice, wheat and soybeans - from 1981 to 2016
(Iizumi and Sakai, 2020). Here, we use a calibrated version (v1.2 +
v1.3) which had the data examined in agreement with other crop
yield products (Ray et al., 2012) containing only from 1995 to 2005,
but this data is also extended to 2016. Therefore, this historical yield
data is of higher quality and spans a longer period to meet the needs
of newer scientific studies. For this study, we treat this data as the
actual yield value. The data was obtained from https://doi.org/10.
1594/PANGAEA.909132. Although the crop calendar for maize
production in the dataset is divided into two seasons (major and
second, the second mainly contains maize from eastern South Africa
and central and southern Brazil), there is no data on maize
production in the second season for our study area, which is the
main maize producing area in China. Therefore, the variable we use
for maize yield data is “maize major”, which represents the maize
production in the first season. This work used the global crop
calendar to determine the growing season of the crops in China
(Sacks et al., 2010). As this study is focused on the maize-producing
areas of China, some pre-processing is required before this data can
be used. The most important of these is the extraction of the Chinese
maize-growing areas, and we show this part of the process in the
methods part.

2.2.2 Climate data
The ERA5 dataset (Hersbach et al., 2020) we use in this study is

from the European Centre for Medium-Range Weather Forecasts
(ECMWF). The spatial resolution of the dataset is 0.25° × 0.25° with
temporal coverage from 1959 to the present downloaded from
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era5. Evaluation studies have demonstrated its high skill in China
(Hagan et al., 2019; Hersbach et al., 2020; Liu et al., 2022).
ERA5 contains products with hourly and monthly time
resolution. Since our study requires daily frequency data, we
convert the hourly data to daily mean data. The meteorological
variables used in this study are 2 m air temperature, 2 m maximum
and minimum air temperature, 2 m dew point temperature, total
precipitation, surface soil volumetric water content (top layer of soil
moisture, 0–7 cm), and soil volumetric water content at a depth of
the maize root system (third layer of soil moisture data, 28–100 cm).
Since the main root water absorption of maize extends to less than
7 cm, to characterize the available water to the plants more
accurately, we select soil moisture data of corresponding depth
according to the distribution area of maize roots. The reanalysis
data from 2010 to 2016 were interpolated into a regular cell of 0.5°

using the nearest neighbor method to be consistent with yield data.

The daily vapor pressure deficit (VPD) was computed using the dew
point, maximum and minimum temperature variables of 2 m
per day.

2.2.3 CMIP6 data
The climate data for the pre-industrial and future periods used in

this study are derived from CMIP6 of the World Climate Research
Programme (WCRP) (https://esgf-node.llnl.gov/projects/cmip6/). The
simulation of CMIP6 is from 1950 to 2100 and contains simulations of
historical periods (1950–2014) and predictions of future periods
(2015–2100). CMIP6 data approves 23 sub-program experiments,
including a newly additional estimation project, the Scenario Model
Intercomparison Project (ScenarioMIP). ScenarioMIP’s eight sets of
scenario experiments for future periods contain two levels (Tier-1 and
Tier-2) on the basis of priority. The first level of experiments is the
central experiment, including four scenarios for SSP1-2.6, SSP2-4.5,
SSP3-7.0, and SSP5-8.5 (Zhang et al., 2019). The first scenario, SSP1-2.6,
represents a sustainable development scenario that is more stable and
has lower pressure and radiative forcing (van Vuuren et al., 2017). Both
stability and radiative forcing in the SSP2-4.5 scenario are moderate.
SSP3-7.0 is a new radiative forcing scenario that has high challenges to
mitigation and adaptation (Fujimori et al., 2017). And SSP5-8.5 is a
rapidly developing high-emission shared socio-economic pathway
based on high fossil fuel consumption. To more accurately analyze
the climate-yield relationship in future climates, we use a collection of
multiple model ensembles and scenarios to study.

Given the availability of the data, we select nine models covering
the meteorological elements of the main climate scenarios for the
future period (soil moisture content, 2 m temperature, and near-
surface relative humidity), along with the temperature and relative
humidity data for the preindustrial period. Information on the
names, research institutions, and spatial resolutions of each mode
can be found in Supplementary Table S1. The simulated data needs
to be re-gridded to a resolution of 0.5° to ensure consistency with the
reanalysis dataset and yield data. In addition, to reduce the error
between the model-simulated data and the reanalysis data, we also
corrected the model-simulated data. Data for future scenarios for all
models cover the period 2041–2100. In calculating the future maize
yield response to elevated VPD, we counted the number of days of
exposure to specific VPD and SMr for each model under different
SSPs, and then averaged the number of days across all models. The
ensemble-mean number of days of exposure was input into the
model to obtain the yield response. However, in calculating the
future yield response to temperature increase, this study first
calculated the time period of the particular temperature increase
for each model. The mean is the height of the bar in Figure 8 and the
error bar indicates the difference between each model.

2.3 Methods

2.3.1 Data pre-processing
Maize is grown in about 31 provinces in China, due to the suitability

of climatic conditions, the districts with the largest planting area are
mainly concentrated in the maize belt from the northeast to the
southwest, which is the main maize producing area in China (Wang,
2010; Yu, 2014; Yang et al., 2017). We first select the grid points where
the maize yield of the GDHY dataset has values from 1982 to 2016 to
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determine themainmaize-growing areas in China during these 35 years.
Our study area is planted with spring maize and summer maize with
different growing seasons. Northeastern China is mainly dominated by
spring maize, and the northern region is dominated by summer maize,
while spring and summer maize coexist in the southwest mountainous
areas. For the general applicability of the findings, the study uses
meteorological variables from April to September, which includes the
growing seasons of spring and summer maize (Huai et al., 2020; Luo
et al., 2020; Guo et al., 2021; Zheng et al., 2022). The daily VPD in the
study area is calculated using temperature data from the ERA5 dataset
and CMIP6. VPD is the saturated water vapor pressure minus the actual
water vapor pressure. The daily average saturated water vapor pressure
can be estimated using the mean of saturated vapor pressure at the
maximum and minimum temperature or directly using the mean
temperature (Allen et al., 1998; Allen et al., 2000). The actual water
vapor pressure can be calculated by various approaches using one or
more of the following parameters: dew point temperature, relative
humidity, and air temperature (Allen et al., 1998; Upreti and Ojha,
2017). In this study, the observed VPD for the historical period in the
study area is calculated using dew point temperature andmaximum and
minimum temperatures. The distribution of dailyVPDand soilmoisture
in the maize root zone is shown in Figure 1.

Due to the data availability, the simulated VPD for the future
period is calculated from relative humidity and air temperature. We
expect some deviations between the climate models and the actual
situation in our study area due to the low resolution of these models,
the inter-model resolution differences, and different model
sensitivities and parameterization schemes (Zhang et al., 2016;
Chen et al., 2020; Richter and Tokinaga, 2020). To reduce these
uncertainties, before using these data, we carried out bias corrections
and spatial downscaling based on station observations from
historical periods in China (Kazmi et al., 2015; Jiang et al., 2022;
Mondal et al., 2022). The method used for bias correction is the
Equidistant Cumulative Distribution Function (EDCDF) (Li et al.,
2010), which is a mapping method based on the probability
distribution of data. It is a mapping method used to adjust the

distribution of simulated data sets and is the most commonly used
bias correction method for model (ESM) output. EDCDF considers
historical and future period variables using quantile-based
cumulative distribution function (CDF) mapping. EDCDF takes
into account the CDF of historical and future periods differences
between them, and it assumes that the differences between the
observations referenced during training and the model output
remain during calibration. This differs from a simple CDF, where
the relationship between the two time periods remains unchanged.

xcorrect � x + F−1
oc Fms x( )( ) − F−1

mc Fms x( )( ) (1)
xcorrect is the bias between model outputs and observations; F is

the value of CDF, F−1 denotes the reciprocal of F; oc and mc
represent the observations and model outputs for the historical
training period, and ms is the corrected model result. After
correction, spatial resolution downscaling is required because the
ESMs are inconsistent and rough in spatial resolution. The statistical
downscaling was performed by spatial disaggregation (SD) methods
(Wilby and Wigley, 1997; Wood et al., 2002). First, we applied
inverse distance weighting (IDW) interpolation to change the coarse
resolution of the ESMs based on a monthly spatially resolution of
0.5 observed climate dataset. Then the anomaly values of the climate
variables of the ESMs were differenced to 0.5° × 0.5° resolution.
Finally, the anomaly field based on the obtained interpolated values
is used to obtain downscaled ESM simulation data.

The future soil moisture in the maize root-zone used in the study
is extracted from the representative soil layer thickness for non-
uniform thickness layers of CMIP6 using the weighted average
method following Wang et al. (2015). And the relevant layer
number information of the soil layer moisture content of each
model used is listed in Supplementary Table S1. It must be noted
that the unit of soil moisture for the CMIP6 is kg/cm2, which is
inconsistent with the unit of ERA5, so we converted all the model
units to be consistent with ERA5 soil moisture. The conversion is
done following Zhu and Shi. (2014).

SMv � kg
m2

m3

1000 kg
1000mm

1m
1

St mm( ) (2)

In Eq. 2, St is the depth of each soil layer in millimeters. SMv

represents the moisture content of the volume unit of soil moisture.
Figure 6

2.3.2 Construction of yield calculation model
We estimate the 2010–2016 maize yield anomaly concerning

the yield data during 1982–2009. The anomaly is calculated using
a linear regression fit of yield on each grid point from 1982 to
2009; the fitted predicted yield is then subtracted from the grid
observation in 2010–2016. First, we construct yield prediction
models based on individual variables for historical periods to
analyze yield variation to climatic conditions, and the variables
used are listed in Table 1. After screening and processing,
9,205 grid points-years are preserved, covering all grid points
in China’s major maize-growing regions from 2010–2016. To be
able to model one item of each climate variable on yield, this
study assumes that during the selected maize growing season
(April-September, all national growing seasons of maize), the
response of yield accumulates over time, and the yield is

FIGURE 1
The distribution of daily VPD and root-zone soil moisture (SMr) in
China maize growing area from 2010 to 2016. The color indicates the
amount of days in each corresponding interval, and the data we use in
the yield model shown in is within the dotted box (VPD:
0.1–1.67 kPa, SMr: 0.2–0.42 cm3 cm−3).
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proportional to the total exposure time. Therefore, this response
can be replaced cumulatively over time (Schlenker and Roberts,
2009). We model yield as a function of exposure events under
specific climatic conditions to analyze the impact of climate on
production in this work. We fit grid-level yield anomalies under
different climatic conditions with a step function based on a
linear mixed-effects model as follows

Y ′
g � ∑n

h�1
ρh,gβh + f g + g (3)

In Eq. 3, ρh represents the number of days in each interval of n
different climatic conditions at each grid point, g. βh represents the
sensitivity of the maize yield to various conditions in tons per
hectare per day, remained invariant in grid points and years; fg

represents a fixed effect on a grid and ϵg shows the error. A linear
mixed-effects model is used to fit βh and fg values with no global
constant. To calculate the confidence intervals for correlation
(Table 1), the study uses a non-parametric resampling method in
which data from each grid point are re-extracted over
10,000 implements. There is a little unsymmetric in these
configuration terms due to fixed effects (Slaets et al., 2017).

To clarify the effect of water availability on thermal stress
(Figure 3), we applied three sets of VPD data extracted from
various soil moisture states to Eq. 3: all grid-year data, the first
40% and bottom 40% of the soil moisture sequence. Finally, for a
more visually clear effect, we used eight equally spaced climate
variables to estimate variation for maize production, with the range
being 0.1–1.67 kPa. The numerical interval of daily climate data
from April to September is divided into five equal-width bins to
contrast yield variations to various climate conditions. We divided
the variables in these climate combinations equally into five boxes
and modeled to assess the combined effects of thermal and water
stress, which increased the amount of box (from 5 to 25) by
squaring. When fitting Eq. 3, which defines bin edges based on
the 1% and 99% quartiles, we use all 9,205 grid points-years for each
climate variable for all days from April to September to estimate the
yield response. Surface soil water content is taken in the range of
0.2–0.42 cm3 cm−3, the value interval for root-zone soil moisture is

0.2–0.42 cm3 cm-3, VPD ranges from 0.1 to 1.67 kPa, temperature
ranges from 10°C to 36°C, and precipitation ranges from 0 to 40 mm.
The data interval of VPD and SMr used is the range in the dashed
black box shown in Figure 1. Identify the five boxes and their
individual value intervals, and ensure that the amount of data falling
within each interval is sufficient.

To investigate the interaction between heat and water stress, the
data are grouped according to water stress (soil moisture or
precipitation) and thermal stress (VPD or temperature),
producing 25 combinations (e.g., 5 precipitation groupings (h)
multiplied by 5 VPD groups (i)), the form of the model is shown
below

Y ′
g � ∑n

h�1
∑m
i�1
ρh,i,gβh,i + f g + g (4)

In this two-dimensional equation expressing the interaction, ρh,i
denotes the exposure matrix of climatic conditions and βh,i denotes
the sensitivity matrix of yield, and their products are summed
between the rows and columns. The range of values of climatic
variables is consistent with the previous section Supplementary
Figure S2. Provides a visualization of the methods, data and
assumptions employed in this study.

2.3.3 Applying yield models to future
To infer the yield response to the environment in future climatic

states based on the constructed yield predictive model for the
historical period (Figure 7 and Supplementary Figure S3), we fit
the polynomial to the sensitivity (βh) of the yields of Eqs. 3, 4, which
is its response. In detail, the βh (h = 5) of the VPD obtained from Eq.
3 are input into the one-dimensional quadratic polynomial for
corresponding coefficient estimation.

βh VPD( ) � Wh q0 + q1 × VPDh + q2 × VPD2
h( ) (5)

In Eq. 5, a weight (Wh) term is added. We compare the total
number of days (Nh) of each interval of 13169 grid-years counted to
the sum of the observed days (∑Nh) for each of the 9,205 grid
points, i.e., Wh � Nh/∑Nh. To illustrate the interaction between
VPD and root zone soil moisture over future periods, we fit the two-
dimensional quadratic polynomials of VPD and SMr to the 25 yield
sensitivities of Eq. 4.

βh VPD, SM( ) � Wh
q0 + q1 × SMh + q2 × SM2

h + q3 × VPDh + q4 × VPD2
h+q5 × VPDh × SMh

( ) (6)

Similar to Eqs. 5, 6 also includes weights, but it is built on the
days within the 25 combined intervals. TheWh is very meaningful as
they balance the effect of each interval on the results. Therefore, it
prevents intervals with a low number of observations from being
overweight in the fitted coefficients, which is why the coefficients of
the combination of the two differ from the output of the two-
dimensional polynomial when both atmospheric water supply and
demand are low. The fitting of this multinomial enables yield
estimates for future periods beyond the time horizon of currently
available observations (Figure 7). To describe the uncertainty of the
fitting results of the polynomials, we also resampled 10,000 times the
sensitivity βh of the polynomial fitting to Eqs. 3, 4 using the non-
parametric bootstrap technique. The yield response of each grid
point to increasing VPD is predicted, and the average production

TABLE 1 Correlation between the estimated and actual yield anomalies. The
correlation (r) between estimated and actual yield anomalies and the 90%
confidence interval for the corresponding correlation (from n = 10,000 bootstrap
realizations). The variables in the table are vapor pressure deficit (VPD), root-zone
soil moisture (SMr), maximum temperature (T), precipitation (P), and surface soil
moisture (SMs), all of which are daily data.

Variables r (90%CI)

VPD & SMr 0.83 (0.80–0.85)

T & SMr 0.81 (0.80–0.82)

SMr 0.80 (0.78–0.81)

VPD & P 0.79 (0.78–0.81)

SMS 0.79 (0.77–0.81)

T & P 0.75 (0.74–0.77)

VPD 0.74 (0.72–0.75)
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response is indicated to be a function of VPD (dashed and solid lines
in Figure 7). We explain the uncertainty of the calculated yield
response by using the 10th-90th percentiles of the yield response
series as the confidence interval for the response (shaded part of
Figure 7). In parallel, we propose specific changes in maize yields in
the Chinese region for a warm future, 1.5°C–4.0°C warmer than pre-
industrial temperatures, in steps of 0.5°C. Nine models from
CMIP6 are used to project 6 warming scenarios (1.5°C, 2.0°C,
2.5°C, 3.0°C, 3.5°C, and 4.0°C above pre-industrial levels) and
4 SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 for
24 scenarios of yield response. Keeping global warming less than
2.0°C warmer than pre-industrial levels is a very important global
climate policy goal that promises to reduce catastrophic
consequences (Vautard et al., 2014). The work covers numerous
states of global temperature rise, including the ideal levels (1.5°C and
2.0°C) of the United Nations Framework Convention on Climate
Change (UNFCCC) Paris Agreement (UNFCCC, 2015); the
3.0°C–3.5°C interval is proposed by the Voluntary Determined
Contribution (VDC) to Global Climate Policy (Peters et al.,
2017), and a temperature rise of 4.0°C indicates no limit to
climate change (van Vuuren et al., 2011).

3 Results

3.1 Model validation

Numerous studies on rainfed agriculture indicate that
temperature has a non-negligible effect on maize yield (Butler
and Huybers, 2015), while water is an essential and important
condition for vegetation growth and development. Heat stress is
strongly correlated with yield reduction in maize (Rigden et al.,
2020). However, the connection between water availability and

yield variability has not been fully demonstrated. Therefore, we
first use a yield estimation model based on a linear mixed effects
model to identify the climatic variables characterizing
temperature and moisture availability that impact maize yield
most. Table 1 shows the results of the correlation coefficients
between yield anomalies estimated using the model and the
observed yield anomalies for the historical (2010–2016)
period. We first calculate the correlation between the model
outputs and the actual results for the single variable
characterizing moisture or temperature that impacted yield.
The calculations show that the output results of the model
inputs for soil moisture in the maize root zone performed best
on average, with values as high as 0.8 (Confidence Interval (CI):
0.78–0.81). The results of soil moisture data at surface depths of
1–7 cm are only 0.1 lower than the results of root-zone soil
moisture (CI: 0.77–0.81). This shows the impact of available
water since soil moisture is also a variable that characterizes the
water required for plant growth and development. The
calculation results of precipitation are not entirely satisfactory.
The average correlation coefficient is only 0.66, and the
maximum value of the CI is only 0.70, which is lower than the
CI of soil moisture in the root zone (0.78). This may be because
precipitation contains changes in runoff, drainage, and
evaporation (Basso and Ritchie, 2014), and the changes in
precipitation are uneven (Fezzi and Bateman, 2015); as a
result, the amount of water available to plants cannot be well
determined. Rainfall is not a good representation of the water
available to plants. On the other hand, in the variables
representing temperature, the mean value of the model output
of VPD (0.74) is better than that of the 2 m air
temperature (0.56).

Subsequently, to investigate the effect of thermal and water
stress on yield, we selected one of the variables that
characterized temperature and water and substituted them
into a two-dimensional model representing the interaction
(Eq. 4). The results indicate that the hydrothermal
combination of VPD and soil moisture in the root zone form
the most suitable climatic combination of maize yield. The
correlation coefficient between yield calculated based on this
combination and actual yield reaches up to 0.85, with a mean
value of 0.83. This is followed by the combination of
temperature and root zone soil moisture, which correlated up
to 0.82. The lowest correlation coefficient is obtained from the
combination of precipitation and temperature (CI: 0.74–0.77,
mean: 0.75), which is lower than the univariate results for
surface soil moisture (CI: 0.77–0.81, mean: 0.79). Overall, the
results for soil moisture (top soil moisture and root zone soil
moisture) are better than precipitation for the single elements
related to maize yield, and root-zone soil moisture yields better
results than topsoil moisture. The comparison between the
univariate and bivariate results shows that the latter results
are overall significantly better than the former. The univariate
best result (SMr) ranks third in all results. It is noteworthy that
the three sets of results with the highest correlations all include
root-zone soil moisture, reflecting that root-zone soil moisture
strongly influences yield, which is the meteorological variable
representing the available water of maize over longer time
scales.

FIGURE 2
Scattered density of yield anomalies between estimated and
actual yield anomalies. We drew the scatter density plot of estimated
and actual yield anomalies and calculated the fitting coefficient. R is
0.825, MAE is 0.38, RMSE is 0.48, and the Bias is −0.02. All
deviations are measured in tons per hectare.
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Next, the optimal results are selected based on Table 1 for
verification. Our validation includes data distribution density
and spatial distribution validation. The results of the scattered
density of the estimated and the observed yield anomaly are
shown in Figure 2. It shows the scatter density distribution of
the estimated historical yield anomalies and the observed yield
anomalies for 9,205 grid years from 2010 to 2016. The denser
the data distribution, the warmer the colors (blue to red). The
correlation coefficient of the scatter density fitting of the
predicted and observed yield anomalies is 0.82, reflecting the
high consistency between the predicted and observed yield
anomalies. The overall MAE, RMSE, and Bias representing
error are 0.380, 0.480, and −0.020, respectively, indicating
subtle differences. The results of the spatial distribution
verification are shown in Figure 3, where Figure 3A indicates
the spatial distribution of the annual mean of the observed yield
anomalies over the grid points from 2010 to 2016 and Figure 3B
shows the spatial distribution of the estimated yield anomalies
output by the model. By comparing the spatial distributions and
values of the two, we find that the modes of the spatial
distribution of the observed and estimated yield anomalies
are very similar, but there are moderate differences. For
example, the yield anomalies in the maize-growing areas in
the southwest mountains of China are negative. It indicates that
the actual maize yield in the southwest mountains has not
reached the expected mean of linear trend fitting for
2010–2016, while positive values dominate the northeast
region of China. It has been confirmed that maize in
Northeastern China is rain-fed and susceptible to interannual
meteorological conditions, with high yield volatility but an
overall upward trend, while parts of Southwestern and
Eastern China have shown a downward trend in recent years.
Based on the above phenomena, maize production and
cultivation’s national center of gravity gradually moves to the
northeast (Xu et al., 2013). The results shown in the Figure are
consistent with the above facts, which also illustrate the

robustness of the yield estimation model based on the linear
mixed-effects model.

3.2 Impact of combined SM-VPD on
historical maize yield in China.

The validation results of the maize yield model in the former
part clearly show that the yield model can be well adapted to the
study. A previous finding suggests that thermal stress is often
accompanied by water stress and that the two are irreplaceable
and not interchangeable. However, since there are still
uncertainties concerning the role of moisture in regulating the
loss of maize yield due to heat stress, we first conduct a simple
analysis of the yield response to heat stress and how it depends on
soil moisture. We use the model in Eq. 3 to estimate the yield
sensitivity of VPD to show the impact of daily accumulated
atmospheric moisture demand on yield (Butler and Huybers,
2013). Based on the different average soil moisture states during
the maize growing season, we extracted data for the driest and
wettest 40% of soil water content in the study area from April to
September and fed them into the model separately. For
comparison, we put in all grid-year data at the same time.
Daily mean VPD rather than daily mean air temperature was
used as an input to the model because VPD was shown to be more
closely related to water stress to predict better yield loss (Hsiao
et al., 2019). When comparing yield sensitivity results from three
sets of data (Figure 4), it was found that high VPD was not
consistently destructive. Only in wetter years, a low VPD
(<0.6 kPa) was detrimental to maize yields, and when VPD
was higher than 1.3 kPa, it would reduce maize yields in drier
years. The 95% confidence intervals for yield sensitivity were also
different at low and high VPD. The above analysis shows that if
the state of different soil moisture is mixed together, it is easy to
get misleading results, and it will be mistakenly believed that
higher or lower VPD is not conducive to maize yield.

FIGURE 3
The 2010-2016 annual average observed and predicted yield anomalies. (A), The average yield anomalies estimated from a linear trend of observed
annual yields in 2010–2016. (B), Same as in a, but driven by VPD and soil moisture in the maize root zone.
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Figure 5 shows the estimated contributions of different VPD and
soil moisture in the root zone of maize intensities to maize yield.
Figures 5A–E are the contribution of VPD for different numerical
intervals to the average yield of each grid point in 2010–2016. It is
noteworthy that, whether it is the complementary addition of grid
points from Figures 5A–E in turn or the sum of Figures 5F, G, their
results are equal to the corresponding grids in 2010–2016. The value
range of VPD 0.1–1.67 kPa is divided into 5 bins equally; for
example, Figure 5A is 0.1–0.414 kPa, and so on. Although the
yield contribution to 2010–2016 is negative for the entire Chinese
maize growing region in Figure 5A (VPD: 0.1–0.414 kPa), a positive
contribution gradually emerges with increasing VPD. When VPD
increases to 0.728–1.042 (Figure 5C), all of northeastern and
northern China have changed to meaningful positive

contributions to yield, with changes up to 1.21 t ha-1. Negative
values then appear again as the numerical contribution of VPD
increases, but when atmospheric water demand is highest
(Figure 5E), the overall negative impact in China is smaller than
in Figure 5A, and positive impacts still dominate northeastern
China. Similarly, Figures 5F–J shows the contribution of soil
moisture to yield by equally dividing the interval
0.2–0.42 cm3 cm−3 at 0.044 cm3 cm−3 intervals. Although the trend
in the contribution of soil moisture to yield in China from 2010 to
2016 is similar to that of VPD, the negative impact of relatively high
soil moisture on yield is greater. In general, there is a trend of the
negative-positive-negative contribution of VPD and SMr to maize
yield, along with increasing the range of values taken. Moreover, the
negative effect is more dominant in southwestern China for both

FIGURE 4
Daily sensitivity of maize yields to VPD under different soil moisture conditions. Eq. 3 estimates the response of the driest 40% (red), the wettest 40%
(blue), and all grid-years (black) to the daily yield anomaly of vapor pressure deficit (VPD). A constant width interval from 0.4 kPa to 2 kPa is specified, and
the center of the interval is marked on the horizontal axis. The size of the circles in the plot represents the percentage distribution of data that belongs to
the corresponding interval in each set of data, and the vertical bar represents the 95% confidence interval corresponding to each sensitivity.

FIGURE 5
Contributions of VPD and SMr with different intensities tomaize yield in 2010–2016. (A–E), the VPD contribution to maize yield was divided into five
intervals from 0.1 kPa to 1.67 kPa (F–J), same as in a-e, but driven by the root-zone soil moisture of maize (SMr) from 0.2 cm3cm-3 to 0.42 cm3cm−3.
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VPD and root-zone soil moisture, which is consistent with the shift
of maize center of gravity to the northeast, as analyzed in the
previous section.

The yield response to VPD is shown here to be affected by soil
water content, suggesting that both conditions should be considered
when constructing yield models. We construct the model assuming
that the yield response to climatic variables accumulates daily within
each growing season. Based on this, a two-dimensional correlation
model is built to infer VPD and soil moisture interactions (Figure 6).
As previously described, the method is suitable for this study, in
which yield is gradually accumulated according to changes in daily
exposure to VPD and soil moisture. Applying the model Eq. 4 to
9,205 grid-year yields from 2010 to 2016 gives a yield-sensitivity
model of the interaction between VPD and root-zone soil moisture
(Figure 6). Yield sensitivity indicates that a supersaturated state of
soil water content reduced yield by 0.011 t d−1 ha-1, while a dry state
with high VPDs resulted in a yield loss of 0.006 t d−1 ha−1. The yield
loss estimate for wet conditions is the average of the four negatively
affected squares at the bottom right of the diagonal line in Figure 6.
Similarly, the loss value for dry and high VPD conditions is the
average of the three squares at the top left of the diagonal line.

3.3 Future yield prediction based on VPD and
soil moisture

The response of yield to the increase in VPD is closely related to
the soil moisture in the root zone. However, it remains unclear how
changes in the balance between the demand and supply of moisture
would impact future yield. Additionally, there is no guarantee that

the past covariance between increased atmospheric demand and
lower moisture supply will remain consistent in future climate
change. Relative to the preindustrial (1850–1900) climatology in
the 9 CMIP6 models, the vapor pressure of maize-growing regions
in China could increase by up to 0.5 kPa in 2041–2100. The increase
in VPD indicates that the temperature and saturated vapor pressure
will increase in the future climate state. Still, since the relative
humidity change is not apparent, the change in actual vapor
pressure can also be ignored (Ficklin and Novick, 2017). The
increase in VPD leads to a decrease in soil moisture content, and
we have estimated here that the changes in VPD and soil moisture in
the 9 models of CMIP6 are inversely correlated (r = −0.33). We
analyze the average performance of VPD-based 1D and VPD-
SMr-based on 2D polynomials in the SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5 scenarios for nine models (Figure 7). The dotted
lines in the Figure 7 represent the one-dimensional model, while the
solid lines represent the participation of soil moisture. When the
VPD increases by 0.5kPa, the model using the combination of root-
zone soil moisture and VPD Eq. 6 shows that the SSP5-8.5 scenario
will reduce the yield of about 276.1718 million tons per season,
which is about 1.17 times the average yield in 2010–2016
(236.9214 million tons). If only the VPD-based one-dimensional
model is used to estimate yields for future periods, the SSP1-
2.6 scenario shows increased yield loss by less than twice the
former. In contrast, it will increase the yield loss estimate by
about 2.7 times in the SSP5-8.5 scenario. We also roughly
estimate the modalities of the optimal water balance state in
favor of maize under four different future scenarios
(Supplementary Figure S3). After comparison, we find that with
the gradual increase of the emission scenario, the optimal water

FIGURE 6
The response ofmaize yields tomoisture supply and demand in 2010–2016. Based on observational data, we estimated themaize yield responses to
VPD and root-zone soil moisture. The color of each rectangle shows the estimated daily maize yield sensitivity (i.e., βh factor) and the radius of the square
indicates the relative amounts of days falling in each value interval. The largest icon in the figure means 8.21% of the used data. The black dots in squares
indicate significant fitting coefficients (p < 0.05). The surface of the interpolated 25 coefficients is drawn behind the square.
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balance conditions for maize will gradually change relative to
2010–2016, and the scope tends to shrink.

Under the projected warming of the climate, we calculate the
specific future yield response of maize under 6 different warming
conditions (1.5, 2.0, 2.5, 3.0, 3.5, 4.0°C) (Figure 8). In models where
the warming degree of a certain emission scenario does not meet our
calculation standard, we ignore it and average the remaining models.
The highest and lowest ends of the error bars represent the
difference in results for different modes, and in some cases, only
one mode exists, so some columns do not have error bars (e.g., SSP1-
2.6 at 1.5°C increase). We have listed the specific values of the
average yield response of the 9 models for all 24 different emission
paths or different warming states in Supplementary Table S2. When
the future temperature increases by 4.0°C relative to the reference
period, scenarios from SSP1-2.6 to SSP5-8.5 reduce production by

about 0.0690, 1.5705, 2.1634, and 6.2310 million tons per season,
respectively. That is about 0.003%, 0.663%, 0.913% (1/109) and
2.63% (1/38) of the average production in 2010–2016
(236.9214 million tons). Overall, maize yield loss gradually
increases with rising temperature under either SSP scenario,
although SSPs 1-2.6 are positive yield responses until
temperature increases reach 4°C.

4 Discussion

The impact of climate change on agricultural production
remains difficult to control, with the Fourth Assessment IPCC
Report (Easterling et al., 2007) noting that moderate warming of
the climate would benefit maize yields, while the Fifth Assessment

FIGURE 7
Maize yield response to VPD and SMr in different SSPs. Increasing the observed VPD and using the fitted polynomial function of the VPD (dashed line)
and the fitted polynomial function of VPD and SMr (active line) to predict the future response of maize yield to VPD elevation in China. The shaded
confidence interval represents a significant coefficient of fit (p < 0.05) from the distribution of the mean yield estimated from the bootstrap data from the
grid (n = 10,000).

FIGURE 8
Yield response under different temperature-rising conditions in different SSPs. We predict yield responses under different temperature increases in
different social sharing economy pathways using a fitted polynomial surface for VPD and SMr. The error bar indicates the difference between themodels.
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Report (Porter et al., 2014) and the most recent the Sixth Assessment
Report (Bezner et al., 2022) indicated yield losses. Accurately
predicting future production is quite challenging. This
uncertainty may be due to the fragmentation of existing climate-
agriculture studies. The nuances of the constructed models will also
impact the experimental results. If the key variables relating to yield
are omitted from themodel, it can easily cause biases in the results. It
is well known that moisture and thermal stress are important
variables affecting yield. Many studies on rainfed agriculture have
shown that heat stress is associated with reduced yields (Schlenker
and Roberts, 2009; Butler and Huybers, 2013; Lobell et al., 2013;
Porter et al., 2014; Butler and Huybers, 2015; Zhao et al., 2017;
Rigden et al., 2020). Although water is clearly essential for crop
growth and development, the relationship between water
effectiveness and yield is still not well resolved. Many studies
using precipitation to indicate water availability have not yielded
good results (Schlenker and Roberts, 2009; Butler and Huybers,
2013; Lobell et al., 2013). Soil moisture in the root zone indicates
better water stress that affects plant water use. VPD is not only an
indicator of air dryness and temperature but also accurately captures
moisture stress in the environment.

Our study uses fine-scale meteorological data and combines it
with a flexible linear mixed-effects model linking yield to weather
variability in each season, considering the specification of fixed
effects for grids. We calculate the sensitivity of maize yield to VPD
under different soil moisture conditions in historical periods based
on a mixed linear effects model (Figure 4), the results of which
demonstrate the sensitivity of maize yield to VPD in the form of an
approximate quadratic curve. The model was validated to be highly
accurate (Figures 2, 5). This study therefore began by using a
quadratic polynomial to predict the effect of VPD on maize yield
in future periods. To analyse the effect of water stress on yield, we
therefore modified the polynomial into a binary quadratic
polynomial. We retained only the more significant results for
scientific certainty (Figure 7).The focus of this study was to
analyse the effect of soil moisture and VPD on maize yield
during the historical period, which has been demonstrated in the
previous paper with high accuracy of results. Then we want to study
and quantify the effect of this effect on yield in the future period for
the purpose of yield prediction. We demonstrate that a VPD and soil
moisture imbalance reduces the daily yield response. The balance
between soil moisture and atmospheric demand in the root zone
provides optimal water balance conditions for maize yield,
corresponding to the higher positive yield sensitivity in Figure 6,
a phenomenon consistent with the true physiological state of maize
(Kramer and Boyer, 1995). When the water supply exceeds the
demand or is lower than the conditions required for the growth and
development of maize, it will cause a loss of yield. The yield decline
shown in Figure 6 under drier soil conditions and higher
atmospheric moisture requirements may be caused by insufficient
raw materials for plant photosynthesis. Specifically, maize closes its
stomata to prevent its water loss due to excessive transpiration under
such conditions (Bennett et al., 1987), and also to limit the uptake of
CO2 from the atmosphere, thereby impeding photosynthesis
(Farquhar and Sharkey, 1982). When the soil moisture is
sufficient, and the atmospheric moisture demand is low, the
negative response of the yield also indicates that the
photosynthetic capacity of maize is decreasing. Numerous studies

have shown that photosynthesis is sensitive to water stress and that
the photosynthetic rate decreases with increasing water stress
(Boyer, 1970; Ephrath and Hesketh, 1991; Dai et al., 1995).
Water stress can lead to a decrease in chlorophyll content and
even irreversible damage to chlorophyll if the water stress is too high
(Zhao et al., 2003). The activity of the key enzyme (Bubisco), which
fixes CO2 in photosynthesis, will also decrease. If the soil is
oversaturated with water, it will lead to hypoxia of plant roots,
reduce the absorption of nutrients, contact and increase the
exposure to toxic substances, and also lead to the proliferation of
fungal pathogens and eventually lead to reduced yields (Harvell
et al., 2002; Rosenzweig et al., 2002; Li et al., 2019). Eventually, when
atmospheric water demand is low, often accompanied by poor light
conditions, photosynthesis can also be limited. Within climate
change conditions, VPD and root-zone soil moisture are still the
main study variables in the future. The main reason is that they are
among the most directly related environmental variables for plant
growth and development (Hsiao et al., 2019). We hypothesize that
the joint distributions of VPD and root-zone soil moisture are
unchanged except for changes in the mean, while yield sensitivity
to these variables also remained unchanged. While we believe that
process-based crop models can also assess the problem of crop
demand and supply of atmospheric water (Tao et al., 2009), the
method used in this study uses fewer parameters and yet can
accurately represent and analyze the response of maize-growing
regions as an extension to increased confidence in assessing future
climate impacts on major crops around the world.

There are some limitations to our study. First, spring and
summer maize are two types. Due to the lack of data, the study
chose the entire maize belt as the study area to analyze the impact of
climate change on maize yields throughout China. Second, our basic
statistical approach does not quantify the effect of CO2 as a separate
variable, but its effect is considered laterally in the study of
atmospheric moisture demand and supply. Carbon dioxide is the
basic raw material for plant photosynthesis, so its level affects maize
growth and yield. The increase in global ambient CO2 concentration
in recent decades and the change in the correspondence between it
and water are likely to change the sensitivity (Rigden et al., 2020). It
is still controversial that higher CO2 concentrations have the
potential to increase yields (Lobell et al., 2013), which will need
to be explored in future studies. Finally, our basic statistical
approach cannot account for and quantify the effects of CO2 in
regression analyses of observed yields because CO2 concentrations
exist in concentration gradients throughout the atmosphere that
flow endlessly, leaving only a slowly increasing time trend. Although
crop growers have been adapting to climate change by introducing
new technologies, the growth of global yields of major crops,
including maize, has been gradually slowing or even remaining
constant (Brisson et al., 2010; Ray et al., 2012). It is worth noting that
the negative impact of global warming on yields, in addition to
increasing VPD and reducing soil moisture, may also affect yields by
shortening the phenological period of crops (Porter et al., 2014). For
the purpose of the science and integrity of the study, we will later
consider the effects of other natural elements (wind speed, solar
radiation, etc.) and human influences (maize seed, management
practices, etc.) on yield.

Since soil moisture plays an important role in regulating yield
losses due to heat stress (Rigden et al., 2020), this study also implies
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that optimizing and adjusting management programs for water
balance in the crop root zone to maintain higher soil moisture
content is particularly important to increase yield sensitivity to the
environment. Increasing management intensity and better crop
varieties may also inadvertently increase yield sensitivity to
weather (Lobell et al., 2014). Therefore, there is an urgent need
to focus on national research and extension programs to promote
production, including through crop-region-specific adaptation
strategies, to offset the negative impact of future climate change
on yields and ensure food security for a growing world population.

5 Conclusion

We first used grid-level maize yield data from GDHY
v3.0 from 2010 to 2016, combined with high-resolution ERA
5 reanalysis meteorological data, to develop a yield estimation
model based on a linear mixed-effect statistical model to favor the
optimal water balance conditions for maize yield in China. Our
findings showed that historical yield estimation derived from the
combination between VPD and maize root-zone soil moisture
(SMr) were obviously better than those from other fundamental
variables alone or together. Only when the demand and supply of
atmospheric moisture are relatively balanced can there be
benefits to maize yields. If either side is too extreme, it can
damage maize yields. Furthermore, soil moisture can regulate
yield losses caused by thermal stress. We also extrapolated the
above model results into the future using data from 9 global
climate models from CMIP6, using a two-dimensional
polynomial built on VPD and SMr to explore changes in
maize yield under climatic conditions in future periods. We
also estimated changes in maize under different temperatures
(1.5, 2.0, 2.5, 3.0, 3.5, and 4.0°C) scenarios relative to the base
period (1850–1900). We found that considering soil moisture in
the future yield estimation reduces the overestimated yield loss by
about a factor of two, compared to considering only atmospheric
moisture requirements in SSP 1-2.6. This can even be reduced by
a factor of 1.7 in SSP5-8.5. At the same time, under the different
SSP scenarios, the reduction of maize yield gradually increased
with the temperature rising. Moreover, for the same temperature
increases, the yield loss also increases gradually with increasing
emission concentration. The implications of these findings are
vital for present and future food security purposes.
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