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We explore the dynamics and determinants of volatility connectedness between
cryptocurrencies and energy. We employed a block dynamic equicorrelation model
and a group volatility connectedness measurement to measure the cross-
equicorrelation and volatility connectedness between cryptocurrencies and
energy. We also adopted dynamic model averaging to identify the time-varying
drivers. The results suggest that changes in cross-equicorrelation between the two
groups were affected by influential global events and increased after the COVID-19
pandemic. Volatilities were transmitted in both directions between cryptocurrencies
and energy, but the transmission from energy to cryptocurrencies is by far the
strongest. The driver identification implies that the factors related to
cryptocurrencies and global financial markets had important roles in explaining
the volatility connectedness from cryptocurrencies to energy in some periods
after the COVID-19 pandemic, but the effects were marginal. In contrast, factors
such as electricity consumption, cryptocurrency turnovers, and VIX were important
in affecting the volatility connectedness from energy to cryptocurrencies, and the
effects depended on factors and changed over time.
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1 Introduction

The global economy has been trapped in a downward spiral in recent years. In addition, a
sequence of influential events has shocked the global financial markets, such as the US-China
trade war, the COVID-19 pandemic, and the Russia-Ukraine war. Against the increasing risks
in the financial markets, investors are looking for safe-haven assets that can provide a hedge
during turmoil.

One of the safe-haven assets investors have considered is cryptocurrencies (El Montasser
et al., 2022; Sarkodie et al., 2022). Blockchain technology ensures the safety of cryptocurrencies.
Cryptocurrencies are technically immune to government manipulation and should provide a
good hedge to traditional financial assets during times of crisis.

Cryptocurrencies are obtained via amining process, which consumes electricity (Hayes, 2017; Li
et al., 2019). In many countries, electricity is generated by burning fossil energy. Thus, the
fluctuations in energy costs can affect the cryptocurrency market through several channels. For
example, the change in energy costs can affect the cost of mining cryptocurrencies and hence affect
their supply. Moreover, the changes in fossil energy prices reflect the changes in supply and demand
in the global energy market, which further affect global investors’ sentiments. Changing risk
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appetites in global financial markets can affect investors’ opinions of the
cryptocurrency market, thus affecting demand for cryptocurrencies.

Studies conducted in 2018 and 2019 reported that the
cryptocurrency market was isolated from global financial markets
and not closely related to the energy market (Cobert et al., 2018; Ji
et al., 2019). However, the latest evidence suggests that the correlation
between cryptocurrencies and traditional financial markets increased
after the COVID-19 pandemic (Corbet et al., 2020; Yen and Cheng,
2021; Wang H et al., 2022). Several events made many investors
interested in cryptocurrencies: The COVID-19 pandemic dramatically
increased concerns in global financial markets; the great uncertainties
due to the United States election reduced investors’ confidence in
traditional financial markets; the Russia-Ukraine war in
2022 increased global geopolitical risks. Thus, it is worth re-
examining the correlation between cryptocurrencies and energy
and testing the volatility spillovers between these two markets
against the background of the changing global economic and
financial environment.1

Many studies focused on the relationship between energy and
cryptocurrencies. Krause and Tolaymat (2018) and Li et al. (2019)
quantified the cost of energy in cryptocurrency mining work. Inspired
by the energy cost of cryptocurrency mining work and integration of
global financial market, Afjal and Clanganthuruthil Sajeev (2022) and
Ji et al. (2019) explored the interconnection between the
cryptocurrency market and energy market, and they found that the
cryptocurrency became more closely related to energy after the
COVID-19 pandemic. Li and Meng (2022) further indicated that
the spillovers from energy dominated the total connectedness of
energy and cryptocurrencies. By contrast, Corbet et al. (2021)
documented that the energy usage of cryptocurrency mining make
cryptocurrencies affected energy market. Meanwhile, some studies
illustrate that uncertainties and risk factors have the potential to affect
the connectedness of financial products (Adekoya et al., 2021; Nguyen
and Lambe, 2021; Wu et al., 2022).

Diebold and Yılmaz’s (2014) connectedness measure estimates the
spillovers across a series of variables based on the generalized variance
decomposition. Gabauer (2020) further applied the idea of
connectedness to the DCC-GARCH model and proposed a
measurement of volatility connectedness. The volatility
connectedness can measure how the volatilities are transmitted
across different variables. However, the DCC-GARCH model
suffers the so-called “curse of the dimension”: it becomes
increasingly difficult to estimate the model as the dimensions
increase. Engle and Kelly (2012) proposed a dynamic
equicorrelation (DECO-GARCH) model to deal with the
dimensional issues encountered in the DCC-GARCH model.

To explore how cryptocurrencies and energy are connected, we adopt
the DECO-GARCHmodel to address the potential dimensional problem
and employ Gabauer’s (2020) volatility connectedness to measure the risk
contagion between the cryptocurrency market and energy market.
Specifically, we collected data on eight cryptocurrencies with the
largest market capitalizations and eight energy prices that are
representative of fossil energy.2 As the price series are naturally

grouped, we modify the canonical DECO-GARCH and utilize a block
DECO-GARCH model. Furthermore, we construct the group volatility
connectedness using Gabauer’s (2020) pairwise volatility connectedness.

Considering that the risks could be transmitted across markets
through several channels, we further investigate the drivers of the
volatility connectedness. We consider two sets of potential drivers. The
first set is related to the cryptocurrency market. We collect the
cryptocurrency policy uncertainty index (UCRY) proposed by
Lucey et al. (2022), the cryptocurrency environmental attention
index (ICEA) proposed by Wang Y et al., 2022 (forthcoming), the
Cambridge Bitcoin Electricity Consumption index (CBECI), and the
market aggregated turnovers (Turnover). The second set is related to
uncertainties and factors in global financial markets. We collect data
on the Twitter-based economic uncertainty index (TEU), global
geopolitical risk index (GPR), economic policy uncertainty (EPU),
the VIX, and the United States dollar (USD). To identify the role of
these potential drivers, we employ the dynamic model averaging
(DMA) approach proposed by Raftery et al. (2010). The estimation
of DMA is based on Bayes’ theorem. We identify the importance of
potential factors using their posterior inclusion probability (PIP) and
identify their effect using expected coefficients.

The block DECO-GARCH model’s estimation indicates that the
cross-equicorrelation between cryptocurrencies and energy was
generally weak, with a value lower than 0.15 most of the time.
However, the cross-equicorrelation changed dramatically over time,
and the spikes and troughs were related to influential events. The
analysis of the volatility connectedness suggests that risks were
transmitted between the cryptocurrency and energy markets, and the
spillovers increased after the COVID-19 pandemic. Furthermore, the
directional connectedness shows that the volatility spillovers mainly
occurred from energy to cryptocurrencies and cryptocurrencies’
volatility spillovers were extremely small. The identification of the
drivers of two directional volatility connectedness suggests that the
role of the drivers and the effects vary over time. Generally speaking,
the potential drivers were less important in affecting the volatility
connectedness from cryptocurrencies than the connectedness from
energies. Regarding the drivers of risk spillovers from cryptocurrencies,
the UCRY, CBECI, TEU, GBP, and USD acted as important factors in
some specific periods after the COVID-19 pandemic, but their effects
were minor and dependent. Regarding the drivers of risk spillovers from
energy, the CBECI, Turnover, and the VIX consistently acted as
important drivers, and the former four displayed positive effects; the
importance of GPR dramatically increased after the Russia-Ukraine war
and displayed a negative effect; the roles of UCRY, ICEA, and EPU were
slightly less pronounced, and their effects switched between positive and
negative several times.

This study can contribute to the literature in the following ways. First,
our findings update the knowledge about how risks were transmitted
between the cryptocurrencymarket and the energymarket. They also show
that the direction of transmission mainly went from the energy market to
the cryptocurrency market. Second, our results provide insights into the
drivers of risk sharing between cryptocurrencies and energy, and the
changing effects of these drivers help to understand the channels through
which the markets were connected. Lastly, we incorporate the block
DECO-GARCH model into the volatility connectedness measurement
and propose a new measurement of group volatility connectedness that
could be used to explore the volatility spillovers across financial markets.

The paper is organized as follows. Section 2 lists the methodologies
we employed; the data and variables are described in Section 3; Section

1 We use “volatility connectedness,” “risk spillovers,” and “volatility spillovers”
interchangeably.

2 The cryptocurrencies we focused on are tokens. Stablecoins are excluded
because they are pegged to the USD.
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4, and Section 5 present the empirical results and robustness check;
Section 6 briefly concludes the findings.

2 Hypothesis development

Considering that influential risky events such as the COVID-19
pandemic and the Russian-Ukraine war raised the uncertainties in
commodity market and financial markets, the connection between
cryptocurrencies and energy would largely be affected by these events.
For instance, the Russian-Ukraine war dramatically shocked the global
energy market and hiked the volatility of energy products. Meanwhile,
the cryptocurrencies were affected by changed sentiments in the global
financial markets. Accordingly, we develop the first hypothesis as
follows.

H1: The cross-equicorrelation and volatility connectedness between
cryptocurrencies and energy changed largely due to the shocks by
external events.

As many studies argued, cryptocurrencies were typically
considered as candidates of safe-haven assets. Additionally, the
debate on whether the cryptocurrency market has been integrated
into the global financial market still exists. It is necessary to
examine the interdependence between cryptocurrencies and
energy. Considering that energy has a long history of a great
outward impact on other financial markets, we expect the
spillovers between cryptocurrencies and energy were
asymmetric, and the volatilities of cryptocurrencies were
affected by the shocks in the energy market. Therefore, the
second hypothesis is developed as.

H2: The volatility connectedness between cryptocurrencies and
energy is asymmetric, and the spillovers from energy to
cryptocurrencies dominated the two-way spillovers.

Lastly, the market sentiments affected both the cryptocurrency
and energy markets, and the uncertainties could reveal the market
sentiments. Therefore, we anticipate that the uncertainties in
financial markets affected the connectedness between
cryptocurrencies and energy, and the last hypothesis is
developed as.

H3: Uncertainties could affect the volatility connectedness between
cryptocurrency and energy markets.

3 Methodology

We aim to explore the relationship between
cryptocurrencies and energy and identify the drivers of risk
spillovers between the two markets. We adopt a DECO-
GARCH model proposed by Engle and Kelly (2012) and the
volatility connectedness measurement proposed by Gabauer
(2020) to construct the group volatility connectedness between
two groups of assets. Then, we employ the DMA proposed by
Raftery et al. (2010) to estimate the time-varying effects and the
importance of potential explanatory factors on the volatility
connectedness.

3.1 Equicorrelation model for high-
dimensional data

The block DECO-GARCH model can be treated as a feasible dynamic
conditional correlation (DCC) estimator. The block DECO-GARCH
assumes that the correlation matrix can be split into blocks and that the
parameters in each block are the same.3 The block DECO-GARCH model
fits the situation better than theDCC-GARCHmodelwhen the variables can
be naturally grouped. The model framework consists of three components:
the mean equations, volatility equations, and correlation dynamics.

In terms of the mean equations and volatility equations, we
assume the dynamics of cryptocurrencies and energy follow an
ARX(5)-GARCH(1,1) model and an AR(5)-GARCH(1,1) model,
respectively, which can be written as

yk
i,t � μki + Σ5

p�1φi,py
k
i,t−p +λTurnoveri,t( ) + εki,t (1)

and

hki,t−1 � ] + γ εki,t−1( )2 + δhki,t−2 (2)

where yk
i,t is the yield rate of i-th cryptocurrency or energy, k denotes c

(cryptocurrency) or e (energy), and hki,t−1 is the conditional variance
based on the information before time t.

The variance matrix in the block DECO is assumed as

E Ht|Y t−1( ) � vart−1 ε′ct , ε′
e
t( )′[ ] � D1/2

t RtD
1/2
t (3)

Rt � 1 − ρct( )Inc 0
0 1 − ρet( )Ine( ) + ρctJ

nc ρc,et Jnc×ne

ρc,et Jnc×ne ρetJ
ne( ) (4)

where Dt is a diagonal matrix of conditional variances, Rt is a matrix of
conditional correlations, Inc and Ine are identity matrixes, J · denotes a
matrix of one, nc and ne are the number of cryptocurrencies and energy
types, ρct and ρ

e
t are the equicorrelationswithin cryptocurrencies and energy,

and ρc,et is the cross-equicorrelation between cryptocurrencies and energy.
We derive the equicorrelation ρ·t from the modified DCC-GARCH

model in Engle et al. (2019). The approach improves the estimation
efficiency on a large dimensional DCC-GARCH model by adopting the
quantized eigenvalues sampling transform (QuEST) and composite
likelihood method.4 The specification ρ·t is constructed as follows:

Qt � �Q 1 − α − β( ) + α ~Q
−1/2
t−1 εt−1εt−1

′ ~Q
−1/2
t−1 + βQt−1 (5)

RDCC
t � ~Q

−1/2
t Qt

~Q
−1/2
t (6)

ρkt �
1

nk nk − 1( ) ∑
i∈nk,j∈nk,i≠j

qij,t�������
qii,t, qjj,t

√ (7)

and

ρc.et � 1
nc × ne

∑
i∈nc,j∈ne

qij,t�������
qii,t, qjj,t

√ (8)

3 The assumption of equicorrelation is reasonable for both the cryptocurrency
market and the energy market. Bouri et al. (2021) conducted an analysis of
equicorrelation in the cryptocurrency market and found that the return
equicorrelation remained at high levels after 2017. Furthermore, Vacha
and Barunik (2012) reported strong dynamics in the co-movement of
energy pairs between crude oil, gasoline, heating oil, and natural gas.

4 Even though our model does not include too many cryptocurrencies and
energy types compared with the number of observations, the dimension is
still large, say, 16 variables against 262 observations. A more detailed
discussion on this approach can be found in Engle et al. (2019) and
Ledoit and Wolf (2017).
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where �Q is the unconditional covariance of standardized residuals estimated
based on the QuEST, ~Qt replaces the off-diagonal elements of Qt as zero,
qij,t are the i-th and j-th elements of Qt, and k ∈ c, e{ }.

3.2 Block volatility connectedness

We can measure the pairwise volatility connectedness of variables
following Gabauer’s (2020) procedure based on the estimation of the
block DECO-GARCH model. We construct block volatility
connectedness by aggregating pairwise volatility connectedness of
variables within the same group.

According to Gabauer (2020), the volatility impulse response
function (VIRF) is the following:

Ψ t,p � E Ht,t+p
∣∣∣∣εt � 1,Xt−1( ) − E Ht,t+p

∣∣∣∣εt � 0,Xt−1( ) (9)

where 1 and 0 denote the vectors of one and zero. The VIRF illustrates the
volatility responses of a variable to a shock from another variable. The p-step-
ahead forecast on the volatility can be estimated recursively based onEqs. 3–6.

The generalized forecast error variance decomposition (GFEVD) is
based on the VIRF. The normalized GFEVD entries are the following:

~ϕi←j,t P( ) � ∑P−1
p�1Ψ i←j,t+p

∑N
l�1∑P−1

p�1Ψ i←j,t+p
(10)

where Ψi←j,t+p is the element in the j-th row and i-th column in the
matrix Ψp, and it measures the impact of a shock in variable j on
variable i.

As the variables are naturally divided into two groups, we
further construct the block volatility connectedness of the two

groups. The volatility connectedness from cryptocurrencies to
energy is

Ce←c,t P( ) � 1
Nc

∑
m∈e

∑
n∈c

~ϕm←n,t P( ) (11)

The volatility connectedness from energy to cryptocurrencies is

Cc←e,t P( ) � 1
Ne

∑
m∈e

∑
n∈c

~ϕn←m,t P( ) (12)

In addition, according to Diebold and Yılmaz (2014), the total
volatility connectedness can be expressed as follows:

Ct P( ) �
~Φc←e,t P( ) + ~Φc←e,t P( )

2
(13)

3.3 Dynamic model averaging

To explore the determinants of connectedness, we employ the
DMA approach, which allows the model parameters to be time-
varying and identifies the relative importance of potential
explanatory variables. The basic idea of DMA is to assign a model
probability to each possible model specification. We construct the
model set by taking all the combinations of the potential explanatory
variables. The representative model specification is as follows:

Ck,t � θ u( )
k,t X

u( )
k,t + ω u( )

k,t (14)
and

θ u( )
k,t � θ u( )

k,t−1 + ς u( )
k,t (15)

TABLE 1 Statistics on the change rates of cryptocurrencies and energies (%).

Variable Mean Std. Dev. Min Max

Bitcoin 1.261 11.448 −33.934 46.143

BNB 3.396 18.702 −40.284 116.045

Cardano 3.965 32.469 −39.181 322.520

Dogecoin 4.489 31.553 −49.165 281.829

Ethereum Classic 1.593 18.812 −39.427 106.141

Ethereum 1.573 14.310 −43.248 50.373

TRON 4.749 40.910 −56.338 515.395

XRP 1.944 20.908 −50.714 128.870

Con. Gasoline 0.696 8.337 −52.669 45.660

Crude Oil 0.707 9.559 −55.782 98.065

Diesel 0.535 7.040 −33.616 46.293

Hea. Oil 0.544 7.209 −32.707 45.626

Jet Fuel 0.555 7.148 −31.571 37.981

Natural Gas 1.817 21.056 −74.028 237.910

Propane 0.353 6.831 −22.601 33.028

Reg. Gasoline 0.760 9.740 −43.691 65.025

Notes: “Con. Gasoline” is United States gulf coast conventional gasoline; “Crude Oil” is WTI, crude oil; “Diesel” is United States gulf coast diesel; “Hea. Oil” is New York Harbor No.2 heating oil; “Jet

Fuel” is United States gulf coast kerosene type jet fuel; “Natural Gas” is Henry Hub Natural Gas; “Propane” is Mont Belvieu Propane; “Reg. Gasoline” is Los Angeles Reformulated RBOB Regular

Gasoline. The “Std. Dev.” means standard deviation.
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where u indexes the specification in the model set, k denotes c ← e or
e ← c, the coefficient parameter θ(u)k,t is assumed to follow a random
walk, and ω(u)

k,t and ς(u)k,t are the innovations. The Kalman filter is used
to estimate the models in the model set.

Following Raftery et al. (2010), we estimate the model probability
based on Bayes’ theorem. Denoting the representative model
probability as π(u)

k,t , the relative importance of a variable is
measured by the posterior inclusion probability:

PIPt Xi,t( ) � ΣU
u�1π

u( )
k,t I

u( ) Xi,t( ) (16)

The expected effects of a variable are measured by the expected
coefficient:

Coeft Xi,t( ) � ΣU
u�1π

u( )
k,t θ

u( )
k,i,tI

u( ) Xi,t( ) (17)
where I(u)(Xi,t) is the indicator function that equals one if Xi,t is
included in the u-th model, and θ(u)k,i,tI

(u)(Xi,t) is the coefficient of Xi,t

if Xi,t is included in the u-th model.

4 Data

4.1 Cryptocurrencies and energy

We collect weekly prices of cryptocurrencies and energy types
from the CoinMarketCap and the United States Energy Information
Administration, respectively. The sample period ranges from October
3, 2017 to October 4, 2022.5 The sample includes 262 consecutive
weeks.6 The selected cryptocurrencies were created before October
2017 and are the top eight tokens in terms of their market
capitalizations.7 For energy types, we focused on crude oil,
petroleum products, and natural gas because they are traded
commodities. We have eight price series for energy. Table A1 lists
the selected cryptocurrencies and energy types.

Table 1 displays the summary statistics on cryptocurrencies and
energy. The averages of returns are all positive, indicating that the
cryptocurrency and energy prices increased during the sample period.
Furthermore, cryptocurrency prices increased faster than energy.
However, cryptocurrencies were much more volatile than energy,
suggesting they incurred higher risks than energy during the
sample period. Similar findings are evidenced by the maximum
weekly returns in Table 1.

To exhibit the dynamics of the series, we further plotted the
returns of cryptocurrencies and energy in Figure 1 and Figure 2. The

volatilities of cryptocurrencies were higher than those of energy.
Figure 1 shows that the return patterns of cryptocurrencies were
similar. For example, the volatilities of all the cryptocurrencies we
selected increased in early 2018 and 2021. The energy returns also had
similar patterns. For instance, energy prices were highly volatile when
the COVID-19 pandemic first erupted in Mar. 2020. However, the
correlations between cryptocurrencies and energy changed over time.
Additionally, we conduct the unit root test on these return series, and
the test suggests these series are stationary.8

4.2 Potential drivers of connectedness

We chose the potential drivers of connectedness by considering a few
aspects. First, the policy uncertainty on trading cryptocurrencies directly
affects the sentiments about the cryptocurrency market and the mining of
cryptocurrencies. Therefore, we consider the UCRY as the potential driver.
Second, due to the increasing concerns about the externalities of mining
progress, we consider the ICEA. This index captures the intensity of media
discussions on the environmental impact of cryptocurrencies. Third,
cryptocurrencies are created through mining, which relies on computer
calculations of a complex math problem. Accordingly, we consider the
CBECI, which estimates the Bitcoin network power used in theminingwork.
Fourth, in classical financial theory, turnover is one of the factors that could
affect asset price. Considering this, we calculate the overall turnovers in
cryptocurrency markets. Fifth, many studies have shown that
cryptocurrencies and energy are sensitive to different uncertainties in the
globalfinancialmarkets.9 Thus, we further incorporate theTEU, theGPR, the
EPU, and the VIX as drivers of connectedness. Lastly, as the USD is the
settlement currency for energy products, we also include the nominal effective
exchange rate of theUSD index. Table A2 shows the detailed sources of these
exogenous variables.

For these potential explanatory factors, we first take the logarithm
transform to reduce the magnitude effect. Then, we adopt the Hodrick-
Prescott filter to extract the cyclical component of the series.10 These
cyclical components can be treated as the gaps between the values of the
realized and expected variables. A positive value of the variables indicates
that the realized value of the corresponding factor is higher than the
expected value. Table 2 shows the summary statistics. The skewness
suggests most of the factors are positively skewed, indicating the fat
right tails of the series. Most of the kurtosis is around 3, implying it is
not common to have extreme values of the series.

5 Empirical results

5.1 Dynamics of cross-equicorrelation and
volatility connectedness

Figure 3 plots the cross-equicorrelation between
cryptocurrencies and energy. As shown, the cross-

5 We chose October 3, 2017, as the start of our sample by considering the
trade-off between the sample length and sample width. Most
cryptocurrencies were not established in the early 2010s, which is why
we did not use data from that time. However, the sample length would
be limited if we included more newly established cryptocurrencies, so we
analysed cryptocurrencies established before October 2017.

6 Both the CoinMarketCap and the United States Energy Information
Administration provide daily data on cryptocurrencies and energy prices.
Although cryptocurrencies are traded 7 days a week, energy types are not
traded on weekends and holidays. Thus, there would be a mismatch if we
insisted on using daily data. We finally decided to use Tuesday data to
construct the weekly sample because Tuesday was the day with the least
number of holidays during the sample period. We used observations relevant
to the preceding Monday to formulate the data for a holiday Tuesday.

7 We collected data on market capitalization on October 10, 2022. These top
eight tokens are the top 20 cryptocurrencies regarding market
capitalizations.

8 See the results shown in Table A3.

9 To calculate the turnovers, we sum the weekly trading volumes and market
capitalizations of the selected eight cryptocurrencies and calculate the
overall turnovers of these eight cryptocurrencies.

10 The smooth parameter is 1,600 × 124, which is based on Ravn and Uhlig
(2002).
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equicorrelation was consistently positive, indicating the
cryptocurrency and energy returns were comoved during the
sample period. This finding is in line with Ji et al. (2019) and
Rehman and Kang (2021) who showed that cryptocurrency
gradually integrated into the global commodity market. Even

though the absolute values of cross-equicorrelation were low,
the figure shows there were many spikes and troughs during the
period. The greatest trough occurred in the second half of 2018,
during which a sequence of bad news shocked the cryptocurrency
market. Successive hacking attempts on cryptocurrencies in June

FIGURE 1
Change rates of cryptocurrencies (%). The plots are labeled using the name of the cryptocurrencies.

FIGURE 2
Change rates of energycommodities (%). The lable are the same as noted in Table 1.
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and July 2018 generated fears and led to a collapse in the
cryptocurrency market. Furthermore, the COVID-19 pandemic
increased the cross-equicorrelation dramatically: in March 2020,
equicorrelation increased from around 0.07 to a peak of over 0.20.

Additionally, the cross-equicorrelation increased definitively from
around 0.05–0.10 in the pre-COVID period to 0.10–0.15 in the post-
COVID period. This finding aligns with Bouri et al. (2018) and Ji et al.
(2018), who suggested that the correlation between cryptocurrencies
and energy before the COVID-19 pandemic was weak. The Russia-
Ukraine war also affected the cross-equicorrelation between
cryptocurrencies and energy: The cross-equicorrelation increased
sharply and then decreased rapidly at the beginning of the Russia-
Ukraine war. This echoes the findings in Yousaf et al. (2022). This
probably occurred because the breakout of the war increased global
uncertainties, but the announcement of the sanctions from Western

countries reduced the uncertainties, and these changes significantly
shocked energy prices.

The cross-equicorrelation calculations do not indicate anything
about the volatility spillovers and cannot differentiate the
asymmetric spillovers from cryptocurrencies and energy.
However, the volatility connectedness measures further provide
evidence about how shocks are transmitted across the
cryptocurrency and energy markets.

As in Figure 4, the total volatility connectedness shows how tight
the system was in the sample period. The total volatility connectedness
was low at the beginning of the sample period and then increased
dramatically. In July 2018, the total volatility connectedness reduced
sharply from around 40% to less than 5%. Afterward, it began to
fluctuate in the range of 20%–40%. Similar to the cross-
equicorrelation, the volatility connectedness increased quickly in

TABLE 2 Statistics on the potential drivers of connectedness.

Min Max Std. Dev. Skew. Kurt.

UCRY −0.038 0.086 0.018 1.107 5.445

ICEA −0.028 0.077 0.017 0.776 4.501

CBECI −0.651 0.515 0.249 −0.206 2.148

Turnovers −0.084 0.424 0.084 1.871 7.315

TEU −1.611 2.004 0.594 0.536 3.494

GPR −1.908 1.444 0.446 −0.236 4.635

EPU −1.380 1.812 0.552 0.469 3.297

VIX −0.491 1.351 0.297 1.136 5.076

USD −0.054 0.085 0.029 0.323 2.841

Notes: We employ the HP filter to extract the series’ cyclical components of the logarithm. By construction, the means of the cyclical components are zero. The “Std. Dev.”means standard deviation;

“Skew.” means skewness; “Kurt.” means kurtosis.

FIGURE 3
Cross-equicorrelations between cryptocurrencies and energy.We highlight three points (using a gray background). The first period from July 3, 2018 to
September 25, 2018, when a series of hacker attacks heavily shocked the cryptocurrency market. The second period fromMarch 10, 2020 to March 31, 2020,
when theWHO announced the COVID-19 as a pandamic, and the global financial markets felt the turmoil; the third period is from February 22, 2022 to March
22, 2022, which is the first month of the Russia-Ukraine war.
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Mar. 2020, when the WHO classified COVID-19 as a pandemic. The
total connectedness stayed relatively high in 2020 and 2021 but
gradually decreased in 2022. In general, the overall trend of
total connectedness followed the cross-equicorrelation trends quite
closely.

We plotted the volatility connectedness from cryptocurrencies to
energy and from energy to cryptocurrencies in the upper and lower panels
in Figure 5. This shows that the volatility spillovers were asymmetric
across the two markets. The connectedness from energy to
cryptocurrencies was much larger than from cryptocurrencies to
energy: the volatility spillovers from energy to cryptocurrencies were
typically larger than 50%; by contrast, the volatility spillovers from
cryptocurrencies to energy were lower than 2.5%. This indicates that

the risks in the cryptocurrency market were likely affected by risks in the
energy market, but spillovers in the reversed direction were less
pronounced. This finding confirms the results in Symitsi and
Chalvatzis (2018).

Even though the magnitudes of the two directional volatility
connectedness were significantly different, the changes of the two
connectedness follow a similar pattern. Both directional connectedness
decreased dramatically in July 2018 when there was significant fear in the
cryptocurrency market. Moreover, both directional volatility and
connectedness increased during the COVID-19 pandemic. The Russia-
Ukraine war also decreased the connectedness sharply. In addition, there
were two large spikes in February andMay 2021, when the cryptocurrency
market was affected by the inauguration of Joe Biden and a series of

FIGURE 4
Total volatility connectedness. See notes to Figure 3.

FIGURE 5
Directional volatility connectedness. We highlight four points (using a gray background). In addition to the three points mentioned in the Figures 3, 4, the
figure also highlights the period from January 26, 20201 to July 20, 2021. Two influential occured in this period. The first is the inaguration of the Joe Biden in
late January 2021, and the second is a series of Elon Musk’s announcements on investing in Bitcoin.
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announcements by Elon Musk. The association between the remarkable
changes in connectedness and influential events suggests that the volatility
connectedness between cryptocurrencies and energy may be driven by
factors related to the cryptocurrency market and risks in global financial
markets.

5.2 Identification of drivers and effects

5.2.1 Drivers of connectedness from
cryptocurrencies to energy

We first conducted DMA on the volatility connectedness from
cryptocurrencies to energy. The time-varying importance of the

potential drivers, which is indicated by the PIP, is plotted in
Figure 6. We follow Cheung and He (2022) and treat the variables
with a PIP larger than 0.5 or 0.75 as acceptably or substantially
important variables.

As Figure 6 shows, all the variables are important in specific
periods. However, all the variables were unimportant before the
COVID-19 pandemic, showing that the factors related to
cryptocurrencies and global financial markets cannot explain the
volatility spillovers from cryptocurrencies to energy. This finding is
in line with Bouri et al. (2018) and Ji et al. (2019), who reported that
the cryptocurrency market was isolated from the global financial
markets. Additionally, Yousaf et al. (2022) reported that the EPU,
TWU and other kinds of uncertainties had great impacts on the

FIGURE 6
PIPs of the potential drivers (cryptocurrencies to energy). See notes to Figure 5.

FIGURE 7
Expected coefficients of the potential drivers (cryptocurrencies to energy). See notes to Figure 5.
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total connectedness between energy and cryptocurrencies.
However, the COVID-19 pandemic dramatically increased the
importance of CBECI and the USD in explaining cryptocurrency
volatility spillovers. Furthermore, the great political uncertainty
caused by the United States presidential election changed the
importance of the factors. When Joe Biden was inaugurated as
United States president in January 2021, the PIP of the UCRY
increased from less than 0.5 to more than 0.8, while the PIPs of
ICEA, CBECI, TEU, EPU, the VIX, and the USD decreased

significantly. By contrast, the establishment of the United States
future-based exchange-traded fund boosted the importance of the
energy consumed in cryptocurrency mining while simultaneously
reducing policy uncertainty.

Figure 7 shows the expected effects of the factors. The effects
were generally positive, suggesting the increase of uncertainties in
the cryptocurrency and global financial markets increased the
volatility spillovers from cryptocurrencies to energy. However,
the magnitudes of the effects were associated with the PIPs in

FIGURE 8
PIPs of the potential drivers (energy to cryptocurrencies). See notes to Figure 3.

FIGURE 9
Expected coefficients of the potential drivers (energy to cryptocurrencies). See notes to Figure 3.
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Figure 6. In terms of the factors related to the cryptocurrency
market, the UCRY has a relatively large and positive coefficient in
2021, which is also associated with its large PIP in the same period.
This suggests that the policy uncertainties concerning
cryptocurrencies increased the volatility spillovers from
cryptocurrencies. By contrast, the ICEA and CBECI coefficients
were negative when their PIPs were higher than 0.5. This implies
that when the social attention paid to the environmental effects of
cryptocurrencies displayed importantly, it reduced the volatility
spillovers of cryptocurrencies. Furthermore, the energy
consumption of cryptocurrency mining also reduced the
volatility spillovers from cryptocurrencies. Regarding the effects
of uncertainties in global financial markets, the increase of
uncertainties typically increased the volatility spillovers from
cryptocurrencies, especially in recent years. This finding implies
that the cryptocurrency market has gradually been integrated into
global financial markets over the years. The exception is the
negative effects of the GPR since 2021, implying that the rising
geopolitical risk reduces the spillover of cryptocurrencies.

In Figures 6, 7, we also observe that some exogenous factors
display a similar pattern of effects on volatility connectedness.
For example, the effects of UCRY, TEU, EPU, and VIX share a
similar pattern. This observation implies that macro risks are
critical in affecting risk transmission from cryptocurrencies to
energy. This further documents that the cryptocurrencies are
sensitive to expectations, which is similar to products in the
conventional financial market. The risks of cryptocurrencies
increase due to the unpredictable expectations for the future
economic situation.

In general, in line with the low volatility spillovers from
cryptocurrencies to energies, the potential explanatory variables
had marginal explanatory powers for the volatility connectedness.
All the factors were identified as unimportant in 2018 and 2019.
The CBECI and the USD were important factors in 2020, while the

UCRY became important in 2021. However, the estimated effects of
the factors were small, indicating the potential factors had minor
impacts on the volatility connectedness from cryptocurrencies to
energy.

5.2.2 Drivers of connectedness from energy to
cryptocurrencies

Next, DMA was employed to identify the drivers of volatility
connectedness from energy to cryptocurrencies. Figures 8, 9 plot the
PIPs of the factors and the expected coefficients, respectively.

We find evidence that the factors were important in more
periods than those identified in Figure 6, indicating that the
selected factors were more likely to affect the volatility
spillovers from energies rather than from cryptocurrencies.
Among the nine factors, the CBECI had the most
pronounced effects: The PIP of CBECI was consistently larger
than 0.9, with very few exceptions. This implies that the energy
consumption of mining for cryptocurrencies is a major driver of
the risk contagion from energies to cryptocurrencies.
Moreover, the ICEA became important after 2021, suggesting
that social attention to the environmental externalities of
cryptocurrencies affected the spillovers from energy in the
past 2 years. The transactions indicated by the turnovers also
acted consistently important. In terms of the uncertainties of
global financial markets, the PIP of VIX was always higher
than 0.5 and was even higher than 0.75 before 2022,
showing that the fears in the conventional market affected
the risk of transmissions from energy to cryptocurrencies. The
EPU displayed important effects in 2019, while the TEU, GPR,
and the USD were important in very few periods, suggesting
they were less likely to affect spillovers from energy to
cryptocurrencies.

The expected coefficients further demonstrate the effects of
these factors on connectedness. As Figure 9 shows, the

FIGURE 10
Comparison between cross-equicorrelations of baseline estimation and estimation with a smaller sample.
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magnitudes of the coefficients were larger than those in Figure 7.
This indicates that the effects of the factors on the volatility
connectedness from energy were dramatically larger than those
on the volatility connectedness from cryptocurrencies. Specifically,
the CBECI, Turnovers, and VIX coefficients were generally
positive, suggesting these factors had positive effects on the
energy spillovers. However, remarkably, the coefficients of these
factors declined after 2020. By contrast, the coefficients of GPR
were consistently negative, and its negative effect was enlarged in
2022. This finding implies that the Russia-Ukraine war weakened
the connection between the energy market and cryptocurrency
market. Our findings are consistent with the evidence shown in Wu
et al. (2022), and the varying effects also echo the arguments in
Giannellis (2022).

Additionally, the effect of EPU was consistently negative, and the
effect of UCRY was also negative when its PIP was larger than 0.5. This
implies that policy uncertainties weakened the spillovers from energies
to cryptocurrencies. However, the effects of the ICEA, TEU, and USD
switched between positive and negative, further showing that the
effects changed over time.

In Figure 9, the effects of TEU and VIX on the volatility
connectedness from energies to cryptocurrencies shared a
similar pattern, which was consistently positive. By comparison,
the effects of EPU and GPR were negative in the first half of the
sample period. These opposite effects are in accordance with the
characteristics of the TEU, VIX, EPU, and GPR. The TEU and VIX
trace the market uncertainties, while the EPU and GPR measure the

uncertainties due to macro policies and geopolitical events. These
characteristics imply the risks related to financial markets raised
the volatility spillovers from energy but the macro risks decreased
the impacts of energy.

In sum, the estimated PIPs indicated that the CBECI, turnovers
of cryptocurrencies, and VIX were important in explaining the
connectedness from energy, and the effects of these three factors
were positive. The UCRY and EPU were negatively related to the
connectedness from energy when they had important effects. The
importance of the other factors changed over time, and these
factors varied between having positive and negative effects
several times.

6 Robustness checks

To confirm the robustness of our findings and results, we
further re-estimated a block DECO-GARCH model using a
smaller sample. Specifically, we chose the top six tokens in
terms of market capitalization, which are Bitcoin, BNB,
Cardano, Dogecoin, Ethereum, and XRP; we also selected four
representative energies.11

We compare the cross-equicorrelation, total volatility
connectedness, and directional volatility connectedness for the
smaller sample with those for the main sample (the
baseline estimation); these are plotted in Figures 10–12. In these
figures, the solid lines are the estimators based on the smaller
sample, and the dotted lines are the estimators for the baseline
estimation. In Figure 10, the solid line was under the dotted line
before July 2019, and changed to be over the dotted line after that.
However, the differences between the two lines were not large,
suggesting the two samples had similar results. This confirms the
robustness of the block cross-equicorrelation estimated in the
baseline estimation.

TABLE 3 Absolute difference between baseline estimation and estimation in
robustness check (%).

Estimates Mean Std. Dev. Min Max

Equicorrelation 0.011 0.007 0.000 0.032

Total Connectedness 7.761 6.783 0.011 30.797

Cryptocurrency to Energy 0.178 0.240 0.001 1.343

Energy to Cryptocurrency 7.801 6.725 0.004 30.727

FIGURE 11
Comparison between total volatility connectedness of baseline estimation and estimation with a smaller sample.

11 These top six tokens are the top ten cryptocurrencies regarding market
capitalizations.
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In Figure 11, the total connectedness of the smaller sample was
lower than the corresponding one for the baseline estimations in
2018 and 2019. This is in line with the fact that the number of
cryptocurrencies and energy types in the robustness check was
smaller than those in the baseline estimation. However, the two
lines were not too far away. Figure 12 also confirms the robustness
of the estimates on the directional connectedness. The solid line
and the dotted line in the upper panel of Figure 12 were almost the
same, and the two lines in the lower panel were very similar to the
pattern shown in Figure 11.

Table 3 summarizes the absolute differences between the
baseline and estimation using a smaller sample. The mean of
absolute differences of cross-equicorrelations is only 0.011,
confirming that the differences between the two estimations are
small. Furthermore, the statistics on the differences in the total
connectedness and the directional connectedness from energy to
cryptocurrencies show that the deviations of the baseline
estimation and the estimation based on a smaller sample are
small relative to the magnitude of the connectedness estimates.
These findings thus provide evidence that the study estimates are
robust.

7 Conclusion and policy implications

In this paper, we investigated the interactions between
cryptocurrency and energy markets. We collected price data for
eight cryptocurrencies and eight energy types. We employed the
block DECO-GARCH model and group volatility connectedness to
estimate the cross-equicorrelation and volatility connectedness
between cryptocurrencies and energy. Furthermore, we
identified nine potential explanatory variables related to the
cryptocurrency market and global financial markets and adopted
DMA to identify the roles and effects of these factors. Lastly, we
conducted robustness checks using a smaller sample which

consisted of seven cryptocurrencies and four representative
energy types.

Our results show that the cross-equicorrelation between
cryptocurrencies and energy was relatively low but changed
dramatically over time, and the spikes and troughs were related to
some influential events. The connectedness estimates show that the
volatility spillovers between cryptocurrencies and energy increased
after the COVID-19 pandemic, and the volatility connectedness from
energy to cryptocurrencies dominated the total volatility
connectedness. The DMA estimations imply that the factors played
important roles in explaining volatility connectedness from
cryptocurrencies in some periods after the COVID-19 pandemic,
but the effects were minor. In explaining the volatility
connectedness from energy to cryptocurrencies, the CBECI,
cryptocurrency turnovers, and the VIX consistently had important
and positive effects. The GPR displayed important and negative effects
after the breakout of the Russia-Ukraine war, the importance of the
UCRY, ICEA, EPU, and USD changed over time, and the effects
switched between positive and negative.

Our findings suggest that the cryptocurrency market is gradually
becoming integrated into the global financial markets. While its
outward spillovers have remained minor, it has absorbed volatility
shocks from the energy market. Additionally, the findings that the
changes in cross-equicorrelation and volatility connectedness were
related to influential events suggest that the risk contagion channels
change due to the variation in the global economic environment. From
a policy perspective, the government should propose regulations on
cryptocurrency transactions that monitor the potential risks in the
cryptocurrency market. The mechanism of the asymmetric
connectedness of cryptocurrencies and energy implies that
cryptocurrency market investors may suffer significant losses due
to the rising risks in the energy market. Moreover, the increasing
risk aversion indicated by the increasing VIX would also raise the
sensitivity of cryptocurrency investors, and hurt the financial market.
For cryptocurrency investors, information about the electricity cost of

FIGURE 12
Comparison between directional volatility connectedness of baseline estimation and estimation with a smaller sample. The solid line is the volatility
connectedness between cryptocurrencies and energy based on the smaller samples and the dotted line is the directional volatility connectedness between
cryptocurrencies and energy in a baseline estimation.
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mining and cryptocurrency transactions is crucial since it affects the risk
transmission from energy to cryptocurrencies. Therefore, investors and
policymakers should paymore attention to the risks in the cryptocurrency
market when making investment and policymaking decisions.
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Appendix

TABLE A1 Choice and sources of cryptocurrencies and energies.

Cryptocurrency Source Energy Source

Bitcoin CoinMarketCap Con. Gasoline US EIA

BNB Crude Oil

Cardano Diesel

Dogecoin Hea. Oil

Ethereum Classic Jet Fuel

Ethereum Natural Gas

TRON Propane

XRP Reg. Gasoline

TABLE A2 Sources of potential drivers.

Variables Source

CBECI https://ccaf.io/cbeci/index

ICEA https://sites.google.com/view/cryptocurrency-indices

UCRY https://sites.google.com/view/cryptocurrency-indices

EPU https://www.policyuncertainty.com/us_monthly.html

TEU-WGT https://www.policyuncertainty.com/twitter_uncert.html

VIX CBOE

GPRD https://www.matteoiacoviello.com/gpr.htm

Turnover CoinMarketCap

USD Federal Reserve Bank of St. Louis

TABLE A3 Unit root test on the series in empirical analysis.

Cryptocurrency Energy Volatility spillovers Exogenous proxies

Bitcoin −9.44*** Con. Gasoline −6.50*** Cryto. −1.69 CBECI −2.46**

BNB −9.82*** Crude Oil −8.98*** Energ. −2.87 ICEA −2.24**

Cardano −10.47*** Diesel −11.70*** UCRY −3.51***

Dogecoin −7.38*** Hea. Oil −11.48*** EPU −3.03***

Ethereum Classic −10.33*** Jet Fuel −5.35*** TEU-WGT −2.72**

Ethereum −11.90*** Natural Gas −13.54*** VIX −4.26***

TRON −10.73*** Propane −10.12*** GPRD −5.14***

XRP −8.97*** Reg. Gasoline −8.17*** Turnover −2.23**

USD −1.47

Notes: For cryptocurrencies, energy, and volatility spillovers, we assume the series have a drift; for the exogenous variables, considering that we conduct HP, filter on the initial series, we assume the

series do not have a drift. ***, **, and * indicate the test rejects the null of unit root at 1%, 5%, and 10% level. As we the parameters in the DMA is time-varying, the LHS variables in the DMAmodels do

not need to be stationary.
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