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In light of the fact that water quality has been threatened by human activities,
apportionments of potential pollution sources are essential for water pollution
control. Multivariate methods were used to assess the water quality in the Yuqiao
Reservoir and its surrounding rivers in northern China to identify potential
pollution sources and quantify their apportionment. Fifteen variables at 10 sites
were surveyed monthly in 2015–2016. The quality at this location was acceptable
according to the water quality index (WQI), except for special parameters
including chemical oxygen demand (COD), total nitrogen (TN), total
phosphorus (TP), and chlorophyll (chlα). Cluster analysis (CA) grouped these
datasets into three seasonal groups, July–September, December–March, and
the remaining months. Principal component analysis/factor analysis (PCA/FA)
identified seven factors that accounted for 79.7%–86.4% of the total variance,
and the main sources included cities, rural districts, industries, weather, fertilizers,
upstream areas, and vehicles. Absolute principal component scores and multiple
linear regression (APCS–MLR) modeling results show that the hierarchical
contribution of main pollution sources was ranked in the following order:
upstream (26.6%) > urban district pollution source (21.5%) > vehicle emission
pollution source (10.9%) in the flood season, upstream (22.3%) > rural district
pollution (19.8%) > fertilizer erosion (15.8%) in the normal season, and upstream
(26.4%) > urban district pollution (19.0%) > fertilizer erosion (18.8%) in the dry
season. Sources from upstream and urban districts explained themost proportion.
Thematrix was also subjected to positivematrix factorization (PMF). A comparison
of PMF and APCS–MLR results showed significant differences in the contribution
of potential pollution sources. The APCS–MLR model performed better, as
evidenced by a more robust R2 test. Measures should be discussed and
implemented in managing upstream areas, sewage treatment facilities, and
fertilizer and industrial application.
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1 Introduction

Industrialization and urbanization have impacted human life
over the past few centuries; however, these processes have also
caused great water environmental catastrophes during this time.
Overexploitation coupled with surface water pollution has
threatened the security of the potable water supply (Meng et al.,
2018; Fu et al., 2020). Water pollution poses a significant threat to
public health, and its causes can be traced to domestic wastewater,
industrial, and agricultural wastewater (Qin et al., 2020). A
prerequisite for the control of domestic water pollution is to
identify the source of pollution.

Water management poses a great challenge in dealing with
pollutant reduction, especially in northern China. Only 34% of
the surface water at the Haihe River basin, where the Yuqiao
Reservoir is located, met the requirements for drinking water in
2015 (Ministry of Water Resources of the People’s Republic of
China, 2015). Therefore, it is helpful for managers to use simple
and widely used techniques to study seasonal and spatial
variations and the apportionment of pollution sources to
assess water quality. The multivariate statistical methods, as
an alternative technique, accomplish a complete assessment of
water quality and environmental status of the study area by using
the multivariate datasets (Ustaoglu and Tepe, 2019). The major
statistical techniques, such as cluster analysis (CA), discriminant
analysis (DA), principal component analysis (PCA), factor
analysis (FA), and multivariate linear regression (MLR), have
been applied to assess surface water quality in past decades, and
there are recent papers demonstrating the multivariate statistics
can provide source estimation of any contaminant in surface
water and other ecological subjects (Vega et al., 1998; Singh et al.,
2005; Zhou et al., 2007; Aydin et al., 2021; Cuce et al., 2022;
Topaldemir et al., 2022). These helped to identify the pollution
sources in the surface water. In addition, absolute principal
component score (APCS)–MLR and positive matrix
factorization (PMF) models, which have evaluated
contributions of potential pollution sources, have been widely
used in the apportionment of air pollution and riverine pollution
sources (Wang et al., 2013; Gholizadeh Haji et al., 2016;Liu et al.,
2019a; Chen et al., 2019; Zhang et al., 2020; Su et al., 2021),
suggesting the reliability and feasibility of using receptor models
in apportionment of water pollution sources.

The Yuqiao Reservoir is a part of the Haihe basin surface
water system in northern China. The local climate is
characterized by warm and rainy summers, while cold and dry
winters cause the local rivers to freeze and have minimal flow in
winter. The reservoir is surrounded by farmlands, villages, towns,
and industrial zones, resulting in serious nitrate pollution and a
massive generation of undesirable water bodies littered with
fungus and waterweeds in their eutrophic states (Zhao et al.,
2007). It is essential for water contamination control measures to
identify the element and source of water pollution sources here,
especially regarding the control of pollution from nitrate and
other nutrients. Previous studies on the Yuqiao Reservoir mainly
focused on the composition of nitrogen in the shallow ground
water, the analysis of the water quality status in 1990–2004,
diffuse pollution, the source and migration factor of non-point
source phosphorus, and forecasting water quality conditions in

the future using a BP neural network (Zhang et al., 2003; Wang
et al., 2004; Zhao et al., 2007; Lu and Yin, 2008; Xu et al., 2015).
To sum up, the apportionment of pollution sources in a specific
set of pollutants or simply assessing the condition in a set of
pollutants was conducted in previous studies in the gathering
area. However, there is a lack of pollution source analysis
concerning mixing the elements of nutrients, salinity, and
heavy metals.

The objective of this study is to conduct comprehensive research
on the temporal changes in water quality and sources of pollutants in
the Yuqiao Reservoir by using multivariate statistical methods.
Specifically, this is accomplished by analyzing datasets within
which 15 water quality parameters are obtained from 10 sites
during a two-year monitoring period (2015–2016) and then by
applying a Brown water quality index (WQI), CA, PCA/FA, and
APCS–MLR technologies. In this way, this study can achieve 1) the
analysis of the spatio-temporal patterns and assessment of the water
quality in the Yuqiao Reservoir and the surrounding rivers and 2)
the apportionment of the identified pollution source contributions
to each of the water quality variables. Insights from our study have
potential not only to provide scientific guidance for pollution
liability and the domestic development of control initiatives to
weaken pollution growth in the Yuqiao Reservoir, but also to
provide a reference for the analysis of pollution sources in other
typical watersheds. By applying the findings in this study,
governments could take more flexible and targeted measures,
such as treating eutrophic sewage in villages and controlling
vehicle emissions.

2 Methodology

2.1 Study area and datasets

The Yuqiao Reservoir was located in the north China (NC),
covering from 40.01° to 40.08° N, and 117.43° to 117.65° E. The
reservoir covers an area of 86.8 km2 and controls a basin area of
2,060 km2. It was built in 1960s and mainly for the purpose of flood
control and water supply. The Yuqiao Reservoir plays a great role in
ensuring the sustainable development of Tianjin’s national economy
and people’s living water (Ministry of Finance of the People’s
Republic of China, 2021; Enorth.com, 2022). The water in the
reservoir mostly comes from the Sha and the Lin rivers. The Sha
River feeds the reservoir from the east, while the Li River flows into
the Sha River upstream of the reservoir. This reservoir restored the
water in the Lin River. The Zhou River is downstream of the
reservoir, and its flow is controlled by sluices, which lie across
the river to the west of the reservoir. The annual mean temperature
is between 14.0°C and 14.1°C, and 612.95 mm of precipitation fell
annually in 2015–2016, according to Tianjin Bureau of Statistics
(Wu and Peng, 2016). The local freshwater can freeze in December,
January, and February, as the daily average air temperature dips
below 0°C (National Meteorological Center of CMA 1981). The
image of land-use data in 2013 was uploaded to the ArcMap
10.2 software. It shows that the reservoir is surrounded by large
areas of farmland (53.43%), villages (12.16%), and woodland
(14.91%). Industrial areas (0.71%) and towns (0.70%) were
scattered in the west (Figure 1).
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Based on the hydrologic river features and previous results,
10 sampling sites around the Yuqiao Reservoir were selected.
Four sites were upstream, three were at the reservoir, and the
other two were downstream. Fifteen surface water quality
parameters were chosen, including pH, water temperature
(WT), dissolved oxygen (DO), chemical oxygen demand
(COD), and electrical conductance (EC). Organic matters
included total nitrogen (TN), total phosphorus (TP), ammonia
nitrogen (NH4

+–N), nitrate, and nitrite. Also analyzed were three
kinds of heavy-metal elements (Cu, As, and Hg), a biological
parameter (chlorophyll, chlα), and the salt-based ion chloride
(Cl−). In all, there were 308 data numbers. A HQ400 portable
machine was used to attain the present pH, DO, and WT of the
water. The measurement of nitrogen matter was conducted by the
AutoAnalyzer 3, the measurement of chlα was conducted by the
fluorescence of Trilogy, Turner Designs, and that of phosphorus
was obtained with the help of molybdenum–antimony–scandium
spectrophotometry. A titration method using silver nitrate was
used to confirm the value of Cl−, and the content of heavy-metal
elements used the spectrometer of ICP-AES (Yuksel and Arica,
2018), with a recovery percentage of 94.6%–101.2% for the
certified reference material (CRM) of three heavy-metal
elements in the text, and the LOD values of Cu, As, and Hg
were 0.165, 0.025, and 0.005 μg/L, respectively. Analyses were
carried out following the instructions in the Technical
Specifications Requirements for Monitoring of Surface Water
and Waste Water (Qi, 2002).

2.2 Water quality index

It is essential to understand the influences affecting the
spatio-temporal variability in water quality to determine the
quality of surface water and develop improvement strategies
(Ustaoglu et al., 2021). A comprehensive value was needed as
the process of the water quality assessment in the Yuqiao

Reservoir was conducted. The Brown water quality index is a
technique for evaluating water quality by grade and a common
way to obtain the combined effect of each water quality
parameter (Brown et al., 1972). Other criteria, based on the
WQI, have been used to evaluate water quality in the
United States and Canada. The parameters were ranked
according to their weight value (AW), with values 1 and 5
(Supplementary Table S1), which were determined by their
effect on water quality and importance for human health
(Chai et al., 2021; Ustaoglu et al., 2020). Then, the relative
weight (RW) was calculated by the ratio of AW to the sum of
all AWs (Eq. 1). The quality rating (Qi) was calculated by dividing
the measured parameters (Ci) by the drinking water values, as
permitted by the national surface water quality standard (State
Environmental Protection Administration, 2002) type III, or the
standard for drinking water sanitation (World Health
Organization, 2011, Supplementary Table S2). The calculation
of DO by Qi is governed by Eq. 3, or Eq. 2 was used.

RW � AW

∑AW, (1)

Qi � Ci

Si
( ) × 100, (2)

Qi � Si
Ci

( ) × 100, (3)

where Si represents the standard value of a specific parameter and Ci

represents its observed value. Si in Cl− and nitrite follow the rules of
WHO 2011 (World Health Organization, 2011), and the other
parameters follow the rules of the China water quality standard
(State Environmental Protection Administration, 2002). The sub-
indices (SIi) for this parameter were calculated by multiplying the
RW and Qi (Eq. 4). Finally, theWQIs are calculated by adding the sub-
indices from different parameters (Eq. 5). The threshold water quality
condition is given byWQI≤ 100, whichwas a requirement for the water
to meet the standards.

FIGURE 1
Land-use data image in the Yuqiao Reservoir.
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SIi � RW × Qi, (4)
WQI � ∑ SIi. (5)

2.3 Cluster analysis

Because the original datasets were compiled monthly, it was
necessary to cluster them to form seasons. Cluster analysis, as an
unsupervised pattern recognition technique, is a common way to
divide data into separate parts. CA classifies objects (cases) into
classes (clusters/groups). Each object is analogous to the others in
the cluster but different from those in other classes. The most
similar observations are first grouped, and these initial groups are
amalgamated based on their similarities (Kamble and Vijay. 2011).
Eventually, as the similarity decreases, all subgroups are merged
into a single cluster (Abbas et al., 2008). Hierarchical clustering
analysis (HCA) is the most common approach to classify and
analyze watershed water quality. It starts with the most similar pair
of objects and forms higher clusters in a step-by-step fashion

(Wang et al., 2013). The similarity of two samples is usually
described by the Euclidean distance between two points (x) and
(y) in p-dimensional space, which is given by:

d xy( ) � ∑p

j�1 xj − yj( )2[ ]1/2, (6)

where d(xy) represents the Euclidean distance and j defines each
parameter (Rafighdoust et al., 2016). HCA was performed on the
normalized dataset using Ward’s method (Qin et al., 2020). Ward’s
method uses an analysis of variance approach to evaluate the
distances between clusters, attempting to minimize the sum of
squares between any two clusters that can be formed at each
step. In this research, we use hierarchical agglomerative CA to
divide datasets into three parts: the dry season (DS), the normal
season (NS), and the flood season (FS). The data were first grouped
into months. The linear correlations between WT and DO (−0.579),
EC (−0.523) were significant, and seasonal changes in WT, DO, and
EC were notable. There were only three parameters (WT, DO, and
EC) that were used in the HCA process, which generated a
dendrogram (Supplementary Figure S1), essentially grouping

FIGURE 2
The Box plots of DO, EC, WT, and WQI in different seasons (the acceptable condition is DO ≥ 5 mg/L).
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12 months into three clusters with significant differences. The
seasonally changing parameters were used when clustering,
including WT, DO, and EC, which proved to be more reasonable
in their temporal pattern of water quality in this watershed and
deemed suitable for other studies of water quality classification
(Wang et al., 2013; Qin et al., 2020). According to the results of
CA, the average levels of WT were 27.45°C, 17.48°C, and 4.54°C in
the FS, the NS, and the DS, respectively. Meanwhile, the average DO
for the FS, NS, and DS was 8.78, 9.56, and 13.08 mg/L, respectively.
The average values of EC in the FS, NS, and DS were 0.57, 0.63, and
0.74 m/cm, respectively (Figure 2).

2.4 Principal component analysis and factor
analysis

Principal component analysis (PCA) is a statistical method that
uses the idea of dimensionality reduction. Under the premise of
minimizing loss, multiple indexes are transformed into several
comprehensive indexes composed of a linear combination of
original variables, and these indexes are termed components.

Factor analysis (FA) is a method that captures common factors
from variable groups and represents the original parameters using a
linear combination of potential hypothetical and random influence
variables. This process requires factor rotation and the rotated
common factors are defined as varifactors (VFs). Different
extraction results of VFs are caused by different rotation
methods of extracted factors. The FA can be mathematically
expressed as:

zij � af1f1i + af2f2i + af3f3i + . . . + afmfmi + efi, (7)
where “z” is the measured variable, “a” is the factor loading, “f” is the
factor score, “e” is the residual term accounting for errors or other
source of variation, “i” is the sample number, and “m” is the total
number of factors (Fraga et al., 2020).

The difference between PCA/FA and the origin PCA comes
from rotating the axis defined by PCA (Shrestha et al., 2008; Soltani
et al., 2020). The main purpose of FA is to reduce the contribution of
less significant variables to simplify even more of the data structure
coming from PCA (Fraga et al., 2020). This study used the varimax
rotation method to analyze the PCA/FA. With the help of PCA/FA,
the pollution sources in different seasons, represented by VFs, were
extracted.

2.5 Source apportionment using the
APCS–MLR receptor model

APCS–MLR is a numerical method used for allocating the
contributions of each water pollution sources after isolating them
using PCA/FA. It combines the multiple linear regression model and
absolute principal component scores. The x variables of this model
are the absolute factor scores, and the y variables are the
concentrations of pollutants. This approach converts the APCS
analysis factor score for the contribution of each pollution source
according to the regression index provided by the APCS–MLR.
Regression coefficients were obtained to estimate the contribution

rate of each principal component to water quality variables. A
detailed description of the receptor model was given by Thurston
and Spengler (1985). The source contributions to the whole
pollutant’s concentration (Cj) can be expressed as follows:

Cj� r0( )j +∑n

k�1rjk × APCSk, (8)

where (r0)j is a constant term of multiple regressions for pollutant j;
rjk is the coefficient of multiple regression of source k to j; APCSk is
the scaled value of the rotated k for the considered sample; and
rjk×APCSk represents the contribution of source k to Cj, noting that
the mean of the term rjk × APCSk on all monitored samples is the
average contribution of the sources and that the ratio of the mean
value of the rjk×APCSk to Cj represents the contribution to pollutant
j. This multivariate receptor model, constructed with SPSS software,
used the absolute factor scores as independent variables, while the
chemical concentrations as the dependent variables (Li et al., 2011).

As the negative influence of factors on water quality variables exists,
negative contributions are obtained for some pollution sources and, in
some cases, it leads to contributions that are greater than 100% for some
other positive factors, which usually cannot occur when we allot the
contributions for each pollution source. Therefore, we choose to convert
all negative values to positive contributions by taking their absolute
value (Zhang et al., 2020).

2.6 Source apportionment using the PMF
model

Positive matrix factorization, which consists of factor
contributions and factor profiles, is another type of pollution
source analysis and contribution allocation model used in this
study. Let us assume the dataset of parameters has n samples
and m chemical species. It shapes a matrix X of dimensions n by
m, within which its rows are indexed by i, and its columns are
indexed by j. Then, the model is used to find the chemical mass
balance between measured species concentrations, and factor
profiles are given by Eq. 9:

Xij � ∑p

k�1gikfkj + eij � cij + eij, (9)

where eij is the residual for each sample/species, and cij is the
modeled solution of xij (Brown et al., 2015). The gk columns
were donated to the factor contribution matrix G, and the fk
rows were donated to the factor profile matrix F.

Last, the coefficient of determination (R2) is used when we
compare the results of different models. R2 is calculated by
subtracting the ratio of the sum of squares of the difference
between the predicted value and the observed value from 1. The
modeling result is considered satisfactory if R2 > 0.5. The closer the
R2 gets to 1, the better the modeling result is (Liu et al., 2020).

3 Results and discussion

3.1 Water quality assessment

The flood season included July, August, and September, which
closely corresponded to the period of high water temperature and
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low DO and EC. The months of December, January, February, and
March made up the dry season, which was the season opposite to of
FS. The normal season included the remaining time, and it
represented the interim months between the two seasons that
were defined previously. It was shown that the average WQI
values in the FS, NS, and DS were 69.31, 62.73, and 98.19,
respectively. These values indicate that the water quality here was
satisfactory. The best water quality occurred during the NS, and the
worst was experienced in the DS (Supplementary Table S3). It was
evident that the rate at which WQI >100 occurred was higher in the
DS than that in the FS and NS. The coefficient values (CVs) of WQI
were less than 100 for all seasons, and it was assumed that the
conditions at different sites were the same as those in a definite
season.

The seasonal change of water quality parameters in the Yuqiao
Reservoir is shown in Table 1. Basically, the three seasons usually
attained similar levels of the pH value (7.65–8.99), Cl− (39–49 mg/L),
and heavy metallic matters (Cu: 0.5–5 μg/L, As: 0.15–4.8 μg/L, Hg:
0.02–0.1 μg/L). These were suitable according to standards and had a
low value of Qi (mostly much lower than 50, State Environmental
Protection Administration. 2002a; World Health Organization,
2011). The nitrogen compounds such as NH4

+–N
(0.043–0.853 mg/L), nitrate (0.04–12.1 mg/L), and nitrite
(0.0015–0.373 mg/L) reached the demand of standards in all
seasons, although the concentrations in the DS were generally
25%–130% higher than those in the other seasons. Box plots
showed that the COD, TP, and chlα in the FS were higher than
those in the other two seasons and exceeded the demand of the water
quality standard. The range of COD, TP, and chlα in the FS was
much higher than that in the other two seasons (Supplementary
Figure S2). A large proportion of observed TN values were higher
than the demand of the water standard (1 mg/L). The Qi values for
TN were much higher than 100 sometimes.

The standard deviations suffered from the problem of having
different dimensions for different parameters. To resolve this issue,
the CV was introduced. If the CV > 100%, the dataset had a large
dispersion. The CVs of TN, NH4

+–N, nitrate, nitrite, and chlα
were >100% in each season, meaning that the nitrogen matters
were highly diverse in different locations of the watershed. The
remainder of the parameters had acceptable CVs. The problem was
that some organic and biological matters had increased above an
acceptable level.

TABLE 1 Temporal changes of the physicochemical parameters in the study
area.

Period Parameter N Mean Min Max CV (%)

Flood WT (°C) 117 27.45 17 34 12.8

pH 117 8.66 7.28 9.87 6

DO (mg/L) 117 8.78 3.2 14.7 21.6

COD (mg/L) 117 28 6 167 69.2

NH4+–N (mg/L) 117 0.28 0.01 3.83 172.3

TP (mg/L) 52 0.17 0.01 0.53 78.3

Season TN (mg/L) 117 3.33 0.46 23.4 116.5

Cu (μg/L) 117 0.9 0.5 6 109.8

As (μg/L) 117 2.85 0.15 9.6 78.4

Hg (μg/L) 117 0.04 0.02 0.1 70.4

Cl− (mg/L) 117 42.5 5 106 27.6

Nitrate (mg/L) 117 2.19 0.01 22.5 158.5

Nitrite (mg/L) 89 0.09 0 0.69 171.8

Chlα (μg/L) 97 53.8 1.8 952 184.1

EC (mS/cm) 117 0.57 0.46 0.96 16.7

Normal WT (°C) 143 17.48 7.1 26.7 27.2

pH 143 8.4 7.43 9.25 4.8

DO (mg/L) 143 9.56 5.83 14.1 14.5

COD (mg/L) 143 17 6 28 26

NH4+–N (mg/L) 143 0.21 0.03 1 91.5

TP (mg/L) 50 0.13 0.01 0.56 82.1

Season TN (mg/L) 143 3.83 0.38 41.9 139.1

Cu (μg/L) 143 1.3 0.5 13 144.2

As (μg/L) 143 2.02 0.11 4.7 54

Hg (μg/L) 143 0.04 0.02 0.1 60.7

Cl− (mg/L) 141 42.9 17 83 22.3

Nitrate (mg/L) 143 2.86 0.04 30.2 150.8

Nitrite (mg/L) 141 0.08 0 0.98 153.5

Chlα (μg/L) 135 16.65 1.1 181 117.8

EC (mS/cm) 137 0.63 0.52 0.92 13

Dry WT (°C) 49 4.54 0.2 7.8 36.1

pH 49 8.24 7.3 8.99 4.8

DO (mg/L) 49 13.08 11.29 24.1 16.8

COD (mg/L) 49 13 3 20 41

NH4+–N (mg/L) 49 0.53 0.01 3.57 132.7

TP (mg/L) 39 0.21 0.02 1.18 116.8

Season TN (mg/L) 49 7.86 0.94 26.9 88.8

Cu (μg/L) 49 3.19 0.5 25 233.2

(Continued in next column)

TABLE 1 (Continued) Temporal changes of the physicochemical parameters in
the study area.

Period Parameter N Mean Min Max CV (%)

As (μg/L) 49 1.39 0.15 2.8 58.4

Hg (μg/L) 49 0.04 0.02 0.09 65.9

Cl− (mg/L) 49 46 29 90 30.2

Nitrate (mg/L) 49 5.82 0.36 24.4 105.7

Nitrite (mg/L) 49 0.1 0 0.93 175.3

Chlα (μg/L) 49 20.51 1.03 179 169.3

EC (mS/cm) 49 0.74 0.51 0.99 15.9
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It was shown that the average values ofWT in the upstream area,
at the reservoir, and in the downstream area were 17.32, 20.73, and
19.79°C, respectively. The average levels of DO were 10.27, 9.41, and
9.97 mg/L, respectively. Meanwhile, the average EC values for these
locations were 0.7, 0.57, and 0.6 m/cm, respectively. The values of
COD in the reservoir and downstream had a range of 16.2–28.3 mg/
L, which were similar; the upstream COD ranged from 9.4 to
16.8 mg/L. About 1 mg/L of TN was recorded both at the
reservoir and in the downstream area, which was different from
the upstream area, which had a range of 4.26–11.9 mg/L for TN.
Therefore, the TN Qi values at the upstream area were 400–1,000,
which were higher than those in the other places. The sub-indices at
the upstream area were 20–60, which occupied a relatively large
proportion of the WQI scores. There were no data for TP at the
reservoir, and the TP range was broader in the upstream compared
to the downstream areas. The concentrations of Hg were almost safe
in the watershed (0.02–0.1 μg/L). The water body of the reservoir
had a higher chlα than the rivers connected with it. The upstream
area had a wider range (35–57 mg/L) of Cl− than the other places
(40–43 mg/L) (Supplementary Figure S3). The CVs of NH4

+–N, TP,
Cu, and chlα in the upstream area were >100%, and the values of Cu,
nitrate, nitrite, and chlα both at the reservoir and in the downstream
were >100% (Table 2). In summary, it was significant that the water
condition of the downstream was closer to the water body of the
reservoir.

To conclude, the WQI showed that the water quality in this
watershed was normal in general, but the content of COD, TN, and
chlα was in a terrible state. Most parameters were time independent,
except for the three (WT, DO, and EC) used for clustering in
different seasons. The influence of the Yuqiao Reservoir caused
the downstream area to have a similar content of surface water
elements.

3.2 Pollution source identification using
PCA/FA

The datasets that were suitable for the approach of PCA/FA
should have the necessity of adjusting three guidelines: >0.5 for the
KMO quantity, >100 for chi-square, and <0.05 for the significance
criteria. The KMO quantities for the FS, NS, and DS were 0.603,
0.593, and 0.579, respectively. The chi-square values of the FS, NS,

TABLE 2 Temporal changes of the physicochemical parameters in the study
area.

Period Parameter N Mean Min Max CV (%)

Upstream WT (°C) 120 17.32 2 34 53.1

pH 120 8.25 7.28 9.25 5.4

DO (mg/L) 120 10.27 3.2 14.7 21.6

COD (mg/L) 120 13.54 2.5 45.6 44.4

NH4+–N (mg/L) 120 0.48 0.01 3.83 134.9

TP (mg/L) 120 0.18 0.01 1.18 100.4

TN (mg/L) 120 8.89 0.92 41.9 69

Cu (μg/L) 120 1.9 0.5 25 235.8

As (μg/L) 120 1.33 0.11 4.7 78.2

Hg (μg/L) 120 0.04 0.02 0.1 33.8

Cl− (mg/L) 118 45.7 5 106 38.7

Nitrate (mg/L) 120 6.86 0.06 30.2 78.2

Nitrite (mg/L) 103 0.18 0 0.93 99.5

Chlα (μg/L) 101 21 1.03 181 134

EC (mS/cm) 120 0.7 0.46 0.99 17.3

Reservoir WT (°C) 128 20.73 3.3 31.6 38.1

pH 128 8.61 7.43 9.87 5

DO (mg/L) 128 9.41 5.83 14.4 14.4

COD (mg/L) 128 23.9 13.6 97.4 47.5

NH4+–N (mg/L) 128 0.16 0.03 0.7 91.5

TP (mg/L) 0

TN (mg/L) 128 1.4 0.38 12.3 91.3

Cu (μg/L) 128 0.91 0.5 5 103.2

As (μg/L) 128 3.03 0.15 9.6 57.2

Hg (μg/L) 128 0.04 0.02 0.1 64.7

Cl− (mg/L) 128 41.8 37 51 4.8

Nitrate (mg/L) 128 0.72 0.01 4.89 105.7

Nitrite (mg/L) 124 0.03 0 0.37 183.2

Chlα (μg/L) 124 31.42 1.1 262 115.3

EC (mS/cm) 124 0.57 0.49 0.7 11.2

Downstream WT (°C) 60 19.49 1.7 33.4 47.9

pH 60 8.64 7.76 9.75 4.9

DO (mg/L) 60 9.97 3.9 14.06 16.8

COD (mg/L) 60 26.2 13.6 167 83.2

NH4+–N (mg/L) 60 0.17 0.01 0.53 75.1

TP (mg/L) 22 0.13 0.03 0.53 91.4

TN (mg/L) 60 1.36 0.54 4.96 68.7

Cu (μg/L) 60 1.7 0.5 25 226.7

(Continued in next column)

TABLE 2 (Continued) Temporal changes of the physicochemical parameters in
the study area.

Period Parameter N Mean Min Max CV (%)

As (μg/L) 60 2.43 0.15 7.6 69.7

Hg (μg/L) 60 0.04 0.02 0.09 59.7

Cl− (mg/L) 60 41.5 36 47.7 5.9

Nitrate (mg/L) 60 0.67 0.01 4.1 113

Nitrite (mg/L) 53 0.04 0 0.98 333.3

Chlα (μg/L) 57 43.51 1.41 952 287.3

EC (mS/cm) 60 0.6 0.48 0.92 13.4
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and DS were 238.267, 321.518, and 331.56, respectively. The
statistical significances of the FS, NS, and the DS were all 0.000.
All of the datasets were suitable for performing pollution source
analysis.

A total of 15 parameters were used to assist in source
identification. Six VFs were extracted, having eigenvalues >1 in
FS, NS, and DS. The absolute factor loading values are
between −1 and 1. Negative numbers represent negative
correlations, and the closer the absolute value is to 1, the greater
the correlation between the factor and the parameter. The terms
“strong,” “moderate,” and “weak” loadings were used for describing
factor loadings with absolute factor-loading values > 0.75, 0.75–0.5,
and 0.5–0.3, respectively (Su et al., 2011; Yang et al., 2013). Notably,
the six factors only explain about 78.2% of the total variance in the
FS, 73.5% in the NS, and 81.2% in the DS, which is relatively low. To
bolster these values, we added an additional VF representative of the
largest portion of the remaining part. In the end, three sets of models
had seven factors, which explained about 84.4% of the total variance
in the FS, 79.7% in the NS, and 86.4% in the DS. Supplementary
Tables S4, S6 show the VFs that were initially extracted and the
modified results.

In the flood season, VF1 showed strong positive loadings on TN,
nitrate, and nitrite, while moderate negative loadings were evident
for pH and As. This VF explained 21.5% of the total variance,
implying that this type of pollution had mixed types of organic and
metallic matter. Previous studies have indicated that the emission of
domestic sewage might cause a variety of organic and metallic
components to increase in the surface water (Yang et al., 2013;
Qin et al., 2020). As this VF had accounted for the largest
proportion, and the land-use type around the reservoir was that
of towns and villages, VF1 was interpreted as the rural domestic
pollution source. VF2 showed strong positive loadings on Cl− and
EC and moderate positive loadings on NH4

+–N, which explained
14.0% of the total variance. Given that the concentration of Cl− and
EC in this reservoir was at the level expected of freshwater, this

kind of inorganic salt ion might come from the weathering and
deposition of rocks, which was imported from the inflow of natural
upstream bodies of water. Above all, VF2 was defined as the
upstream water source. VF3 explained 12.6% of the total
variance. It showed strong positive loadings on COD and chlα,
which is representative of the nutrients in the water. The rural
domestic pollution source had been defined, so we defined VF3 as
the urban domestic pollution source. VF4 explained 12.4% of the
total variance, which showed strong positive loadings in DO,
moderate positive loadings in pH, and moderate negative
loadings in NH4

+–N. This component represents another kind of
organic pollution whose representative pollutant was NH4

+–N.
Ammonia nitrogen, as an ingredient, was commonly found in
sewage or fertilizer effluent in this watershed (Xu et al., 2015;
Gholizadeh Haji et al., 2016). We named the VF4 the fertilizer
application pollution source. VF5 showed strong positive
loadings on WT, with moderate negative loadings on TP. This
VF explains 9.0% of the total variance. The change in weather was a
key factor governing the WT. When rain fell, the cooling of the
atmosphere and the injection of rain caused the water temperature
to fall and caused the runoff of the arable land to increase, which was
rich in phosphorus. Therefore, VF5 was defined as the
seasonal factor influence source. VF6 showed strong positive
loadings in Hg and close to moderate positive loadings on As,
which explained 8.1% of the total variance. This is a typical type of
heavy-metal pollution usually associated with industrial emissions
in aquatic ecosystems (Liu et al., 2019b). Hence, the industrial
pollution source was defined for the FS. Last, VF7 showed strong
positive loadings only on Cu, which explained 6.8% of the total
variance. As Cu is often associated with vehicle exhaust and broken
cars (Yang et al., 2013), VF7 was defined as the vehicle exhaust
emission pollution source.

In the normal season, VF1 showed strong positive loadings on
TN and nitrate, while moderate positive loadings were observed on
nitrite. This VF explained 17.0% of the total variance. In previous

FIGURE 3
Factor figureprints of 24 studied variables resulting from the EPA PMFmodel in the FS, NS, and DS (LBPS, livestock breeding pollution source; NO3_
N, nitrate; NO2_N, nitrite).
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studies, pollutants associated with the nitrate/nitrate ratio described
previously typically appear in polluted water in villages (Zheng et al.,
2015; Qin et al., 2020). VF1 was defined as the rural domestic
pollution source. VF2 showed strong positive loadings on Cl− and
moderate positive loadings on EC and NH4

+–N, which explains
13.9% of the total variance. We defined this as the upstream water
source because it was similar to VF2 in the flood season. VF3 showed
strong positive loadings on the metal element, As, and moderate

positive loadings on COD (12.6%). Defining this as the industrial
pollution source was reasonable since the organic pollutant could
also have occurred in industrial wastewater. VF4 explained 10.8% of
the total variance. It showed strong positive loadings on WT,
moderate positive loadings on pH, and moderate negative
loadings on DO. In this way, VF4 mainly reflected the change in
water temperature, so it was regarded as the seasonal factor influence
source. VF5 showed strong positive loadings on Hg and moderate

FIGURE 4
Pollution distribution rate in FS, NS, and DS (column graph).
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TABLE 3 Contribution of pollution sources for each pollutant in the flood season with PCA/FA results.

Parameter Flood season (%)

RDPSa UWS UDPS FEPS SFIS IPS VEPS UNI A-R2

WT (°C) 7.2 3.2 8.1 1.2 53.2 6.7 5.3 15.1 0.840

pH 25.0 7.3 12.9 22.6 6.7 4.1 2.0 19.3 0.795

DO (mg/L) 3.7 11.7 9.4 54.9 3.7 0.6 0.0 16.1 0.829

COD (mg/L) 20.5 3.3 56.2 7.7 3.1 0.4 1.4 7.4 0.921

NH4
+–N (mg/L) 12.0 26.4 1.3 37.2 0.0 0.7 5.5 16.9 0.821

TP (mg/L) 15.0 5.2 16.4 13.9 28.1 11.1 4.3 6.0 0.931

TN (mg/L) 61.8 5.4 4.7 8.5 1.9 3.1 2.7 11.8 0.875

Cu (μg/L) 2.2 1.3 3.6 4.4 6.0 0.3 80.3 1.8 0.981

As (μg/L) 20.5 10.9 3.4 4.5 1.0 19.3 5.3 35 0.628

Hg (μg/L) 0.8 4.8 1.5 3.3 3.3 69.9 2.8 13.7 0.854

Cl− (mg/L) 14.1 59.1 0.5 5.0 3.0 6.1 1.0 11.3 0.880

Nitrate (mg/L) 68.9 5.3 10.9 2.0 1.8 0.5 2.3 8.2 0.913

Nitrite (mg/L) 19.2 21.7 4.3 9.2 10.9 9.4 4.6 20.7 0.776

Chlα (μg/L) 1.7 3.1 80.4 2.2 1.6 2.7 3.0 5.4 0.941

EC (mS/cm) 26.5 44.5 5.0 4.9 4.2 7.5 1.4 6.1 0.935

Total ave (%) 9.3 26.6 21.5 3.3 3.0 9.4 10.9 16.0

aRDPS, rural district pollution source; UWS, upstream water source; UDPS, urban district pollution source; FEPS, fertilizer erosion pollution source; SFIS, seasonal factor influence source; IPS,

industrial pollution source; VEPS, vehicle emission pollution source.

TABLE 4 Contribution of pollution sources for each pollutant in the normal season with PCA/FA results.

Parameter Normal season (%)

RDPS UWS IPS SFIS FEPS VEPS UDPS UNI A-R2

WT (°C) 4.7 2.8 5.1 62.0 0.1 4.8 4.7 15.8 0.834

pH 9.2 3.0 8.9 24.8 1.0 21.2 3.5 28.4 0.702

DO (mg/L) 1.0 8.0 16.2 18.8 7.2 1.1 13.3 34.4 0.639

COD (mg/L) 10.9 5.8 30.3 6.1 8.4 3.8 4.3 30.5 0.680

NH4
+–N (mg/L) 9.0 26.2 14.5 2.6 18.3 2.3 6.2 20.9 0.780

TP (mg/L) 18.5 10.9 4.0 0.5 28.4 7.3 13.2 17.3 0.798

TN (mg/L) 56.6 9.5 12.9 1.0 2.2 8.4 1.9 7.5 0.922

Cu (μg/L) 14.5 0.1 12.4 2.0 0.0 55.9 1.3 13.8 0.855

As (μg/L) 9.0 4.9 40.8 0.2 9.4 3.7 2.4 29.6 0.688

Hg (μg/L) 3.1 2.8 0.8 3.2 55.9 4.0 9.1 21.2 0.777

Cl− (mg/L) 2.5 61.4 2.1 7.2 1.6 1.1 7.9 16.2 0.830

Nitrate (mg/L) 56.7 8.9 16.5 1.5 2.5 6.3 1.6 5.9 0.938

Nitrite (mg/L) 20.8 18.0 16.3 2.0 10.1 9.2 3.1 20.5 0.784

Chlα (μg/L) 1.8 5.3 7.6 3.7 0.8 2.6 64.0 14.2 0.850

EC (mS/cm) 18.7 29.7 8.1 16.8 3.5 5.8 0.8 16.4 0.827

Total ave (%) 19.8 22.3 8.7 4.1 15.8 12.5 11.2 5.6
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positive loadings on NH4
+–N. This VF explained 10.1% of the total

variance. The industrial pollution source had been defined with VF3,
so we considered that VF5 was more likely the fertilizer application
pollution source because some kinds of chemical fertilizer also
contained trace amounts of metal. VF6 showed strong positive
loadings on Cu and moderate positive loadings on pH, which
explained 7.9% of the total variance. That meant this varifactor
was similar to VF7 in the FS, which was the vehicle exhaust emission
pollution source. VF7 explained 7.4% of the total variance, which
showed strong positive loadings on chlα. This is representative of a
type of organic pollution, so it was defined as the rural domestic
pollution source.

In the dry season, VF1 explained 23.6% of the total variance,
as it showed strong positive loadings on four types of parameters:
NH4

+–N, TN, As, and nitrate. Three of them were related to

nitrogen and the nutrients it represented. The rural domestic
pollution source was attributed to VF1. VF2 showed strong
positive loadings on COD and moderate positive loadings on
DO and chlα, which explained 13.0% of the total variance. As a
source of organic pollution caused by urban activities, it was
believed that VF2 should be attributed to the urban domestic
pollution source. VF3 explained 12.9% of the total variance and
showed strong positive loadings on Cl− and nitrite, which meant
this was a source of natural inorganic ions. As such, this was
defined as the upstream water source. VF4 showed strong
positive loadings on the fertilizer components of NH4

+–N and
TP (10.7%). Defining this as fertilizer application pollution was
available and seemingly appropriate, according to the previous
study of this area (Zhang et al., 2003). VF5 showed strong
negative loadings on Cu and explained 9.4% of the total

TABLE 5 Contribution of pollution sources for each pollutant in the dry season with PCA/FA results.

Parameter Dry season (%)

RDPS UDPS UWS FEPS VEPS SFIS IPS UNI A-R2

WT (°C) 17.7 5.2 13.6 1.7 3.8 47.8 0.4 9.8 0.885

pH 10.9 30.8 9.8 3.4 10.7 4.4 12.0 17.9 0.791

DO (mg/L) 4.9 45.4 3.9 4.2 3.3 10.6 9.0 12.6 0.852

COD (mg/L) 43.8 11.3 6.3 4.3 1.7 12.2 6.7 13.8 0.838

NH4
+–N (mg/L) 2.4 5.7 23.8 31.2 4.3 7.2 6.2 19.2 0.775

TP (mg/L) 13.2 1.3 4.2 52.8 1.7 3.5 4.4 18.8 0.766

TN (mg/L) 59.0 2.6 10.3 3.3 1.7 14.0 4.1 5.1 0.940

Cu (μg/L) 8.8 0.5 2.6 1.9 48.8 9.8 13.1 14.5 0.830

As (μg/L) 38.5 1.2 5.1 22.1 13.7 3.2 2.2 14.1 0.834

Hg (μg/L) 8.2 2.7 7.6 0.5 10.0 0.3 61.4 9.3 0.891

Cl− (mg/L) 1.2 8.9 42.2 14.0 2.9 3.7 16.0 11.0 0.871

Nitrate (mg/L) 60.1 1.0 4.4 4.7 4.6 18.8 0.2 6.2 0.927

Nitrite (mg/L) 6.4 7.5 38.2 7.4 5.1 12.5 4.2 18.8 0.779

Chlα (μg/L) 9.9 30.7 1.2 5.9 8.8 18.1 3.8 21.6 0.747

EC (mS/cm) 19.1 7.8 15.7 5.3 27.5 9.8 4.9 10.0 0.883

Total ave (%) 7.9 19.0 26.4 18.8 3.4 12.9 6.6 5.0

FIGURE 5
Line graphs of R2 values in FS, NS, and DS using the APCS–MLR and EPA PMF methods.
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variance. It was necessary to name this the vehicle exhaust
emission pollution source. VF6 explained 8.9% of the total
variance, which showed strong positive loadings only on WT,
and we considered it to be the seasonal factor influence source.
VF7 explained 7.9% of the total variance, which was more
concentrated on the metal element of Hg, justifying why we
assigned the dry season VF7 as the industrial pollution source.

In summary, seven main pollution sources were extracted. These
included urban districts, rural districts, industry, weather, fertilizer,
upstream, and vehicle. VFs representing organic pollution, such as
the urban and rural districts, and fertilizer erosion usually explained
a greater percentage of variance.

3.3 Source apportionment using absolute
principal component score–multiple linear
regression model

After identifying the main pollution sources during the
process of PCA/FA, the APCS–MLR model was used for
discharging the apportionment of each pollution source in
different seasons. The percentage of different sources of
pollution for the 15 parameters in flood, normal, and dry
seasons are shown in Tables 3–5. The metric A-R2 represents
the fitting effect of this model’s description. In the flood season,
the top three pollution sources were the upstream water source
(UWS, 26.6%), the urban domestic pollution source (UDPS,
21.5%), and the vehicle emission pollution source (VEPS,
10.9%). In the normal season, the top three were the
upstream water source (22.3%), the rural domestic pollution
source (RDPS, 19.8%), and the fertilizer application pollution
source (FEPS, 15.8%). In the dry season, the top three belonged
to the upstream water source (26.4%), the urban domestic
pollution source (19.0%), and the fertilizer application
pollution source (18.8%). Some of the parameters had
relatively stable relationships with a series of pollution
sources. The rural domestic pollution source (RDPS) was
strongly related to TN (61.8%, FS; 56.6%, NS; 59.0%, DS) and
nitrate (68.9%, FS; 56.7%, NS; 60.1%, DS) in each season. The
UWS) was connected with Cl− (59.1%, FS; 61.4%, NS; 42.2%, DS)
and EC (44.5%, FS; 29.7%, NS). The UDPS provided a large
proportion of chlα (80.4%, FS; 60.4%, NS; 30.7%, DS). The FEPS
was mainly represented by NH4

+–N (37.2%, FS; 18.3%, NS;
31.2%, DS) and TP (28.4%, NS; 52.8%, DS). The seasonal
factor influence source (SFIS) had a close relationship with
the natural pattern of WT (53.2%, FS; 62.0%, NS; 47.8%, DS).
The industrial pollution source (IPS) had a strong positive
correlation with at least one of the two heavy-metal elements,
As (19.3%, FS; 40.8%, NS) and Hg (69.9%, FS; 61.4%, DS). The
VEPS was evidently related to Cu (80.3%, FS; 55.9%, NS; 48.8%,
DS). The source of other parameters was diverse in different
seasons. The main influential factors of pH, an indicator of
measuring how acidic or alkaline water is, are villages during the
FS (25.0%), vehicle emissions (21.2%), weather in the NS
(24.8%), and urban in the DS (30.8%). The DO and COD
represent the physicochemical index of water. Their main
influence factors were urban (COD, 56.2%) and fertilizer
(DO, 54.9%) in the FS, temperature (DO, 18.8%) and

industry (DO, 16.2%; COD, 30.3%) in the NS, and urban
(DO, 45.4%) and villages (COD, 43.8%) in the DS. It seemed
that upstream was the first factor (21.7%, FS) of nitrite at first;
then, it changed to the influence of villages (20.8%, NS), and
then, it came from upstream (38.2%, DS) again. However,
nitrogen transformation processes in this region will require
more discussion concerning future source locations of nitrogen
pollution. The source of heavy-metal elements experienced
some subtle changes: industry was dominant (19.3%, As;
69.9%, Hg) in the FS; in the NS, however, fertilizer provided
the largest proportion of Hg (55.9%); at last, villages provided
38.5% of As and industry provided 61.4% of Hg, both of which
occurred in the DS. The upstream pollution was mostly
considered to contribute the highest proportion in all three
seasons (26.6%, FS; 22.3%, NS; 26.4%, DS). The second
highest proportion was urban pollution in both the FS and
the DS (21.5%, FS; 19.0%, DS) and rural pollution (19.8%) in
the NS. The conditions of total average contribution in different
seasons are shown in Figure 5. It shows that the pollution
distribution rates from the urban area (21.5%, FS), upstream
(26.6%, FS), and industry (9.4%, FS) in the flood season
were higher than those in the other seasons; the distributions
from the fertilizer (18.8%, DS) and the seasonal factor (12.9%,
DS) in the dry season were more than the others, and the villages
(19.8%, NS) and the vehicle erosion (12.5%, NS) in the normal
season had larger proportions than the others (Supplementary
Figure S4). Above all, it was shown that upstream pollution from
living activities in both urban and rural areas was the dominant
factor.

3.4 Source apportionment using the PMF
model

Eight factors had been set up in the flood season, the normal
season, and the dry season. One factor for each season is to be
chosen as the unidentified source (UNI). Figure 3 shows the
“Factor Figureprints” of all analyzed variables resulting from the
EPA PMF model in the flood, normal, and dry seasons. The rules
for defining factors extracted by the PMF method were the same
as when we defined the other factors extracted by the PCA/FA
method, such as linking chlα with the urban pollution source,
TN, and nitrate with the rural source; we hung the fertilizer
source on the factor close to NH4

+–N and tied the vehicle
emission source to the element Cu. There were a few
exceptions. One of the sources in the flood season mostly
consisted of Hg but not Cu, which was defined as the vehicle
emission pollution source, as we should put the source of urban
and villages into the true position in advance. There were no
seasonal factors in the flood and normal seasons and no vehicle
emission source in the dry season. Nitrite was an abandoned
factor because it was less important in comparison with the other
water parameters.

The contribution of these factors is shown in Supplementary
Figure S5. Average contributions indicated that RDPS, FEPS,
LBPS, UDPS, IPS, VEPS, UWS, and UNI for different variable
concentrations in the flood season were 11.2%, 9.2%, 13.8%,
12.5%, 16.1%, 12.8%, 15.4%, and 9.1%, respectively. The
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RDPS, FEPS, LBPS, UDPS, IPS, VEPS, UWS, and UNI for
different variable concentrations in the normal season were
10.5%, 11.8%, 15.1%, 12.4%, 14.2%, 9.4%, 16.3%, and 10.2%,
respectively. Meanwhile, the average contributions of RDPS,
FEPS, LBPS, UDPS, IPS, SFIS, UWS, and UNI for different
variable concentrations in the dry season were 14.5%, 10.1%,
12.0%, 10.0%, 13.3%, 14.2%, 15.6%, and 10.2%, respectively. The
contribution of each factor in the PMF model was relatively
average, but the proportion seems to be larger, again, in the
pollution from upstream, rural living, and industrial activities,
according to the PMF results.

3.5 The comparison of APCS–MLR and PMF
models

The comparison of the obtained results of PMF and APCS–MLR
models is graphed in Figure 4. Some differences in identifying the
sources in the same dataset are evident. The first step is to determine
whether a difference exists. The APCS–MLR model shows that the
seasonal factor existed in all months, but the PMF model suggests
that it was present only in the dry season. In contrast, the LBPS was a
unique exception to the PMF model, which the APCS–MLR model
could not identify. Second, there are disagreements that would
happen in allocating the contribution of each factor. Explained
variances of 26.6% and 21.5% had been assigned to the sources
of UWS and UDPS in the APCS–MLR model during the FS,
respectively, which was much higher than that in the PMF model
(15.4% and 12.5%). Similar things were evident in the source of
RDPS and UWS in the normal season and UWS, FEPS, and UDPS in
the dry season. In contrast, it was found that contributions in the
PMF model were higher than those in the APCS–MLR for IPS and
FEPS in the flood season, IPS in the normal season, and RDPS and
IPS in the dry season. Overall, the allocation field of the APCS–MLR
model was more unbalanced than that of the PMF model.

The predicted vs. observed scatter plots from the results of the
PMF and APCS–MLR models were analyzed for critical chemical
species (Supplementary Figure S6). Three kinds of water parameters
were chosen: TN represented the organic materials, Cl−represented
the non-metallic ions of inorganic materials, and As represented
inorganic metallic elements. They showed that the regression results
of TN and As in the PMF model were better than those in the
APCS–MLR model, and the results for Cl− opposed the trend of the
other two parameters. The PMF and APCS–MLR were in agreement
in that the source from UDPS, RDPS, and UWS constituted a larger
proportion compared with the other pollution sources.

The PMF model demonstrated skill in identifying certain single
parameters such as TN and As. However, considering the condition
of these datasets, the APCS–MLR model showed a better overall
performance. On average, its fitting effects for all parameters were
more stable to ensure that R2 > 0.5 was more than that of the PMF
model (Figure 5). The PMF had difficulty in establishing a good
source resolution for each parameter. The simulation effects of this
model on different water quality parameters were so different that R2

of two or three parameters was less than 0.5. Most previous studies
used the PCA/FA and APCS–MLR, as opposed to the PMF model
(Anderson et al., 2002; Gholizadeh Haji et al., 2016). Compared with
PMF, the interpretation procedure involved in the APCS–MLR

analysis was relatively simple (Guan et al., 2019). As such,
APCS–MLR could be a powerful and useful statistical tool when
data size and/or quality limit the implementation of PMF (Jain et al.,
2018). Above all, we concluded that the APCS–MLR model was the
better choice for identifying the source of pollution in the Yuqiao
Reservoir.

4 Conclusion

It was significant from the dataset of 15 parameters at
10 sampling sites that the water quality was generally
adequate; still, the problem of eutrophication existed as
evidenced by the concentrations of COD, TN, TP, and chlα.
Three seasonal divisions called FS, NS, and DS were extracted by
the cluster analysis method, and PCA/FA was used to extract
seven factors for each season’s data. The local water pollution
sources were summarized into seven types: fertilizer erosion,
urban district pollution, vehicle emissions, industrial pollution,
rural district pollution, seasonal factor, and upstream water
sources. According to the APCS–MLR model, the pollution
source that ranked first was the rural district pollution source
for all seasons, and the pollution from upstream was ranked
second. Urban sources ranked low in the NS, fertilizer sources
ranked low in the FS, vehicle emission sources ranked low in the
DS, and sources attributed to villages ranked high in the NS. It
was found that the PMF model allocated an even proportion to
each source of pollution. The upstream source always ranked first
or second for each season in the PMF model. The proportion of
upstream sources was usually high in both the APCS–MLR and
PMF models, and the seasonal factor was more evidently
pronounced in the DS than in the other seasons. R2 results
indicated that the APCS–MLR model performed better in the
entirety of the study.

The main factors of the water pollution in the Yuqiao Reservoir
in 2015–2016 were upstream, urban, and rural sources. To reduce
the pollution level of the reservoir, removing nitrogen and
phosphorus nutrients from local and upstream rural domestic
sewage is key to domestic water pollution control. This study
could help local governments establish guidelines and inspire
watershed and surface water pollution control measures. The
Ministry of Ecology and Environment should take actions in
building rural and eutrophic treatment facilities to address the
impact of livestock and poultry breeding wastewater. Measures
related to completing the coverage of urban production and
living sewage treatment, promoting local control of chemical
fertilizer use, treating industrial wastewater, monitoring vehicle
exhaust emissions, etc., are also necessary. Future research is
needed for 1) focusing on the pollution sources of nutrients and
organic matter through the use of statistical methods, and 2) the
results of the mathematical model study were compared with those
of the isotope correlation study.
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