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Polycyclic aromatic hydrocarbon (PAH) accumulation in topsoil is getting particular
concern with the rapid development of urbanization and industrialization, while the
overall pollution status and related risk posed by PAHs received limited attentions at
the national scale. This study conducted an overview of published data on 16 priority
control PAHs by USEPA on the related peer-reviewed 207 research papers between
2000 and 2020 in 30 provinces of China. Based on that, the pollution levels,
composition status, spatial distribution pattern, ecological risk, and human health
risk posed by soil PAHs were evaluated. Monte Carlo simulation was adopted to
model the probabilistic health risk and identify the contributor of such risks. Results
demonstrated the concentrations of ∑16PAHs in soil varied from “undetected” to
261 μg g−1 with a mean value of 0.63 μg g−1, indicating the obvious accumulation of
PAHs in topsoil of most provinces in China compared with the guideline value
(0.2 μg g−1). The concentrations of ∑16PAHs in surface soil of China has obvious
regional characteristics. Higher concentrations of soil PAHs are mainly distributed in
north, northwest, and eastern regions, especially in Xinjiang, Shandong, Jiangsu,
Sichuan, and Guangxi Province. Risk assessment indicates potential ecological and
human health risk were posed by soil PAHs, therefore, reducing soil PAHs
concentration and exposure frequency are the most effective pathways to
protect human health. Despite the fact that risks posed by soil PAHs are generally
low, concentrations of PAHs in some sites are relatively high. It is necessary to take
effective measures to remediate soil PAHs pollution in certain areas to reduce
concentration and associated risks.

KEYWORDS

polycyclic aromatic hydrocarbons, risk assessment, spatial distribution, Monte Carlo, China

1 Introduction

Soil contamination is one of the most concerned issues around the world currently and has
attracted particular attentions (Lu et al., 2015; Daso et al., 2016). Pollutants in soil not only have
direct harmful effects on ecology, but also pose potential hazard risks to mankind and animals
(Salazar et al., 2012; Niu et al., 2013; Lestan, 2017). As reported by the first national soil survey
report, the percentage of organic pollutants which exceeded its responding guideline values,
ranked second followed by heavy metals (Ministry of Environment Protection and Ministry of
Land Resources of the People’s Republic of China, 2014). The polycyclic aromatic hydrocarbon
(PAHs) belongs to a group of organic compounds that are composed of more than two
condensed aromatic rings, which are carcinogenic, mutagenic, teratogenic, and toxic to living
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beings (Franco et al., 2008; Ambade and Sethi, 2021). PAHs are
widespread in the water, atmosphere, sediments, and soil, and are
both from natural sources such as volcanoes and anthropogenic
activities such as incomplete combustion of biomass fuels, fossil,
and oil spills (Wolska et al., 2012; Yang et al., 2020; Ambade et al.,
2022). PAHs tend to retain and accumulate in soil due to their high
hydrophobicity. Soil PAHs contamination is getting increasing
attention nowadays with a large number reports about high
concentrations of PAHs from continuous emission of oil
combustion and traffic (Leung et al., 2015; Alves et al., 2016; Chen
et al., 2017). To address the overall contamination status, assessment
of potential sources, and risks of soil PAHs are vital and essential for
soil PAHs pollution remediation.

Risk assessment is the process of estimating the probability of
harmful effects posed by contaminants (USEPA, 2016). According to
the different end-point receptors, it can be classified into ecological
risk and human health risk. Previous studies were mostly focused on
the occurrence, source apportionment, and risk assessment of regional
soil PAHs (Huang et al., 2014; Yang et al., 2014; Tong et al., 2018).
These studies reported the occurrence of soil PAHs regionally, mainly
due to human activities such as industrial emission, transportation
vehicle, and/or e-waste dismantling. However, existed studies on soil
PAHs were largely focused on small regions or areas, limited number
of soil samples, or single soil type (Wang et al., 2014; Cai et al., 2017;
Zheng et al., 2019). Besides, deterministic (the most likely) values are
usually adopted in health risk assessment model of soil PAHs.
However, variable of exposure parameters due to the individual
differences and PAHs concentration differences from soil spatial
heterogeneity would underestimate or overestimate the human
health risk from traditional deterministic methods (Yang et al.,
2014). Therefore, a comprehensive study taking into account
concentration status, pollution level, and induced probabilistic risk
modeling of soil PAHs at the national scale was urgent to conduct.

In the present study, a dataset of USEPA 16 priority PAHs in
Chinese topsoil was compiled based on peer-reviewed literature. On
the ground of the dataset compiled, the objectives of the study were to
1) reveal the overall accumulation and contamination status of PAHs
in topsoil of China, 2) present the spatial distribution of soil PAHs
concentration, and 3) evaluate the associated ecological and human
health risk posed by soil PAHs and model probabilistic health risk by
considering variability of exposure parameters. The results would
provide basic reference for remediation and risk control of soil
PAHs pollution.

2 Methods and materials

2.1 Data collection and development of soil
PAHs concentrations dataset

The dataset of PAHs concentrations in topsoil (0–20 cm) was
developed based on 14,161 soil samples in 207 research papers
published between 2000 and 2020, covering 30 provinces across
China (except Hainan, HongKong, Macao, and Taiwan). The
keywords “soil PAHs” and “polycyclic aromatic hydrocarbons
(PAHs) in soil” were searched on Web of Science, Science Direct,
the China Wan Fang database, China Wei Pu Literature, and China
National Knowledge Infrastructure Database to find related
publications. The papers had to meet the criteria that sampling,

analytical methods, quality control were strictly conducted to
guarantee the accuracy of the soil PAHs concentrations. The
information extracted from each paper included 1) sampling
location (province, city, longitude, and latitude), sampling time and
depth, number of soil samples; 2) mean value, range of ∑16PAHs and
mean concentration of the sixteen PAHs congeners. The 16 priority
PAHs identified by USEPA were acenaphthylene (ACY), naphthalene
(NAP), acenaphthene (ACE), phenanthrene (PHE), fluorene (FL),
anthracene (ANT), pyrene (PYR), fluoranthene (FLU), benzo[a]
anthracene (BaA), benzo[b] fluoranthene (BbF), chrysene (CHR),
benzo[k] fluoranthene (BkF), benzo[a]pyrene (BaP), indeno(1,2, 3-
cd)pyrene (IND), dibenzo(a,h) anthracene (DBA), and benzo(g,h,i)
perylene (BghiP). Detailed information for each publication are
presented in Supplementary Table S1.

2.2 Risk assessment models

2.2.1 Ecological risk assessment
Toxic equivalent concentrations (TEQBaP) was adopted to

characterize ecological risk posed by soil PAHs. TEQBaP represents
the total concentration of transformed individual PAHs congener by
the toxic equivalency factor (TEF) (μg kg−1) of BaP (Lin et al., 2013).
The TEQBaP was calculated by the Eq. 1:

TEQBap � ∑Ci × TEFi (1)

where Ci means the concentration of PAHs congener i (μg kg−1) and
TEFi is the toxic equivalency factor of PAHs congener i (Samburova
et al., 2017). The corresponding TEF of 16 PAHs congeners can be
found in Supplementary Table S2.

2.2.2 Human health risk assessment
Human health can be threatened by soil PAHs via exposure

pathways including oral intake, inhalation, and dermal contact. The
USEPA exposure model was adopted to assess the incremental lifetime
cancer risk (ILCR) for adults and children exposed by soil PAHs
(USEPA, 1989; USEPA, 2009a; USEPA, 2009b). The ILCR through
each of the exposure pathways were calculated by the Eqs 2–4:

ILCRoral �
CEs*IRIng*

���
BW
70

3
√

*EF*ED

AT*BW*106 *CSFIng (2)

ILCRderm �
CEs*

���
BW
70

3
√

*EF*ED*SA*AF*ABS

AT*BW*106 * CSFDerm (3)

ILCRinh �
CEs*IRInh*

���
BW
70

3
√

*EF*ED

AT*PEF*BW * CSFInh (4)
ILCRs � ∑ ILCR (5)

Where ILCRderm, ILCRoral, and ILCRinh are the exposure risks of
soil PAHs via dermal contact, oral intake, and inhalation pathways,
respectively (unitless), and ILCRs is the total human health risk
exposed from all the three pathways (unitless). CEs is TEQBaP (ug
kg−1), BW is the body weight (kg), AT is the average life span (d), IRinh

as the soil inhalation rate (m3 d−1), IRing represents the soil particle
intake rate (mg d−1), ED means the exposure duration (years), SA
represents the surface area of dermal exposure (cm2), EF denotes the
exposure frequency (d year−1), AF stands for the adherence factor (mg
cm−2 h−1), ABS denotes the dermal adsorption fraction (unitless), PEF
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represents the particle emission factor (m3 kg−1), and CSFIng, CSFInh,
and CSFDerm are the carcinogenic slope factor for ingestion, inhalation,
and dermal contact respectively (mg kg−1 d−1)−1.

Determined values of each parameter were used in deterministic
risk assessment. CEs is the mean values of TEQBaP in all sampled soil
sites, and the value of other parameters used in Eqs 2–4 are listed in
Supplementary Table S3.

For probabilistic risk modelling, Monte Carlo (MC) simulation
was employed to handle variability in concentrations of PAHs and
uncertainty of parameters with 10,000 iterations. Values of CEs were
chosen from the compiled dataset of sampling sites for each iteration,
and extreme values of CEs were removed to suit a lognormal
distribution. The parameters (ED, EF, BW, SA, IRIng, and IRInh)
were probabilistically treated by the defined distribution list in
Supplementary Table S4. Other exposure parameters with less
variability were still single-point values, as listed in Supplementary
Table S3. During the MC simulation, sensitivity analyses was
conducted to estimate the contribution of each input parameter to
the total variance of probabilistic health risks.

2.3 Statistical analysis tools

Microsoft Excel 2016 and SPSS 16.0 were employed to perform
basic statistical analysis. Figures were made by Origin 2019 Pro
(Origin Lab, Northampton, MA). MC simulations and sensitivity
analyses were conducted by Oracle Crystal Ball software (11.1.2.4).
The spatial distribution maps of soil PAHs concentrations and risks
were conducted by ArcGIS 10.7.

3 Results

3.1 Concentration and spatial distribution of
PAHs in topsoil of China

The research areas of collected 207 papers distributed in 30 provinces
of China (Supplementary Figure S1), which can reflect the overall soil
PAHs pollution status nationally. The sampling sites were mainly located
in the eastern and northern areas, especially Pearl River Delta, Yangtze
River Delta, and the Beijing-Tianjin-Hebei region (Table 1). The
concentration of ∑16PAHs in each collected literature is listed in
Supplementary Table S1. Concentrations of ∑16PAHs in the topsoil
of China ranged from “undetected” to 261 μg g−1 with a mean value of

0.63 μg g−1. The median value of ∑16PAHs was 17.94 μg g
−1, which is

much higher than the 0.05 μg g−1 of the Dutch government standard of
soil PAHs (Agarwal, 2009), indicating PAH pollution in the topsoil was
mainly affected by human activities. Figure 1 shows the content
distribution of 16 PAHs congers. The 25%–75% interval distribution
of 16 PAHs congers concentration ranged from 1.39 to 108.5 μg kg−1.
The median concentrations of FL and PYR were 39.7 μg kg−1 and
33.21 μg kg−1, respectively, which were highest among the 16 PAHs
congeners. Alternatively, the median concentrations of ACE and ACY
were 4.85 μg kg−1 and 6.13 μg kg−1, which were the lowest.

At present, the threshold of soil PAHs pollution is not modulated
in China. The pollution classification from Maliszewska-Kordybach
(1996) on the base of the total concentrations of PAHs was adopted in
this study. Four categories were classified by Maliszewska-Kordybach
(1996): heavily contaminated (>1,000 μg kg−1), moderately
contaminated (600–1,000 μg kg−1), weakly contaminated
(200–600 μg kg−1), and non-contaminated (<200 μg kg−1). Based on
the classification, 24.15% of the topsoil in China were categorized as
non-contaminated, 39.13% of the soil as weakly contaminated, 14.98%
of the soil as moderately contaminated and 21.74% as heavily
contaminated. The heavily contaminated soil samples were mainly
located in the eastern coastal and southern regions, especially in
Yangtze River Delta area, while non-contaminated sites were
scattered in across multiples areas of China (Figure 2A).

TABLE 1 Distribution of collected literature and soil samples of PAHs in China’s surface soils.

Region Province and literature number Total literature numbers Soil samples

East China Jiangsu (19), Shandong (11),Fujian (6), Zhejiang (13),Shanghai (14),Anhui (6), Jiangxi (2) 71 5,958

Northeast China Liaoning (16), Heilongjiang (3),Jilin (7) 26 974

North China Beijing (12), Tianjin (14), Hebei (4), Shaanxi (15), Mongolia (2) 47 3,594

Southwest China Yunnan (1), Tibet (5), Sichuan (3), Guizhou (5), Chongqing (1) 15 809

South China Guangdong (18), Guangxi (5) 23 963

Northwest China Shanxi (6), Gansu (3), Xinjiang (3), Ningxia (1), Qinghai (3) 16 580

Central China Henan (5),Hunan (1),Hubei (3) 9 953

FIGURE 1
Contents of 16 single PAHs and ∑16PAHs in surface soil of China.
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The concentrations of soil PAHs in China varied greatly among
different regions. The median values of ∑16PAHs concentration in
different regions ranked as: North China (Tianjin, Beijing, Hebei,
Shaanxi, Inner Mongolia) (690.3 μg kg−1) > Northeast China
(Heilongjiang, Jilin, Liaoning) (497.5 μg kg−1) > East China
(Shandong, Jiangsu, Fujian, Zhejiang, Shanghai, Anhui, Jiangxi)
(356.47 μg kg−1) >Northwest China (Shanxi, Gansu, Xinjiang,
Ningxia, Qinghai) (318.4 μg kg−1) > South China (Guangxi,

Guangdong) (318.2 μg kg−1) > Southwest China (Guizhou, Yunnan,
Tibet, Sichuan, Chongqing) (217.79 μg kg−1) > Central China (Henan,
Hunan, Hubei) (129.5 μg kg−1). The spatial distribution of∑16PAHs in
Chinese topsoil was mapped by the Inverse Distance Weight (IDW)
interpolation method (Figure 2B). The higher concentrations of
∑16PAHs were mainly distributed in north, northwest and east
regions, especially Xinjiang, Shandong, Jiangsu, Sichuan, and
Guangxi Province, while lower concentrations prevailed in the

FIGURE 2
The spatial distribution of ∑16PAHs concentrations in China from collected data [(A): sampling sites (B): interpolation].

FIGURE 3
The spatial distribution of TEQBaP in China from collected data.
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western areas, such as Tibet, where industrial activities had lesser
effects.

3.2 Risk assessment of soil PAHs

3.2.1 Potential ecological risk assessment
The potential ecological risk posed by soil PAHs was assessed by

Toxic equivalent concentrations of BaP (TEQBaP). Results showed the
TEQBaP of soil PAHs in China ranged from 0.19 to 1,268.01 μg kg−1

with a mean value of 93.65 μg kg−1. Overall, 52.98% of the soil samples
exceeded the ecological risk guideline value (33 μg kg−1), indicating
moderately ecological risks in topsoil of China were posed by PAHs.
The spatial distribution map of TEQBaP of soil PAHs shared similar
pattern with concentration (Figure 3). Higher concentrations of
TEQBaP were mainly located in north, southwest, and eastern areas.
TEQBaP of soil PAHs in most regions of China were greater than
33 μg kg−1, especially in Shaanxi, Sichuan, and Jiangsu Provinces.

3.2.2 Human health risk assessment
ILCR model was adopted to assess the human health risk posed by

soil PAHs for children and adults. ILCRs ranged from 2.56E-09 to
1.67E-05, with a mean value of 1.24E-06, and from 1.67E-09 to 1.09E-
05, with a mean value of 8.05E-07 for adults and children, respectively
(Table 2). ILCRs higher than 10–4 is considered as high risk, ILCRs
lower than 10–6 is regarded as no risk, and ILCRs range from 10–6 to
10–4 is considered as potential but acceptable risk posed (USEPA,
2016). The health risk assessment results showed that 35.10% and
20.53% of sampling sites had ILCRs exceeding 10–6 for children and
adults, respectively, with no site having ILCRsmore than 10–4 both for
children and adults, which indicate potential human health risks were
posed by soil PAHs, but risks were acceptable. Among the three
exposure pathways, the ILCRs exposed from ingestion and dermal
contact were 4–5 orders of magnitude higher than the inhalation
pathway. Therefore, ingestion and dermal contact are the dominant
pathways of ILCRs, while inhalation is negligible. The spatial
distribution maps of ILCRs of adults and children shared the
similar distribution pattern with higher values in north, southwest,
central and eastern regions, especially in Shaanxi, Sichuan, and Jiangsu
provinces, while lower risks prevailed in west and southeast areas
(Supplementary Figure S2).

3.2.3 MC simulation and sensitivity analyses for
probabilistic health risk

The probabilistic health risks of adults and children exposed to
soil PAHs were simulated by MC and results are showed in
Figure 4. The probabilistic ILCRs ranged from 2.34 E-11 to
5.61E-05 with a mean value of 6.51E-08for adults, and from
1.35E-12to 3.27E-07 with a mean value of 4.31E-09 for children
exposed from soil PAHs through oral intake, dermal contact, and
inhalation pathways. Overall, 0.53% of ILCRs exceeded 10−6 for
adults, and no ILCRs exceeded 10−6 for children. The results were
common with deterministic risk assessment, where potential
health risks were posed by surface soil PAHs but risks were
acceptable.

The sensitivity of variables to ILCRs for adults and children was
analyzed together with MC (Figure 5). Among the parameters, EF
(exposure frequency) contributed the most to the total variance of
ILCRs, which accounted for 60.0% and 57.1% to ILCRs for adults and
children, respectively. CEs contributed the second highest to total
variance of ILCRs, followed by IRing, BW, IRinh, and SA. The total

TABLE 2 The ILCRs for adults and children via three exposure routes.

Exposure pathway ILCRs

Min Max Mean Median

Adults Ingestion 9.21E-10 6.02E-06 4.45E-07 1.69E-07

Inhalation 7.15E-14 4.67E-10 3.45E-11 1.32E-11

Dermal 1.64E-09 1.07E-05 7.90E-07 3.01E-07

Total 2.56E-09 1.67E-05 1.23E-06 4.71E-07

Children Ingestion 7.42E-10 4.85E-06 3.58E-07 1.37E-07

Inhalation 1.09E-14 7.15E-11 5.28E-12 2.01E-12

Dermal 9.25E-10 6.05E-06 4.47E-07 1.70E-07

Total 1.67E-09 1.09E-05 8.05E-07 3.07E-07

FIGURE 4
Cumulative frequency of probabilistic ILCRs of adults and children.
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contributions of EF and CEs to ILCRs accounted for 98.5% and 94.6%
of the sum of variance for adults and children, respectively. IRinh and
SA contributed least to the total variance of ILCRs, confirming that
inhalation is a negligible pathway for ILCRs exposure.

4 Discussion

The PAHs concentrations in soil varied greatly across China. The
standard deviation (SD) of soil PAHs concentration was
77,455.85 μg kg−1 and coefficient of variation (CV) was 122.98, which
reflects strong variety of soil PAHs concentration and huge
anthropogenic activities influence (Zhang et al., 2007). According to
a former review involving nearly 100 publications, the total
concentrations of PAHs in China ranged from 65 to 23,603 μg kg−1

with a mean value of 2,802 μg kg−1 for urban soil, and 47% of soil were
heavily contaminated (Yu et al., 2019). The mean concentration and
heavily pollution rate reported by Yu et al. (2019) were both greater than
the corresponding values in the present study, mainly because urban soil
was influenced by intense anthropogenic activities such as industrial
emission and heavy traffic. Sun et al. (2017) reviewed the concentration
status of organic contaminants in agricultural soil of China, and their
results revealed the concentrations of 16 PAHs ranged from
“undetected” to 27,580 ng g−1, with a mean value of 772 ng g−1,
which is slightly higher than the present study. Compared to other
countries, the mean value of soil PAHs in China in the present study
(629.83 μg kg−1) was higher than such locations as of urban soil in Viseu,
Portugal (169 μg kg−1) (Cachada et al., 2012) and Belgrade, Serbia
(375 μg kg−1) (Crnkovic et al., 2007) but was much lower than the
mean concentration of PAHs in the UK (11,930 μg kg−1) (Morillo et al.,
2007), urban traffic soils in Delhi, India (4,694 μg kg−1) (Agarwal, 2009),
and an e-waste dismantling area in Accra, Ghana (5,627 μg kg−1) (Daso

et al., 2016). Pollution levels of soil PAHs all around the world vary
greatly, higher concentrations mostly being influenced by
anthropogenic activities. Higher soil PAHs concentrations were
generally detected in industrial areas and roadsides, while lower
levels were found in residential areas (Zhang and Chen, 2017). The
PAHs concentrations were also different from various types of sampling
sites (Zhang and Chen, 2017). The PAHs concentrations in surface soil
in Kunming showed higher values in industrial area and roadside, while
lower in green space and education area (Lin et al., 2013). Peng et al.
(2016) investigate the distribution of soil PAHs in Beijing with different
land uses, results showed soil PAHs concentrations decreased by
roadsides, green areas and agricultural areas.

Different migration and enrichment behaviors of PAHs were
recorded with different ring numbers (Wild and Jones, 1995).
Among the 16 PAHs congeners, FL and PYR had the highest
concentrations, while ACE and ACY had the lowest. The finding is
consistent with previous studies reported by Zhang and Chen. (2017).
Li et al. (2016) analyzed the composition of PAHs in the Yangtze River
Delta area, and reported that soil PAHs were dominated by four to five
ring PAHs. They mainly related to low saturated vapor pressure,
solubility and high Kow coefficient of HMW PAHs, and thus easily
absorbed and enriched to soil particles, while LMW PAHs have lower
molecular weight, and are easy to volatilize and be degraded by
microorganisms (Liu et al., 2011; Dumanoglu et al., 2017).
Moreover, PAHs compositions also differed between urban and
rural areas. HMW PAHs in urban and suburban areas were usually
higher than rural regions mainly due to the different energy types
consumed (Wang et al., 2012).

The spatial distribution of soil PAHs in China is heterogenous,
where concentrations of soil PAHs in north area was greater than the
south. The result was in line with previous studies by Zhang et al.
(2019), who reported higher concentrations of soil PAHs in north and

FIGURE 5
Contribution of parameters for probabilistic ILCRs.
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northeast region, while lower concentrations in southwest and central
areas. There are many factors influencing the concentration and
distribution of soil PAHs, such as local economic development,
land use, population density, soil organic matter, and traffic
conditions (Gao et al., 2012; Wang et al., 2015). Higher
concentrations of soil PAHs usually occurred in industry developed
areas, and lower in tourist spots (Zhang et al., 2019). In addition to
industry and economy development, climate also affect the
concentrations of soil PAHs. The relatively low temperature,
humidity, and weak ultraviolet radiation of north China decreased
microbial and photolysis degradation of soil PAHs (Zhang and Chen,
2017). Identifying potential influencing factors for soil PAHs is
essential to control and minimize adverse effects. Generally, the
ratios of various PAHs congeners concentration, called diagnostic
ratios, are often used to identify between petroleum and combustion
sources (Yunker et al., 2002). Diagnostic ratios are used to differentiate
origins, by composition and concentration of pollutants produced by
different pollution sources (He et al., 2019). In the present study, the
ratios of IND/(IND + BghiP) are ranged between 0.028 and 0.992, with
a mean value of 0.472. Furthermore, ratios of FLU/(FLU + PYR) are
ranged from 0.010 to 0.920 with the mean value of 0.333. As shown in
Supplementary Figure S3, most of the soil samples were with the ratios
of IND/(IND + BghiP) > 0.2, the ratios of FLU/(FLU + PYR) were
scattered distributed between 0.2 and 1, suggesting that soil PAHs in
China were mainly resulted from the mix combustion of biomass,
petroleum, and coal (Cai et al., 2017). Identical results were also
reported by Yu et al. (2019), both indicating coal, biomass, and oil
combustion contributed more to soil PAHs distribution. Therefore,
the huge amount of coal usage in north China contributes to higher
soil PAHs concentrations possibly. The interpolation map of soil
PAHs concentration showed the higher values in southwest and
northwest area, especially Sichuan and Xinjiang Province, in
contrast to the order of median values in different regions. It was
possibly due to the limited number of soil samples collected in these
areas and the high concentrations of soil PAHs in these samples.
Besides, higher concentrations also occurred in Shaanxi and Shandong
Province, which might be caused by massive consumption of coal and
heavy traffic emissions (Ambade et al., 2021). The mean concentration
of soil PAHs in Tibet is relatively low, and the sampling soils were all
non-contaminated. As reported by Tao et al. (2011), PAHs in the
Tibetan Plateau mostly come from long-range atmospheric transport.

Risk assessment is a valuable tool to characterize the adverse effects of
soil pollutants, and quantify exposure risk, both for ecology and human
health from soil PAHs, thus providing reference for remediation and
management of soil PAHs pollution (Yang et al., 2019; Liu et al., 2021; Li
et al., 2022). TEQBaP of soil PAHs assessment in this study shows that
about half of the soil posed ecological risks, which was in accordancewith
a previous study that about 50% of the TEQBaP of sampling soils in
Shanghai were above the safe level (Wang et al., 2013). Therefore,
pollution of soil PAHs should not be ignored in China, remediation
measures should be adopted in certain areas to guarantee ecological
safety. Soil PAHs not only have direct harmful effects on the
environment, but also pose potential risk to human health via various
exposure pathways. The exposure of humans in contaminated soil
usually occurs via three pathways, including oral intake, (e.g.,
incidental hand to mouth intake of soil particle when working or
playing on the ground), inhalation and dermal contact with soil
particles. As a result, quantifying the risk contribution and identifying
the crucial exposure parameters can help provide effective risk control

measures towards soil PAHs pollution (Peng et al., 2019). Both
deterministic human health risk, where single point value of
parameters were adopted, and probabilistic human health risk, where
parameters were probability treated, were conducted to quantify the
human health risk of soil PAHs in the present study. The results revealed
that potential risks were posed to adults and children, but risks were
acceptable. The spatial distribution of soil PAHs concentrations showed
higher values in Urumqi, where the health risks were relatively low. This
was mainly related to the limited number of soil samples collected in this
area and the concentration difference of PAHs congeners that resulted in
the low value of TEQBaP. When considering the variability of exposure
parameters (EF, ED, BW, SA, IRInh, and IRIng), the percentages of ILCRs
surpassing 10–6 for adults and children were both on the decline,
confirming that human health risk would be overestimated when
single values of parameters were adopted. Similar result was found by
Jia et al. (2013), who assessed the risk of naphthalene and benzo(a)
pyrene, and found the deterministic risk was four to six folds higher than
probabilistic risk. Contrary to that, the deterministic risk assessment of
PAHs using the most likely values of exposure parameters and PAHs
concentrations were lower than that of the probabilistic risk obtained by
MC method (Tong et al., 2018). Probabilistically treated key parameters
can provide probability health risk, which is more reliable especially in
vast regions, where PAHs concentrations and exposure parameters vary
greatly. The sensitivity analysis demonstrated that EF and CEs were the
dominant parameters contributing to the ILCRs. Therefore, reducing
contact frequency and concentration of soil PAHs are the main and
effective method to lower exposure risks.

5 Conclusion

The concentration, composition, spatial distribution, and risks of
soil PAHs were systematically analyzed at the national scale based on a
robust dataset compiled from literature review. The concentrations of
∑16PAHs ranged from “undetected” to 261 μg g−1, with a mean value
of 0.63 μg g−1 and a median value of 17.94 μg g−1. According to the
contamination classification criteria, about 21.74% of the soils were
classified as heavily contaminated, 14.98% of the soils were moderately
contaminated, 39.13% of the soils were weakly contaminated, and
24.15% of the soils were uncontaminated. Higher concentrations of
soil PAHs were located in north and northeast China, and mainly
derived from the mix combustion of coal and oil. The TEQBaP

assessment indicated moderate ecological risks were posed by soil
PAHs, where higher TEQBaP were mainly located in Sichuan and
Jiangsu provinces. Human health risk assessment results indicated
that potential health risks of adults and children were posed by soil
PAHs, but risks were acceptable. Sensitivity analysis showed that
exposure frequency and concentration of soil PAHs contributed
most to the variability of the total risks. Therefore, reducing
exposure frequency PAHs concentration from soil by taking
remediation actions are effective pathways to protect
environmental quality and human health.

6 Limitations and perspectives

We conducted a systematic overview of soil PAHs pollution
status and assessed related potential ecological and human health
risks at national scale. The data were extracted from previous
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published literature, and therefore, uncertainties exist inevitably to
some extent. Firstly, the sampling time, sampling method, and
laboratory analysis of soil PAHs in each publication varies
greatly. Nevertheless, the concentrations of soil PAHs in each
publication were compared at current time scale. Additionally,
the mean concentrations of soil PAHs in each study were used to
estimate and interpolate to depict a spatial distribution map. As a
result, the actual concentration and induced risks of topsoil PAHs in
China could have been underestimated to some extent. Besides, the
total concentrations of soil PAHs were used to assess human health
risk, while, bioaccessibility and bioavailability of soil PAHs are
considered reliable in assessing real exposure risk as reported by
Munir Hussain et al. (2011) and Dong et al. (2016). Such scenario
could cause an overestimation of human health risks of soil PAHs.
Results from this study could enhance the knowledge of soil PAHs
contamination status, potential ecological and human health risks
across China. However, further work is needed to overcome the
existing limitations in this study. Consequently, it would be better to
collect soil samples across China at the same time and analyze soil
PAHs concentration by same procedure and method to obtain the
actual concentration status of soil PAHs in the future. Besides,
establishing a pollution classification criterion based on the actual
soil properties of China is vital for further contamination assessment
and remediation. In addition, assessing human health risk by using
bioaccessibility and bioavailability of soil PAHs instead of the total
concentrations can help obtain more reliable results. Overall, by
combining soil samples, bioaccessibility and bioavailability
experiments, probabilistic risk simulation will exert reliable
results of soil PAHs contamination status and risk level.
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