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The cognitive radio network (CRN), an instrumental part of the next-generation
wireless communication systems, is mainly dependent on spectrum sensing to
function properly. The radio spectrum can help in clean energy transition and load
capacity factors by providing a more efficient and accurate spectrum utilization.
By using it, the number of spectrums that is used for communication can be
optimized, which can reduce the amount of energy consumed by the network.
Additionally, 5G radio spectrum sensing can be used to identify and classify
different types of signals, which can help reduce the amount of interference in
the network and improve the efficiency of energy utilization. It can also allow for
the digitization of clean energy infrastructure and facilitate better decision-making
processes that take into account environmental impacts while optimizing energy
use because of its efficient characteristics like non-linearity, detection, scalability,
robustness, generalization, non-stationarity in wireless environments, dynamic
entity, weighted sum of Gaussian functions centered at specific frequencies, and
robustness against noise and interference. It can adapt to noise and interference
by adjusting its parameters, and this allows accurate distinguishing between
primary and secondary users in the wireless spectrum, which is why a radial
basis function is a popular choice for spectrum sensing in 5G networks. Radial
basis function networks (RBFNs) canwork better in 5G spectrum sensing for better
signal classification, dynamic adaptation, fast detection, faster decision-making,
and improved noise and interference reduction. One of the most sought-after
goals in the field of wireless research is the creation of spectrum-sensing
technology that is dependable and intelligent because multilayer learning
approaches are inappropriate for dealing with time-series data due to the
higher misclassification rate and inherent computational complexity. To
address this, the study proposed the radial basis function network that learns
the temporal aspects from spectral data and makes use of additional
environmental statistics such as frequency, efficiency, energy, spectrum
allocation, distance, and duty-cycle time, which are considered environmental
data that may be used to fine-tune sensor performance. The scheme is simulated
with real-time parameters, and the results are quite promising in terms of
evaluation parameters.
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1 Introduction

Spectrum development and network system compatibility are
significant issues in realizing the complete vision and benefits for
future generations (Ali & He, 2019; Ali et al., 2020). Furthermore,
such policies may foster the development and competitiveness of
innovative spectrum techniques and services that may be useful in
energy management and environmental safety. A licensed spectrum
can temporarily be accessed by secondary users (SUs) using a
cognitive radio network, when there is no principal user. In
backward induction, each SU performs the task of sensing the
spectrum and conveying the details to the central controller. AI
has become essential for effective communication in recent years. 5G
standards are compatible with wireless equipment. Cognitive radio
(CR) is a type of sophisticated scientific communication, in which
the radio spectrum uses are managed (Devaraj et al., 2022).
Interference during spectrum sensing, detection, and
transmission requires the use of orthogonal frequency division
multiplexing (OFDM) based on the cognitive radio network co-
operative spectrum awareness resource allocation (CRN-CSS)
(Meena & Rajendran, 2022). Ultra-dense networks (UDNs)
provide high-throughput high-performance and user-centric
wireless access to 5G deployments. Cognitive Radio integrates
UDNs with legacy systems without allocating new airwaves,
which would be expensive. The research reflects the advantages
and disadvantages of the most widely known algorithm of this type,
energy detection (ED), its probability, and performance evaluation
(Ivanov et al., 2022). Co-operative communication in 5G networks is
a rapidly evolving field that will be vital for the efficiency of future
spectrums. Cognitive radio systems must recognize primary/
principal (licensed) users across a large spectrum with a specified
location and time. The consideration of user participation is
motivated by the notion that sharing power and computing with
adjacent nodes results in network energy resource savings
(Banumathi et al., 2022). Wireless applications encounter
spectrum overcrowding. Network obstruction causing call
dropouts is another worry. These issues must be resolved for 5G
and beyond to overcome spectrum overpopulation and networking.
Therefore, energy detection and efficiency prediction is being
determined (Eappen et al., 2022). Spectrum inadequacy causes
roll-out, planning, and execution challenges for 5G and beyond.
The growing number of wireless customers, traffic needs, poor
spectrum distribution, and co-existence issues causes this
spectrum deficit. A free wireless spectrum is essential. Using
cognitive radio’s spectrum-sensing functionality in-between the
sub-THz band range (0.1–1 THz) for beyond the 5G
communication networks, the open spectrum can be forecasted
and modeled. Therefore, energy detection, prediction, accuracy,
probability, and time detection are examined in this research
(Kansal et al., 2022). Wireless technology reduces spectrum
resources. The ability to detect and analyze signals over a broad
frequency range is an essential part of cognitive radio systems. So,
wideband spectrum sensing is a crucial, important, and essential
part of cognitive radio technology, allowing for dynamic spectrum
allocation and function properly. However, the energy detection and
allocation resource technique is performed to utilize the energy
resources (Ju et al., 2021). The remaining portions of this study are
arranged as follows: Section 2 presents the literature review. The

proposed methodology is described in Section 3. The findings and
discussion in Section 4 are followed by the conclusion in Section 5.

2 Literature review

In wireless channels, it is necessary to have accurate path loss
prediction models to achieve correct signal propagation and energy
detection. The deterministic and empirical methods utilized to
predict path loss did not produce the best possible outcomes.
Support vector regression and radial basis function (RBF) models
were evaluated to increase the precision of path loss predictions in
the environment (Mohanakurup et al., 2022). The accomplishment
of the visible light communication (VLC) system is severely
hindered because of the non-linearity that is caused by light-
emitting diodes (LEDs), which interferes with the regular
transmission and reception processes. A post-distorter for
orthogonal frequency-division multiplexing depends upon very
low power communication, which solves the problem that is
caused by the non-linearity of LEDs. To apply non-linearity
mitigations, the radial basis function interpolation, which is well-
known for being an outstanding approach for function
approximation, is being examined (Ojo et al., 2022). Light-
emitting diodes used in visible light communication systems are
the principal causative factors behind signal distortion due to their
intrinsic non-linear features. The polynomial method is used to
construct the post-distorter to mitigate the non-linear effect that is
caused by the LED to increase the reliability of the system. The non-
linear effect can also be mitigated with the use of radial basis
function interpolation, which possesses powerful processing
capabilities and high levels of solution accuracy (Zhang et al.,
2022). These systems use a wide range of optoelectronic
components, including photodiodes. LEDs’ non-linear features
impose constraints on the system’s performance. Meanwhile, the
high peak-to-average power ratio generated with the orthogonal
frequency-division multiplexing modulation worsens the non-linear
distortion, which is why it is desirable to mitigate the impacts of a
non-linear distortion. The authors purposed radial basis function
interpolation and employed a post-distortion technique combining
RBF with memory effect depression (MED), which effectively
suppresses the non-linear and memory effects of LEDs. Their
goal is to target the non-linear characteristics of LEDs, and to do
so, we employ radial basis function interpolation (Chen et al., 2022).
It is observed that the superconducting technology-based hardware
implementation of signal microprocessors could be useful for a
variety of specialized jobs, in which both performance and energy
efficiency are of the utmost importance. Within the scope of this
research, based on radial basis functions, we examine the essential
components of superconducting neural networks (RBF) (Schegolev
et al., 2022). Qureshi et al. (2014) presented amultiple relay selection
scheme for underlay CRN in CSI. In this regard, they utilized FRBs
and swarm intelligence to reduce the transmit power. The scheme
seemed promising in terms of energy efficiency, but its time
complexity was substantial. Therefore, we proposed a technique
for intelligently reducing the transmit power in underlay CRN and
multiple relay selection. The concept was inspired by the Artificial
Bee Colony (ABC) (Rahman et al., 2014). The scheme was efficient
in energy-saving but costly in terms of computational complexity.
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RBF neural networks are considered universal optimizing networks
and have been applied in the telecommunication field and other
areas, and are one of the successful options for deep learning
systems. In this regard, some of the most well-known algorithms
in the relevant body of research are extreme learning machines
(ELMs) and long short-term-based systems.

Algorithm RBF -Net (K, A, 0) Input:
Sequence of labeled training patterns Z = ((X1, Y1). . . (Xi, Yi))
Number of RBF centers K
Regularization constant ⁁
Number of iterations O
Initialize:
Run K-means clustering to find initial values for µK and
determine σ k, k = 1, K, as the distance between µK and the
closest µi. (I ≠ k).
Do for o= 1: O.
Compute optimal output weights w = (GT G + 2⁁/i)−1 GTY.
Compute gradients z

zuk E and z
zuk E as in and with optimal w

and form a gradient vector v

3 Proposed methodology

3.1 Algorithm overview

RBF networks are utilized in mathematical modeling. This
network activates with the radial basis function. The network
output is a linear combination of neuron parameters and input
RBFs. RBF networks can approximate functions, predict time series,
classify data, and control systems. Broomhead and Lowe, Royal
Signals and Radar Establishment researchers, initially formulated
them in 1988. Radial basis function networks follow the
conventional organizational format of three layers (input layer,
hidden layer with a non-linear RBF activation function, and
output layer with a linear function), where the input layer serves
as the basis for the network and the hidden layer serves as the actual
activation function. An acceptable representation for the input is a
vector of real values. This scalar nature of the network’s output may
be seen in the following equation, which relates input and output
vectors:

Estimate the conjugate direction Ā with the
Fletcher–Reeves–Polak–Ribiere CG method.

Perform a line search to find the minimizing step size ̂

direction Ā; in each evaluation of E recomputed the optimal
output weights w as in line 1.

Update σk and μk with Ā and ̂

Output: Optimized RBF net.

3.2 Proposed model

Figure 1 shows that the length of the packet shown the same as
that of all other packets and then data are transmitted. Following
that, spectrum sensing is performed again to examine the current
channel’s operational state. If there is still space available on the
channel, it will simultaneously transmit the second packet. This
process can be repeated until all packet transmissions have been

completed (provided that no arrival occurred during the
transmission time). Even if the presently used channel is empty,
the transmitter node will seek to switch to a different channel to
free up the bandwidth that is being used by the present channel.
This is referred to as PHO, which stands for "Proactive Hand Off.”
If the user has already been using the current channel before the
actual transmission, then a HO should be made in a reactive or
required manner as follows: the algorithm that we discussed is
displayed in this figure. For 5G communications, TDMA,
OFDMA, and CDMA are used to guarantee that no customers’
signals would interfere with one another. This suggested work
(CDMA) is enough to serve the requirements of the people who
utilize wireless networks due to the rapid expansion of mobile
devices. NOMA is gaining importance in 5G networks for multi-
access systems. Multiple users can share the same frequency
resources. There are two primary categories of domains: code
and power; both are fundamental to NOMA approaches, and both
will be covered in this article. In the previous section, we
established that the power domain will serve as the principal
focus of our investigation. In this configuration, many users can
share the same time and frequency of resources to complete their
respective data transfers. By superposing the signals of several
users, all of them may share the same transmission channels.
Subsequent interference cancellation, or SIC, is subsequently
carried out to decipher the signals that users are meant to
transmit and removes interference at the receiver end.

3.2.1 Dataset
This dataset includes over-the-air observations of legitimate radio

signals modulated using eleven unique modulations generated from
real-world radio broadcasts. This dataset was collected to compile this
information. According to the authors, the signals were producedwith
the help of a USRP B210, which was linked to a computer operating
GNURadio to accomplish this goal. It was crucial to employ the same
data sources and source code as before, when building the numerous
transmitters, as they had to be compatible with RadioML 2016.10A. It
is important to mention, to provide extra clarity, that earlier versions
of the RadioML dataset contained discordantly withAMmodulations.
As a result of this discrepancy, the RadioML dataset was updated to
correct future releases.

3.2.2 Network architecture
Radial basis function networks are typically multilayer networks

consisting of an input layer, a hidden layer employing a non-linear
RBF activation function, and a linear output layer. RBF network is
the abbreviated form of radial basis function network. It would be
feasible to depict the input modeled as a vector of real numbers, x∈
Rn. After that, the network’s output is a scalar function of the input
vector, φ:R̂n →R; it is given as follows:

φ x( ) � ∑
N

i�1aiP x − ci‖ ‖( ). (1)

To determine neuron I’s weight in the linear output neuron, we
use the following formula: N = number of neurons in the hidden
layer, Ci = neuron I’s center vector, and I = neuron I’s weight. Here,
we figure out how many neurons reside in the deepest part of the
network. The term “radial basis function” refers to the functions that
are radially symmetrical about a given vector and whose behavior is
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determined solely by the distance from a certain center vector. In its
most fundamental form, each hidden neuron receives input from all
the other hidden neurons. The Euclidean distance is generally
considered a standard, even though the Mahalanobis distance
[28] seems to perform better in pattern identification, and the
radial basis function is typically considered to be the norm
Gaussian function:

ρ x − ci‖ ‖( ) � exp βi x − ci‖ ‖2[ . (2)
Since Gaussian basis functions are constrained to the central

vector, changing the parameters of a single neuron has a minor
impact on the input values placed at the neuron’s periphery:

lim
x‖ ‖ ����������→∞

ρ x − ci‖ ‖( ) � 0. (3)

For a constrained region of Rn, RBF networks provide universal
approximations under modest restrictions about the activation
function’s form. This indicates that every continuous function on
a closed, limited set may be approximated arbitrarily well by an RBF
network with sufficiently hidden neurons.

3.2.3 Normalized architecture
Although RBF networks are often unnormalized, they may also

be normalized in the way that was previously explained. An example
of such a mapping is a normalized radial basis function:

φ( )X≝
∑N

i−1αiρ X − ci‖ ‖( )
∑N

i−1ρ X − ci‖ ‖( ) � ∑
N

i−1αiu X − ci‖ ‖( ), (4)

where

u X − ci‖ ‖( )≝ ρ x − ci‖ ‖( )
∑N

j−1 ρ X − ci‖ ‖( ). (5)

3.2.4 Training RBF
Generally, RBF networks are trained using pairs of input and

target values, X(t), Y(t), t-1. . .by a two-step algorithm

K W( )≝∑T

t−1Kt W( ), (6)
where

u X − ci‖ ‖( )≝ ρ x − ci‖ ‖( )
∑N

j−1 ρ X − ci‖ ‖( ). (7)

Selecting the Ci-centers of RBFs in the hidden layer is the initial
step, which may be accomplished in various ways; for instance, the
centers can be selected at random from a given set of samples, or
they can be established through the utilization of K-means
clustering. We have to take into account the fact that this phase
does not have any supervision. In the second stage, a linear model
with coefficient Wi is applied to the outputs of the hidden layer,

FIGURE 1
Proposed architecture for delay-sensitive image transmission in cognitive radio networks.
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while considering some objective function. A common example of
an objective function is the least square function, which is used in
regression analysis and function estimation:

Kt W( )≝ y t( ) − φ X t( ),W( )[ ]2. (8)
Here, we explicitly included the dependency on the weights

in the model. The precision of the fit can be improved by
selecting the appropriate weights so that the objective
function of least squares is minimized to its maximum. It is
necessary to maximize not just one but several different goals,
such as smoothness, in addition to accuracy. In such a scenario,
maximizing a regularized objective function would be beneficial,
such as the following:

H W( )≝K W( ) + λS W( ) � def∑T

t�1Ht W( ), (9)

FIGURE 2
Differences in variations can be seen in Ref. (A-C) Signals variable parameters differences.

TABLE 1 Mathematical equations of confusion metrics.

Sensitivity TP
TP+FN

Specificity TN
TN+FP

Accuracy TP+TN
TP+TN+FP+FN

Miss rate FN
FN+TP

Fall out FP
FP+TN

LR + TPR
FPR

LR – FNR
TNR

Precision TP
TP+FN

Negative predicted value TP
TP+FN
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where

S W( )≝∑T

t�1St W( ) (10)

and

Ht W( )≝Kt W( ) + λSt W( ). (11)

4 Result and discussion

4.1 Discussion

4.1.1 Confusion metrics expression
In the context of machine learning and, more specifically, the

problem of statistical classification, confusion matrices, also
known as error matrices, are used to evaluate the performance
of an algorithm, often a supervised learning one. Confusion
matrices are also known as error matrices (in unsupervised
learning, it is usually called a matching matrix, please see Ref.
Table 1). Either the first permutation, in which each row of the

matrix represents the instances that correspond to an actual class,
or the second, in which each column of the matrix represents the
examples that belong to a predicted class, can be used for the
inclusion of the error matrix. Named thus because it's easy to see
whether the system is confusing two categories and incorrectly
labeling one as the valid target.

Signal strength is an integer, whereas the other parameters are all
expressed as floating-point numbers. Parameter 3 can assume values
between 0 and 1, and the table has 1599 rows and 12 columns.
Parameter 5 has a maximum allowable value of 0.6. The range of
parameter 8 is quite narrow, from 0.9 to 1.004. Number 8 has the
smallest standard deviation. Classifications for its 0.000187 “signal
strength” are 3.5, 4.0, 5.0, 7.0, and 7.5. The mean, median, and
mode are almost overlapping or too close to each other, except in
parameter 7, and parameter 3 is trimodal and its signal strength is a
classification variable. All of them are positively skewed. The standard
deviation is the highest for parameter 7, i.e., 32.895324478299074. Class
5 has the highest count in “signal_strength.” Parameters 6 and 7 are
highly correlated with each other and vice versa, and they have
0 correlations with another parameter. Parameter 1 is positively
correlated with parameter 3 and parameter 8 and negatively
correlated with parameter 2 and parameter 9. Parameter 4 has a
very low correlation with other parameters. Parameter 4 has the
highest number of outliners, which is 155, since the high coefficient
value lies between ± 0.5 and ± 1. Parameter 1 is highly correlated with
parameter 3 and parameter 8. Parameters 6 and 7 are highly correlated,
but since the correlation is not too high near 0.8 and above, no decrease
in feature support is observed. Almost all parameters have mean,
median, and mode values that are too close together or overlap,
except for parameter 7. Parameter 3 is trimodal, and signal strength
is a categorical variable. They are all positively slanted in one direction
or another. Parameter 7 has the largest standard deviation, with a value
of −32.895324478299074. The highest count may be found in the
“signal strength” of class 5. The correlation between parameters 6 and
7 is substantial, and they have no association with any other parameters.
There is a positive correlation between parameters 1 and 3, and between
parameters 1 and 8, but a negative correlation between parameters
1 and 9. The correlation between parameter 4 and the rest of the
parameters is quite poor. The largest number of planners (total 155)
may be found in parameter 4. As a result, the optimal range for
coefficient values is 0.5–1. There is a strong relationship between
parameter 1 and both parameter 3 and parameter 8. While there is
a strong relationship between parameters 6 and 7, it is not strong

TABLE 2 Validation accuracy for the proposed algorithms.

Sr no. Number of iterations Validation accuracy

1 20 95

2 40 95.2

3 60 95.7

4 80 95.9

5 100 96.2

6 120 96.7

7 140 97.3

8 160 97.6

9 180 98.4

10 200 98.6

TABLE 3 Training accuracy for the proposed algorithms.

Sr no. Number of iterations Validation accuracy

1 20 95.3

2 40 95.4

3 60 95.8

4 80 95.9

5 100 96.2

6 120 96.8

7 140 97.6

8 160 98.9

9 180 98.8

10 200 99.3

TABLE 4 Comparative study of algorithm performance from 45 to 2,207 MHz
with a low signal-to-noise ratio (17 dBm–5 dBm) [9].

Sr no. Algorithm Accuracy (%)

1 Hybrid LSTM and ELM 0.984

2 Hybrid ANN-SS 0.925

3 Normal energy detector-SS 0.788

4 RF-SS 0.897

5 PALM-SS 0.937

6 LSTM-SS 0.969

7 Proposed RBFNs 99.3
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enough to justify the elimination of feature support for them. The
differences in variables are plotted in Figures 2A, B, C, respectively.

4.2 Results and analysis

Seventy percent of the data is used for training the proposed
model, while the remaining thirty percent is used for validation. The
data are fed into the model in chunks, and the output functions are
computed. Table 2, Table 3, and Table 4 provide the evaluation and
validation results for the proposed model’s training and validation
accuracies, respectively, while Figures 1, 3 provide graphical
explanations of these results. The accuracy of both training and
validation phases improves with an increase in iterations. Tables 3

and 4 show that the RBFNmodel selected has successfully dealt with
the overfitting issue and is, therefore, well-suited for achieving the
sought-after superior classification performance. When compared
to six other algorithms, the RBFN’s 99.3 percent maximum
performance is far higher than that of a normal energy detector,
which achieves just 78 percent. Therefore, all algorithms may agree
that the RBFN performance is satisfactory.

4.3 Comparison of the proposed algorithm

Table 3 and Figure 5 analysis of existing algorithms with our
proposed work at 45 to 2207 MHz and low to high SNR as −17 dBm
to 5 dBm (decibel milliwatts). In Figures 4A, B, the training and

FIGURE 3
(A) Signal parameter and specific output. (B) Signal parameter and specific output. (C) Signal parameter and specific output.
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validation of proposed algorithms show better accuracy than
existing ones. Figure 3 shows the graphical representation of the
analyzed algorithm with different bars.

5 Conclusion and future work

5G spectrum sensing can improve clean energy transition
and load capacity factors by enhancing the environmental
sustainability assessment through advanced statistical
methods. It can allow for digitization of clean energy
infrastructure and facilitate better decision-making processes
that take into account the environmental impacts while
optimizing energy use. Additionally, 5G spectrum sensing
can help identify and analyze data related to the energy
sources, their usage, and the associated environmental
effects, which can provide insights that can be used to
determine the best strategies for transitioning to clean energy
sources and to increase the efficiency of energy networks and
reduce the amount of energy used. Some of the reasons for
choosing the RBFN are because it can be trained to classify
different types of signals more accurately, such as
differentiating between narrowband and wideband signals
and detecting signal modulation schemes, noise reduction,
and interference in the received signal, which can improve
the accuracy of spectrum sensing. This can be carried out by
training the network to recognize patterns in the received signal
and filter out noise and interference. It can also be optimized to
make faster decisions about the presence of primary users in the
spectrum, which is important for real-time applications in 5G
networks. Therefore, it can be designed to adapt to changes in
the environment, such as variations in signal strength or the
presence of other wireless devices by training the network on
different scenarios and using adaptive learning algorithms. In
this paper, we compared it to six other algorithms and found
that RBFN’s 99.3 percent maximum performance is far higher
than that of a normal energy detector, which achieves just
78 percent. Therefore, all algorithms may agree that the
RBFN performance provides satisfactory results, which are
better than those of the previous studies in the literature.
Additionally, the significant part of WSNs in spectrum
sensing service transfer is studied, in which the RBFN
performance was optimal. In addition, we also discussed the
RBFN and its perspectives of frequency, efficiency, energy, and
spectrum allocation. After doing a comprehensive analysis of
the state of the art at the moment, we have identified several
difficulties, some of which are quite remarkable, that call for
more research.
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FIGURE 5
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