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The identification of pavement cracks is critical for ensuring road safety. Currently,
manual crack detection is quite time-consuming. To address this issue, automated
pavement crack-detecting technology is required. However, automatic pavement
crack recognition remains challenging, owing to the intensity heterogeneity of
cracks and the complexity of the backdrop, e.g., low contrast of damages and
backdropmay have shadows with comparable intensity. Motivated by breakthroughs
in deep learning, we present a new network architecture combining the feature
pyramid with the attention mechanism (PSA-Net). In a feature pyramid, the network
integrates spatial information and underlying features for crack detection. During the
training process, it improves the accuracy of automatic road crack recognition by
nested sample weighting to equalize the loss caused by simple and complex
samples. To verify the effectiveness of the suggested technique, we used a
dataset of real road cracks to test it with different crack detection methods.
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1 Introduction

With the continuous development and improvement of China’s roads as infrastructure
construction, how to carry out scientific and intelligent maintenance management has become a
fundamental research problem. The diagnosis of pavement diseases is an important issue in
road maintenance, and cracking is the dominant type of pavement disease. The identification of
pavement cracks is a critical duty for ensuring road safety. In this work on pavement crack
detection, methods based on non-deep learning approaches are referred to as traditional crack-
detecting methods. In the past few years, many researchers have been working on the
automated detection of cracks. These works can be divided into five categories: 1) crack
detection methods based on the wavelet transform: the wavelet transform decomposes the
image into different frequency bands, and defect and noise are converted into distinct amplitude
wavelet coefficients, which allows them to be applied to pavement crack detection work. Peggy
et al. (2006) created a complicated coefficient map by applying a multi-scale 2D wavelet
transform (Peggy et al., 2006); the crack region is then determined by scanning for the wavelet
coefficients from the most enormous scale to the most miniature scale. However, this method
cannot handle cracks with limited continuity or significant curvature characteristics. 2) Image
thresholding crack detection method: Scholars use preprocessing algorithms to reduce lighting
artifacts and then threshold the image to obtain candidate cracks. The processed crack images
are further refined using morphological techniques (Chambon and Jean-Marc, 2011; Huang
and Zhang, 2012; Xu et al., 2013; Li et al., 2015). The aforementioned methods were further
developed, and new graph-based methods can achieve crack candidate refinement (Zou et al.,
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2012; Kelwin and Lucian, 2014; Marcos et al., 2016). 3) Handcrafted
features and classification to achieve crack detection: Most
conventional crack-detecting algorithms rely on handcrafted
features and patch-based classifiers to achieve crack detection.
Handcrafted features, such as HOG and LBP, are extracted from
the image patches as descriptors. Then, a classifier, such as a support
vector machine, is used to achieve crack recognition and classification
(Hu and Zhao, 2010; Zakeri et al., 2013; Srivatsan et al., 2014; Rafal
et al., 2015). 4) Crack detection is carried out based on edge detection:
Yan et al. (2007) introduced a morphological filter in crack detection
and used an improved median filter to remove noise to achieve crack
detection (Yan et al., 2007). Albert and Nii (2008) applied the Sobel
edge detector to detect cracks and used a two-dimensional empirical
pattern decomposition algorithm to remove speckle noise (Albert and
Nil, 2008). Stochastic structure forest was used by scholars and
combined with structural information for crack detection (Piotr
and Lawrence, 2013; Shi et al., 2016). 5) Complete crack detection
based on the minimal path: The shortest path approach was suggested
by Kass et al. (1988) to extract basic open curves from photographs for
achieving crack detection (Kass et al., 1988). Vivek et al. (2012)
proposed using an improved minimal path method to detect the
same type of similar contours in the image structure to achieve crack
detection (Vivek et al., 2012). This enhanced method requires less a
priori knowledge about the topology and endpoints of the required
curve. Amhaz et al. (2016) proposed a two-stage approach for crack
detection: first, endpoints are selected in the local range, and second,
the minimum path is selected in the global range to finally achieve
crack detection (Amhaz et al., 2016). Nguyen et al. (2011) proposed a
two-stage approach for crack detection by introducing freeform
anisotropic features that offered a method that simultaneously
considered strength and the shape of cracks to complete the
identification and detection of cracks (Nguyen et al., 2011).
However, traditional crack detection methods are extremely
challenging to identify and detect due to the strong influence of
human factors and the low efficiency of detection based on

transformation methods and are not applicable to complex scenes.
Their performance is still limited.

For the last several years, deep learning has seen extraordinary
progress in the field of computer vision (Alex et al., 2017). Scholars
have made several attempts to use deep learning techniques for crack
identification. Zhang et al. (2016) developed a patch-based fracture
detection neural network comprising four convolutional layers and
two fully connected layers (Zhang et al., 2016). In addition, Zhang
et al. (2016) compared their approach with handcrafted features to
demonstrate the advantages of deep learning methods in feature
representation. Pauly et al. (2017) used a deeper neural network to
identify the road cracks (Pauly et al., 2017). Feng et al. (2017) proposed
a deep active learning system to deal with the problem of limited
labeling resources (Feng et al., 2017). Eisenbach et al. (2017) presented
a road condition dataset for training a deep learning network and first
evaluated and analyzed state-of-the-art methods for pavement distress
detection. The approach mentioned previously considers crack
detection as a patch-based classification challenge, dividing each
picture into tiny patches and then training a deep neural network
to determine whether or not each patch is a crack (Eisenbach et al.,
2017). However, this approach has a complex operational process and
is sensitive to the size of the patches. With the rapid development of
semantic segmentation tasks (Jonathan et al., 2017; Vijay et al., 2017;
Fan et al., 2018), many algorithms have been applied to different
scenarios with good application results. Schmugge et al. (2017)
proposed a SegNet-based crack segmentation method to detect
cracks by aggregating crack probabilities. In conclusion, deep
learning-based techniques show great potential for road crack
detection applications (Stephen et al., 2017). Joshi et al. (2022)
adopted a segmentation-based deep learning method for surface
crack detection. Wang et al. (2022) presented fully convolutional
network architecture for crack detection in fast-stitching images.
To this end, we propose a new deep learning framework called
PSA-Net for the particular task of road crack detection, which
focuses on three aspects, namely, multi-scale feature information

FIGURE 1
Schematic diagram of the network framework.
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extraction, spatio-temporal attention mechanism, and pyramid
pooling, focusing on the contextual semantic information and edge
information on crack images to achieve end-to-end pavement crack
detection, which aims to improve the accuracy of crack intelligent
recognition and detection.

2 Methods

For segmentation tasks, contextual information impacts the
segmentation’s effectiveness. Generally speaking, when we judge
the category of an object, besides directly observing its appearance,
we sometimes also assist the environment in which it appears,
ignoring these to make judgments that sometimes cause problems.
The intelligent crack identification and detection of pavement in this
paper are similar to the segmentation task, where we can improve the
accuracy and precision of crack identification with the help of auxiliary
information. First, this subsection describes the composition of the
algorithm, and the network used consists of encoder and decoder
architecture, as shown in Figure 1.We use ResNet-101 as the backbone
in the feature extraction stage (He et al., 2016). The encoder uses the
pre-trained model (ResNet-101) and the dilated convolution strategy
to achieve the feature map extraction, and the extracted feature map is
1/8 the size of the input. The pyramid pooling module fuses the feature
map to get the fused feature with general information, which is
upsampled and connected with the feature map before pooling.
Finally, the final output is obtained by a convolutional layer.

2.1 Dilated convolution

Dilated convolution is a technique for solving picture semantic
segmentation issues in which downsampling affects image resolution
and results in information loss. By adding holes to expand the perceptual
field, the original 3 × 3 convolution kernel can have a perceptual area of
5 × 5 (dilated rate = 2) or be more significant with the same number of
parameters and computation, thus eliminating the need for
downsampling. It has the advantage of increasing the field of
perception and allowing each convolution output to contain a more
extensive range of information. The information is without pooling data
or creating loss ambiguity under the same computational conditions.
Dilated convolution is often used in real-time image segmentation.
Dilated convolution can be used when the network layer requires a
bigger perceptual field, but the number or size of convolution kernels
cannot be increased, owing to restricted computing resources. The feature
extractionmodule of our network uses dilated convolution to increase the
perceptual field and further improve the segmentation efficiency. The
mathematical expression of dilated convolution is (Yu and Koltun, 2015)

M i, j( ) � ∑
X

x�1∑
Y

y�1h i + atr × x, j + atr × y( ) × g x, y( ), (1)

where I and j denote the positions of the image; X and Y represent the
length and width of the input image, respectively; h(i, j) denotes the
feature value of the input image at (i, j); atr denotes the void rate; g is
the convolution kernel function; and M(i, j) denotes the result of the
input image after convolution. Dilated convolution is to expand the

FIGURE 2
Schematic diagram of the channel attention module. MaxPool means maximum pooling, and AvgPool means average pooling.

FIGURE 3
Schematic diagram of the spatial attention module.
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size of the convolution kernel by zero-filling in the standard
convolution, so that it can better capture the context information
on the feature map. The size of the dilated convolution is achieved by
adjusting the atrous rate.

2.2 Pyramid pooling

The pyramid pooling module aggregates contextual data from
several places and enhances the capacity to access global data.
Experiments demonstrate that such an a priori representation
(referring to PSP as a structure) is successful and produces
outstanding results on a variety of datasets. The module
incorporates four pyramid-scale features. The first row in red is the
coarsest feature global pooling, generating a single bin output, and the
next three rows are pooling features at different scales (as shown in
Figure 1). To ensure the weight of the global features, if the pyramid
has a total of N levels, a 1 × 1 convolution is used after each class to
reduce level channels to the original 1/N. The size before unspooling is
then obtained by bilinear interpolation and CONCAT function
together. The pooling kernel size for the pyramid levels is settable
and related to the input sent to the pyramid. We used four ranks with
kernel sizes of 1 × 1, 2 × 2, 3 × 3, and 6 × 6.

2.3 Feature fusion

Feature fusion is a popular component of current network
topologies that merges features from distinct layers or branches. It
is often performed using basic operations (such as summation or
splicing); however, this is not always the best option. This is a unified
general scheme for attentional feature fusion that applies to the most
common scenarios, including short-hop and long-hop connections
and feature fusion induced in the inception layer. As shown in Figure 1
and Figure 2, we present the multi-scale channel attention module,
which solves the challenges of fusing information supplied at distinct
scales to better fuse features with inconsistent meanings and scales.We
also show that the early integration of feature maps might be a
bottleneck, which can be solved by adding another attention level.
With fewer parameters or network layers, our model outperforms the
latest network on both road crack segmentation datasets, suggesting
the more sophisticated attention mechanism used for feature fusion
has excellent potential to consistently produce better results than
direct feature fusion.

The input feature maps in the channel attention module are
pooled and averaged into the shared MLP layer. Then, the output
features of the shared MLP layer are summed by sending elementwise
and activated by the sigmoid function to obtain the feature map of the
channel attention module. The channel attention module (CAM)
compresses the feature map in spatial dimensions to get a one-
dimensional vector and then operates on it. The channel attention
module focuses on what is essential in this graph. Mean pooling has
feedback for every pixel point on the feature map. In contrast,
maximum pooling has feedback for gradients only where the
response is most evident in the feature map when performing
gradient backpropagation calculations.

The feature map generated from the channel attention module
is utilized as an input in the spatial attention module (as shown in
Figure 3). First, execute maximum and average pooling depending

on the channel, followed by the CONCAT operation on both layers.
The feature map produced from the spatial attention module is
then obtained by the sigmoid function after convolution is
conducted and reduced to one channel.

The spatial attention module compresses channels and
performs mean and maximum pooling in the channel
dimension. The final pooling operation is to extract the
channel’s greatest value, and the number of extractions is H W.
The average pooling procedure is used to acquire the channel’s
average value, and the number of extractions is also H W. As a
result, a two-channel feature map is generated.

2.4 Loss function

The loss function is the gap between the predicted and actual values of
the model. That is to find a standard to help the training mechanism
optimize parameters at any time, so as to find the parameters with the
highest precision of the network role at all times toameterork proposes to

FIGURE 4
Flow chart of algorithm implementation.
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describe a criterion to help the training mechanism in optimizing the par
facilitate finding the network at the greatest accuracy. We want the
predicted value to be infinitely close to the actual value, so the difference
needs to be minimized (in this process, the loss function needs to be
introduced). The choice of the loss function in this process is very critical.
In specific projects, some loss functions calculate the gradient of the
difference falling fast, while others fall slowly, so choosing the appropriate
loss function is also very critical.

As the most common loss function, cross-entropy is not
optimal for MIS tasks, like road crack image segmentation, in
which objects often occupy only a small area, or some medical
image processing tasks such as, for example, retinal vascular and
eye segmentation. We use the Dice coefficient loss function instead
of the common cross loss due to its performance in the presence of
ground truth, which is widely used to evaluate segmentation
performance. Suppose k is the class label, where k = {1, 2,- - -,
K}, and K ∈ N. The ground truth label vector and the predicted
probability vector can be expressed as Y = {y1(k), y2(k), - -, yi(k), - -,
yN(k)}, where ŷi(k) ∈ [0, 1, 2,...n] and Ŷi(k) ∈ [0, 1, 2,...n]. The Dice
loss function can be expressed as follows:

LDice � 1 −∑
K

K�1
2ωK∑N

i ŷi k( )yi k( )
∑N

i ŷi
2 k( ) + ∑N

i yi
2 K( )

, (2)

where N denotes the number of pixels and k and ωk are the number of
classes and the category weights, respectively.

Figure 4 shows the flow chart of the algorithm of the proposed
method in the paper.

3 Numerical experiments

3.1 Data set

We collected and labeled a road crack dataset. The dataset contains a
total of 600 images. We split the 600 images into a training set, a test set,
and a validation set in the ratio of 8:1:1. We also conducted extensive
experiments on several public benchmark datasets. The experimental
results demonstrate that our method achieves SOTA performance
compared to the most common methods.

FIGURE 5
Road surface crack detection results.

TABLE 1 Comparison of the prediction performance of different methods.

Method Precision Recall Accuracy F1

HED .9390 .9025 .9846 .9452

RCF .9451 .9155 .9219 .9392

PCN .9550 .9249 .9412 .9433

PSPNet .9652 .9323 .9721 .9534

DeepLabv3 .9877 .9432 .9844 .9567

PAS-Net (ours) .9955 .9450 .9870 .9644

TABLE 2 Comparison of the prediction performance of different methods.

Method Dice

CNN + CS .87

CNN + CS + ASPP .92

ResNet + CS .90

ResNet + CS + ASPP .94

ResNet (pre) + CS + ASPP .98
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3.2 Evaluation indicators

We used the PyTorch deep learning framework to build our
network. We considered several performance metrics for
experimental comparison to better evaluate the experimental
results, including accuracy, F1-score, recall, precision, and other
evaluation metrics.

Accuracy � TP + TN
TP + TN + FP + FN

, (3)

Recall � TP
TP + FN

, (4)

Precision � TP
TP + FP

, (5)

F1 − score � 2 · precision · recall
precision + recall

, (6)

where TP denotes the true-positive case, FP denotes the false-positive
case, FN denotes the false-negative case, and TN denotes the true-
negative case.

3.3 Experimental details and experimental
results

Our proposed network is an end-to-end architecture system that
uses a ResNet network that has been pre-trained on ImageNet for four
downsampling operations in the encoder phase. We used the PyTorch
deep learning framework to build our network. The training and
testing platforms were both Ubuntu 18.04, and in terms of hardware
configuration, two 3090 graphics cards were used, each with 24G of
video memory. In the training process, we used the small batch
stochastic gradient descent (SGD) method with a batch size of
8 and a learning rate of .0001. We also used Adam optimization
and SGDmethods for comparison experiments, and chTor found that
SGD usually performs better but that Adam converges in a shorter
time. Although Adam converges faster, we carry out a better and more
biased performance in terms of performance and time.

The results of our test on the dataset are shown in Figure 5. It is
worth noting that these datasets are not exposed to the network in
advance to better validate the effectiveness of the proposed method,
where image is the original input of an RGB image, ground truth
represents our label, and predict is the resulting map predicted by our
algorithm. The experimental results show that the results achieved by
our algorithm on the crack images have been less different from
ground truth, which is enough to prove the effectiveness and accuracy
of our algorithm.

The specific performance comparison of different methods is
shown in Table 1. The values of the four metrics of the HED
(holistically nested edge detection) method such as precision, recall,
accuracy, and F1 are .9390, .9025, .9846, and .9452, respectively. The
values of the four metrics of the RCF (richer convolutional feature)
method such as precision, recall, accuracy, and F1 are .9451, .9155,
.9219, and .9392, respectively. The values of the four metrics of the
FCN (fully convolutional network) method such as precision, recall,
accuracy, and F1 are .9451, .9155, .9219, and .9392, respectively. Our
method PAS-Net has values of .9955, .9450, .9870, and .9644 for the

four metrics such as precision, recall, accuracy, and F1, respectively. It
can be seen that our method achieves the most advanced performance
in all four evaluation metrics compared to these state-of-the-art
methods.

To further validate the adequate performance of our method, we
disassembled it into multiple parts. We conducted a large number of
combinatorial experiments to validate the efficiency of each module
fully. As shown in Table 2, the most basic CNN + CS (context spatial)
yields a dice metric of .87 on our dataset. CNN + CS + ASPP (atrous
spatial pyramid pooling) yields a dice metric of .92 on our dataset. We
use ResNet as the backbone; the combination of ResNet + CS gives a
dice metric of .90 on our dataset, and ResNet + CS + ASPP provides a
dice metric of .94 on our dataset. In addition, the best performance of
.98 is achieved when using ResNet that has been pre-trained on
ImageNet. Step-by-step tests further validate the effectiveness of the
proposed method in this study.

4 Conclusion

This study proposes a new deep learning network architecture
called PSA-Net for road crack detection. Our algorithm is developed
from three aspects, namely, multi-scale feature information extraction,
spatio-temporal attention mechanism, and pyramidal pooling,
focusing on the contextual semantic information and edge
information on crack images, and it is an end-to-end segmentation
algorithm. We designed PSA-Net for pavement crack detection
without increasing the number of network parameters. We
conducted our experiments on our road crack detection datasets.
The experimental results show that our PSA-Net offers a significant
advantage on various datasets, sufficient to prove the algorithm’s
effectiveness. In the future, we will continue to contribute to road
crack detection and consider combining the detection model with the
segmentation model to improve the performance of our algorithm
further (H et al., 2013).
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