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This paper explores the impact of the Kyoto Protocol by investigating the correlation
and risk spillover between the crude oil market and the stockmarkets of 28 countries
during its two commitment periods. Besides time-varying Copula-CoVaR models,
the Adaptive Lasso-VAR model with oracle properties is employed in generalized
variance decomposition, and a risk connectedness network is constructed to explore
risk spillovers between the stock markets of various countries when the crude oil
market is at risk. The results reveal positive correlations between the crude oil market
and stock markets, which become weaker in the second commitment period than in
the first. The crude oil market has both upside and downside spillover effects tomost
stockmarkets during both commitment periods, and the upside risk spillover effect is
stronger than the downside effect. Overall, most non-signatories of the Kyoto
Protocol are net receivers of risk spillovers when the crude oil market is at risk,
while most signatories are net exporters of risk spillovers.
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1 Introduction

On 13 November 2021, the 26th conference of the United Nations Framework Convention
on Climate Change (UNFCCC) adopted the Glasgow Climate Agreement and formulated the
implementation details of the Paris Agreement, including market mechanisms, transparency,
and time frame. As an early exploration prior to the Paris Agreement, the Kyoto Protocol
provided a valuable reference for it in terms of cooperation mechanisms and emission reduction
methods, making a significant contribution to the reduction of greenhouse gas emissions (Ma,
2012). Analyzing the data of G7 countries from 2010 to 2019 with a GMM-PVARmodel, Dogan
et al. (2022) show that the Kyoto Protocol has a significant positive impact on energy transition.
Maamoun (2019) uses the generalized synthetic control method (GSCM) to compare the
emissions of industrialized countries participating in the Kyoto Protocol with their expected
emissions had they not participated, and shows that the actual emissions are reduced by about
7% compared to the expected emissions under the “No-Kyoto” scenario. Specifically, the Kyoto
Protocol encourages non-signatories to reduce carbon dioxide emissions while limiting carbon
emissions of signatories by establishing cooperation mechanisms such as the joint
implementation mechanism, the international emissions trading mechanism, and the clean
development mechanism (Kuriyama and Abe, 2018; Tran, 2022).

The Kyoto Protocol includes two commitment periods, 2008–2012 and 2013–2020.
Compared to the first commitment period, the legal effect and emission reduction efforts
of the second commitment period are weakened, but the target adjustment mechanism is
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improved. The first commitment period has internationally legal
binding force on all signatories, while the legal effect of the second
commitment period has some uncertainty. To ensure the
implementation of the second commitment period on track, the
Doha World Climate Conference in 2012 proposed that the
signatories should implement the emission reduction tasks as soon
as possible in accordance with relevant laws that provisionally apply
before completing the ratification. The emission reduction in the
second commitment period is weaker, mainly because the
signatories were struggling during the economic downturn post the
global financial crisis so that greenhouse gas emissions slowed down
accordingly. However, with the recovery of the economy, the
emissions rebounded, which put pressure on signatories’ deep
emission reduction. In terms of the target adjustment mechanism,
the second commitment period differs in flexible mechanisms and
applicable qualifications. The signatories had a large quantity of
assigned amount unit (AAU), emission reduction unit (ERU), and
certified emission reduction (CER) from the first commitment period
that need to be carried forward to the second commitment period.
Meanwhile, some signatories did not undertake quantitative emission
reduction or set emission targets during the second commitment
period.

It has been documented that financial development and carbon
dioxide emissions in many countries are positively correlated (Jamil
et al., 2022; Khan et al., 2022). As the pioneering legal instrument in
human history to limit greenhouse gas emissions, the Kyoto Protocol
attempts to explore a compromise path between economic growth and
environmental protection on a global scale (Depledge, 2022).
However, the Kyoto Protocol has also received criticism. In
particular, the exclusion of developing countries from emissions
targets has been portrayed as a fatal design flaw, and the countries’
legal obligations differ under the principle of “common but
differentiated responsibilities” (Maamoun, 2019; Tran, 2022).
Nevertheless, the Kyoto Protocol restricts the carbon dioxide
emissions through its unique cooperation mechanisms and
emission reduction methods (Madaleno and Moutinho, 2017;
Mohammed, 2020). Did enterprises improve their green
technologies and pursue technological transformation, thereby
reducing dependence on crude oil? In the meantime, as the
financial property of crude oil becomes increasingly apparent,
many investors trade oil as a financial asset (Mensi et al., 2017).
The price fluctuation of crude oil inevitably affects enterprises’
production costs as well as investing and financing decisions,
which are reflected in the stock market. Does the implementation
of the first and second commitment periods of the Kyoto Protocol
reduce the risk spillover from the crude oil market to stock markets?
Which countries’ stock markets are the main receivers of risk
spillovers, and which are the exporters, when the oil market is at
risk? This paper provides some answers to these questions.

There has been a large body of research regarding the correlation
between crude oil market and stock market. On the one hand, some
scholars argue for a negative correlation between the two markets,
because higher crude oil prices would reduce current and expected
profits, leading to a decline in stock prices. For example, Raza et al.
(2016) find with a non-linear ARDL model that crude oil prices have a
negative impact on the stock markets of emerging economies, which
are vulnerable to extreme events. Maghyereh and Abdoh (2022) reveal
that extreme oil price shocks have a negative impact on the stock
markets of major oil exporters. On the other hand, many scholars

believe that the crude oil market and the stock market should have a
positive correlation. Kilian and Park (2009) argue that the rising oil
prices in the context of global economic expansion will have a
sustained positive impact on stock returns. This is because
innovations in the global business cycle stimulate the economy,
increasing business demand for industrial commodities, thereby
driving up oil prices. Working with an ARJI-EGARCH model,
Zhang and Chen (2011) find that the Chinese stock market is
correlated with the expected volatility of international oil prices,
and that international oil prices have a weak positive impact on
the Chinese stock market. Alamgir and Amin (2021) investigate
the relationship between the crude oil market and stock market
indexes in four south Asian countries using a Non-linear
Autoregressive Distributed Lag model and report positive
correlations. Among the differentiating factors or angles provided
in literature regarding the impact of crude oil market on stock markets
are the type and timing of oil shocks, the credit status of a country’s
economy, and the oil importer or exporter status of a country
(Arampatzidis et al., 2021; Jiang et al., 2021; Ramos & Veiga, 2013).

As the dominant commodity with both consumptive and financial
attributes, crude oil represents a risk contagion factor to the financial
system (Liu et al., 2022). Therefore, the correlation between
international crude oil market and stock markets is often
accompanied by risk spillover effects. Studying the correlation and
risk spillover effects between the two will not only help investors
optimize investment portfolios, but also help financial regulators
prevent risk contagion between crude oil and stock markets. Zhang
and Ma (2019) study the risk spillover effect between the crude oil
market and the stock markets of United States, United Kingdom, and
Japan based on the EVaR method, and the results show significant
two-way spillover effects. Xu et al. (2019) investigate volatility
spillovers between crude oil and stock markets using spillover
directional measures and asymmetric spillover measures. Using the
VAR for VaR approach, Wen et al. (2019) conclude that risk spillovers
are stronger after the 2008 financial crisis than before the crisis.

In order to measure the correlation between the crude oil and
stock markets and the associated risk spillover effects, researchers
often use the time-varying Copula-CoVaR model with non-linear and
asymmetric characteristics in empirical analysis. Working on stock
market data of U.S., United Kingdom, E.U. and the BRICS countries
with the time-varying Copula model, Reboredo and Ugolini (2016)
find that the extreme impact of the crude oil market on stock markets
before the financial crisis is smaller than that after the crisis. Ji et al.
(2020) use the VAR model and the time-varying Copula-GARCH
model to measure the dynamic dependencies and risk spillovers
between the BRICS stock markets and the crude oil market. Their
results show that oil demand shocks pose significant spillover risks to
stock returns.

In recent years, with the rapid development of complex network
theory in energy economics research, network analysis has become an
important tool for studying the correlation between the crude oil
market and stock markets and financial risk contagion. Huang et al.
(2018) employ co-movement matrixes to study the coherence of oil-
stock nexuses in an integrated research framework composed by the
wavelet coherence and the complex network. Liu et al. (2020) adopt a
complex network approach to explore the characteristics and
underlying mechanisms of self-similar behaviors in the ccrude oil
market.Wang et al. (2022) combine ΔCoVaR and the cascading failure
network model to examine the systemic risk contribution in global
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stock markets, by quantifying the domino effect caused by tail risk
propagation and accumulation. Liu et al. (2022) uses CoVaR to
construct the risk spillover index proposed by Diebold and Yilmaz
(2012, 2014) to investigate the total, directional, and net risk spillover
effects when the crude oil market is in extreme conditions. Diebold
and Yilmaz (2012, 2014) propose the risk spillover index based on
generalized variance decomposition of the VAR model. The risk
spillover index overcomes the traditional VAR model’s dependence
on Cholesky factor identification, which often leads to different results
due to the order of variables, and extends to applications beyond
pairwise association. This spillover index has been applied in several
studies. Kang et al. (2017) use a multivariate DECO-GARCHmodel to
study the spillover effect between gold, silver, WTI crude oil, corn,
wheat and rice futures markets, and find that the gold and silver
futures are risk exporters among the commodities, while the other four
markets are recipients of risk spillovers. Via static and dynamic
networks, Wang et al. (2017) show that on average the real estate
and bank sectors are net exporters of extreme risk spillovers while the
insurance and diversified financials sectors are net recipients. To
overcome the curse of dimensionality and estimation error in case
of many parameters, Demirer et al. (2018) propose employing the
Lasso-VAR model. The Lasso-VAR model has been employed by Liu
et al. (2022) to study risk spillover effects between the crude oil and
G20 stock markets, and by Balcilar et al. (2022) to study volatility
spillover effects between 27 emerging stock markets and seven
cryptocurrency markets. Although Lasso can mitigate the curse of
dimensionality, it does not have Oracle properties. The Adaptive Lasso
method proposed by Zou (2006) imposes different degrees of penalty
on each parameter so that it enjoys the oracle properties while
reducing the errors in model parameter estimation. Ren and Zhang
(2013) propose the Adaptive Lasso-VAR model and demonstrate its
advantage in fitting and prediction accuracy over the conventional
VAR model.

Despite all these studies on the relationship between crude oil
and stock markets, none has explored the issue from the perspective
of the impact of the Kyoto Protocol. In view of this, this paper
examines the relationship between the crude oil market and 28 major
stock markets in the world (including 17 signatories and 11 non-
signatories). Their correlation and risk spillover effects when the
crude oil market is at risk are investigated with a variety of models,
including ARMA-TGARCH model, Markov regime switching
model, time-varying Copula-CoVaR model, and generalized
variance decomposition based on the Adaptive Lasso-VAR model.
Our interest is to compare and evaluate the correlation and risk
spillovers between the two commitment periods of the Kyoto
Protocol. The empirical analyses yield several important findings.
First, there are positive correlations between crude oil and stock
markets. In comparison, the correlation and the risk spillover effects
between the crude oil market and most stock markets in the second
commitment period are weaker than in the first. Second, the crude oil
market at risk has both upside and downside spillover effects to most
stock markets, with the upside risk spillover effect being stronger
than the downside effect. Third, non-signatories are generally the net
receivers of risk spillovers, while signatories are mostly net exporters
of risk spillovers conditional on crude oil market in extreme
conditions.

The contribution of this paper is threefold. First, in terms of
research methodology, the Adaptive Lasso-VAR model with Oracle
properties, new to literature, is applied to generalized variance

decomposition. It not only solves the estimation problem of high-
dimensional VAR model when constructing the risk spillover network
proposed by Diebold and Yilmaz (2012, 2014), but also reduces the
estimation error of non-zero parameters. Moreover, Ren and Zhang
(2010, 2013) do not integrate parameter estimation of the VAR model
and the Adaptive Lasso model in a unified framework. This paper fills
this void by describing parameter estimation of the Adaptive Lasso-
VAR model in full detail.

Second, in terms of the research question, this paper systematically
analyzes risk spillovers between the stock markets of 28 countries
when the crude oil market is at risk during the first and second
commitment periods of the Kyoto Protocol. This research question
has not been fully explored in literature, which has focused mostly on
stock markets in selected countries rather than providing a global
perspective or comparing the effects in the two commitment periods
(Reboredo and Ugolini, 2016; Ji et al., 2020). The Copula-CoVaR
model employed in this study can effectively describe the dynamic risk
spillover between the crude oil and global stock markets, and the risk
spillover network can identify the exporters and importers of risk
spillovers.

Third, in terms of the research perspective, both downside and
upside risk spillover effects of the crude oil market on stock markets
are investigated in this paper, while the literature usually examines
downside spillover only (Liu et al., 2022). Investigations from the
perspective of both long and short positions reveal evident asymmetry
in risk spillovers, with upside spillover being more prominent. The
findings provide valuable reference for formulating a financial risk
firewall mechanism to prevent outbreak and spread of financial crises.

The rest of the paper proceeds as follows. Section 2 introduces the
measures and methodology. Section 3 reports and analyzes the
empirical results. Section 4 concludes and makes policy
recommendations.

2 Methodologies

2.1 Tail risk measures

Popular measures of tail risk include VaR, ES, and CoVaR. VaR
represents the maximum loss of an asset or portfolio in a given
duration at the confidence level 1 − q. Most studies focus on the
VaR from the perspective of long positions—thus are concerned with
extreme price decline in the left tail—while few from the perspective of
short positions.

Let ri,t be the return of an asset or portfolio. VaRdown
q,t and VaRup

q,t

represent left and right tails risk respectively, that is,
P(ri,t ≤VaRdown

q,t ) � q and P(ri,t ≥VaRup
q,t ) � q (Giot & Laurent,

2003; Reboredo & Ugolini, 2016). VaR can be calculated with
parametric methods, Monte Carlo simulation, or historical
simulation. Parametric estimation of VaR requires a probability
distribution of the asset’s or investment portfolio’s return. Since the
distribution of a financial return series usually features a sharp peak
and fat tails, the skewed t distribution can describe well financial
return series (Hansen, 1994). If a return series follows a skewed t
distribution with skewness η and degrees of freedom ], then

VaRdown
q,t � μi,t + σ i,tF

−1
η,υ q( ) (1)

VaRup
q,t � μi,t + σ i,tF

−1
η,υ 1 − q( ) (2)
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where μi,t is the conditional mean, σ i,t is the conditional standard
deviation, F−1

η,υ(q) is the q-quantile of the skewed t distribution, and q is
the tail probability, which takes the value of .05 in this paper.

VaR only considers the loss of a single asset or portfolio in
isolation, and does not assess risk transfer between markets.
To address this issue, Adrian & Brunnermeier (2016) propose
the concept of conditional VaR, or CoVaR. CoVaR represents
the extreme risk value of an asset or portfolio when another
related asset or portfolio is at extreme risk at the confidence level
1 − p.

As per the nature of the position—long or short—CoVaR can be
specified as the downside conditional value at risk, CoVaRdown

p,q,t , or the
upside conditional value at risk, CoVaRup

p,q,t:

P r1,t ≤CoVaRdown
p,q,t

∣∣∣∣r2,t ≤VaRdown
q,t( ) � p (3)

P r1,t ≥CoVaRup
p,q,t

∣∣∣∣r2,t ≥VaRup
q,t( ) � p (4)

where r1,t and r2,t are the returns of two related assets or portfolios (in
this paper, usually r1,t is a stock market index return and r2,t is the
crude oil return). Both tail probabilities, p and q, are assigned as .05 in
this paper.

To describe the joint distribution of r1,t and r2,t, a Copula function
can be used to connect the marginal distribution of the crude oil
market and the marginal distribution of the stock market:

C Fr1,t CoVaRdown
p,q,t( ), Fr2,t VaRdown

q,t( )[ ]
� Fr1,t ,r2,t CoVaRdown

p,q,t ,VaRdown
q,t( ) (5)

where C is a copula function, and Fr1,t and Fr2,t are the distribution
functions of r1,t and r2,t, respectively.

The copula function C(u, v) is linked to Spearman rank
correlation coefficient ρs as in Eq. (6). The Spearman correlation
coefficient can measure the correlation between the crude oil market
and stock markets in various countries.

ρs � 12∫1

0
∫1

0
C u, v( )dudv − 3 (6)

Introduced on the basis of static models, dynamic Copula models
can characterize the ever-changing interdependence between two
markets and predict the joint distribution of asset returns. It has
wide applications in asset pricing and financial risk management.
Popular dynamic Copula models include time-varying (TV) Normal
Copula, TV Student t Copula, TV SJC Copula, TV Plackett Copula,
TV Clayton Copula, and TV Gumbel Copula.

Next, upon converting the conditional distribution into the ratio
of the joint distribution to the marginal distribution, we use a time-
varying Copula function to transform Eqs 3, 4 into Eqs 7, 8,
respectively.

C Fr1,t CoVaRdown
p,q,t( ), q( ) � pq (7)

q − Fr1,t CoVaRup
p,q,t( ) + C Fr1,t CoVaRup

p,q,t( ), 1 − q( ) � pq (8)

Let G(Fr1,t(CoVaRdown
p,q,t )) � C(Fr1,t(CoVaRdown

p,q,t ), q),
H(Fr1,t(CoVaRup

p,q,t)) � q − Fr1,t(CoVaRup
p,q,t) + C(Fr1,t(CoVaRup

p,q,t), 1 − q), then
applying the inverse function and standardizing ri,t yield

Fr1,t CoVaRdown
p,q,t( ) � Fη,υ

CoVaRdown
p,q,t − μ1,t
σ1,t

( ) � G−1 pq( ) (9)

Fr1,t CoVaRup
p,q,t( ) � Fη,υ

CoVaRup
p,q,t − μ1,t
σ1,t

( ) � H−1 pq( ) (10)

CoVaRdown
p,q,t and CoVaRup

p,q,t can be calculated via inverse
functions, as shown in Eqs 11, 12:

CoVaRdown
p,q,t � μ1,t + σ1,tF

−1
η,υ G−1 pq( )( ) (11)

CoVaRup
p,q,t � μ1,t + σ1,tF

−1
η,υ H−1 pq( )( ) (12)

Following Adrian and Brunnermeier (2016), this paper uses
ΔCoVaR to measure the spillover effect of risk, specifically, the risk
spillover from the crude oil market to the stock markets of various
countries. ΔCoVaR includes the downside spillover effect ΔCoVaRdown

p,q,t

and the upside spillover effect ΔCoVaRup
p,q,t, corresponding to the risk

faced by long positions and short positions:

ΔCoVaRdown
p,q,t � CoVaRdown

p,q,t − CoVaRdown
p,0.5,t (13)

ΔCoVaRup
p,q,t � CoVaRup

p,q,t − CoVaRup
p,0.5,t (14)

2.2 Connectedness measures

This paper adopts the risk spillover index proposed by Diebold
and Yilmaz (2012, 2014) as the theoretical framework for risk
contagion analysis. This method depicts the risk spillover
between different variables through generalized variance
decomposition based on the VAR model. The VAR model can
be expressed as:

xt � μ +∑p

i�1Φixt−i + εt (15)

where xt � (x1,t, x2,t,/, xN,t)′ is an N-dimension column vector, xi,t

is the CoVaR of the stock market of country i when the oil market is in
extreme conditions at time t; μ is an N × 1 vector,

Φk �
Φk,11 Φk,12 / Φk,1N

Φk,21 Φi,22 / Φk,2N

..

. ..
.

1 ..
.

Φk,N1 Φk,N2 / Φk,NN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, k � 1, 2,/, p, and εt ~ (0,Σ).

The number of parameters to be estimated in Eq. 15 is N2 × p +N.
Taking moving average to Eq. 15 gives

xt � ∑∞
i�0Aiεt−i (16)

where theN × N parameter matrix Ai follows the following recursive
formula:

Ai � Φ1Ai−1 +Φ2Ai−2 +/ +ΦpAi−p (17)
where A0 � IN×N and Ai � 0 for i< 0.

When there are too many variables, the VAR model will face the
curse of dimensionality. In order to solve the estimation problem of
high-dimensional VAR, the Lasso method can be used for reduced-
dimensional estimations. Nicholson et al. (2015) provide a Lasso-VAR
model with penalty terms, for which the parameter estimation
expression is

μ̂*, Φ̂* � argmin
μ,Φ

∑T

t�1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣xt − μ −∑p

i�1Φixt−i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

2

+ λ Φ‖ ||1 (18)

where T is the sample size. For the m × n matrix B, ‖B||F �
(∑m

i�1∑n
j�1 | bij|F)1/F is its F-norm (F � 1, 2,/ ), bij is an element
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in the matrix B, λ is the penalty parameter. The optimal λ is
determined by cross-validation, and ‖Φ||1 is the Lasso
penalty term.

In order to reduce the errors in non-zero parameter
estimation, Zou (2006) proposes the Adaptive Lasso method,
and proves that it enjoys oracle properties; namely, it performs
as well as if the true underlying model were given in advance. The
basic idea is to assign different penalty weights to parameters
based on the Lasso method. The Adaptive Lasso method uses
smaller weights to penalize variables with larger initial parameter
estimates, and larger weights to penalize variables with smaller
initial estimates. This strategy not only preserves the original
strength of Lasso estimates, but also effectively reduces estimation
errors. When Ren and Zhang (2010, 2013) discuss the Adaptive
Lasso-VAR model, they only list the parameter estimation
expressions separately for the VAR model and the Adaptive
Lasso model, rather than placing them in a unified framework.
Nor has other literature provided such a parameter estimation
expression. New to literature, this paper provides the parameter
estimation expression for the Adaptive Lasso-VAR model, as in
Eq. 19:

μ̂*, Φ̂* � argmin
μ,Φ

∑T

t�1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣xt − μ −∑p

i�1Φixt−i

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

2

+ λ ω̂⊗ Φ||1
���( ) (19)

where ω̂ � [ω̂1, ω̂2,/, ω̂p]N,N×p is the weight matrix, ω̂k �
ω̂k,11 ω̂k,12 / ω̂k,1N

ω̂k,21 ω̂k,22 / ω̂k,2N

..

. ..
.

1 ..
.

ω̂k,N1 ω̂k,N2 / ω̂k,NN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (k� 1,2,/,p), Φ� [Φ1,Φ2,/,Φp]N,N×p,

ω̂k,mn � 1
|Φ̂OLS

k,mn |γ
(γ>0), and Φ̂

OLS
k,mn is the estimate by OLS. In a sparse

matrix, γ can take the value of 1.
Since the orthogonal assumption of the traditional Cholesky

decomposition makes the prediction variance decomposition results
very sensitive to the order of model variables, this paper applies the
generalized variance decomposition method by following Diebold and
Yilmaz (2012, 2014) as the framework for risk contagion analysis. The
H-step-ahead forecast error variance decomposition is:

θgij H( ) � σ−1
jj ∑H−1

h�0 e′iAhΣej( )2
∑H−1

h�0 e′iAhΣA′
hei( ) (20)

where σjj is an element in the residual variance-covariance matrix Σ, ei
is the selection vector in which the ith element is 1 and all other
elements are 0,H is the forecast horizon, and Ah is a coefficient in the
moving average.

The sum of the elements in each row of the generalized forecast
error variance matrix is not equal to 1, i.e.,∑N

j�1θ
g
ij(H) ≠ 1. In order

to use the information in the variance decomposition matrix to
calculate the spillover index, each entry in the matrix is
normalized as

~θ
g

ij H( ) � θgij H( )
∑N

j�1θ
g
ij H( ) (21)

Now by construction ∑N

j�1
~θ
g

ij(H) � 1 and ∑N

i,j�1
~θ
g

ij(H) � N.
To present the information on connectedness more intuitively,

based on the results of generalized variance decomposition, the risk
spillover effect CH

i ← j of country j to country i is defined as

CH
i ← j � ~θ

g

ij H( ) (22)

Following Demirer et al. (2018) and Liu et al. (2022), the risk
spillover (connectedness) matrix is constructed based on a network
topology framework, as shown in Table 1.

The element CH
i ←• in the “FROM” column of the

connectedness matrix indicates risk spillover effects that
country i receives from all other countries, that is, its total
received spillover:

CH
i ←• �

∑N
j�1
j ≠ i

~θ
g

ij H( )

∑N
i,j�1~θ

g

ij H( ) �
∑N

j�1
j ≠ i

~θ
g

ij H( )

N
(23)

Similarly, the element CH
•← i in the “TO” row of the connectedness

matrix represents the risk contagion effects from country i to all other
countries, that is, its total exported spillover:

CH
•← i �

∑N
j�1
j ≠ i

~θ
g

ji H( )

∑N
i,j�1~θ

g

ji H( ) �
∑N

j�1
j ≠ i

~θ
g

ji H( )

N
(24)

Then the net spillover effect CH
i of country i to all other countries can

be calculated as

CH
i � CH

•← i − CH
i ←• (25)

The total spillover effect CH by all countries is

CH �
∑N

i,j�1
i ≠ j

~θ
g

ij H( )

∑N
i,j�1~θ

g

ij H( ) �
∑N

i,j�1
i ≠ j

~θ
g

ij H( )

N
(26)

CH is equal to the sum of all elements in the “FROM” column or
the “TO” row.

TABLE 1 Risk spillover matrix.

x1 x2 / xN FROM

x1 ~θ
g

11(H) ~θ
g

12(H) / ~θ
g

1N(H) CH
1 ←•

x2 ~θ
g

21(H) ~θ
g

22(H) / ~θ
g

2N(H) CH
2 ←•

..

. ..
. ..

. 1 ..
. ..

.

xN ~θ
g

N1(H) ~θ
g

N2(H) / ~θ
g

NN(H) CH
N ←•

TO CH
•← 1 CH

•← 2 / CH
•← N CH
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3 Empirical analysis

3.1 Data and descriptive statistics

The international crude oil futuresmarket has long been dominated by
two influential benchmarks, West Texas Intermediate (WTI) on the New
York Mercantile Exchange (NYMEX) and Brent on the Intercontinental
Exchange (ICE). Compared to Brent crude oil, WTI crude has lower
impurities, higher utilization rate, and can be refined into more types of
fuel oil. WTI futures have stronger liquidity and relative insensitivity to
speculative bubbles (Ajmi et al., 2021; Zhang & Zhang, 2015). This paper
selects the daily data of WTI crude oil futures prices and the closing of
28major global stockmarket indexes from 7 January 2008 to 30December
2020 as the sample. All data are retrieved from theWind financial database.
Please see the data sheet in Supplementary material for the dataset. The
28 countries include 11 non-signatories—China, India, Brazil, Israel, South
Korea, Mexico, Indonesia, South Africa, Thailand, Turkey, and Malaysia,
and 17 signatories—Australia, Austria, Belgium, Denmark, Finland,
France, Germany, Greece, Italy, Japan, Netherlands, New Zealand,
Norway, Spain, Sweden, Switzerland, and United Kingdom.1 The first
commitment period is from 7 January 2008 to 27 December 2012, and the
second commitment period is from 7 January 2013 to 30 December 2020.
In consideration of space, only the descriptive statistical results of the crude
oil market and selected stock markets are reported in Table 2.

The standard deviations show that the volatility of most stock
markets in the first commitment period is greater than that in the
second commitment period, and the volatility of the crude oil market
is much higher than that of the stock markets. The Jarque-Bera tests
show that the return series do not follow the normal distribution

during either commitment period. The LB and ARCH statistics
indicate that most stock markets and the crude oil market exhibit
autocorrelation and heteroscedasticity. The ADF statistics suggest that
all return series are stationary.

3.2 Correlation and risk spillover

3.2.1 Estimation of marginal distributions
According to the principle of maximum log-likelihood

estimation, the ARMA (1,1)-TGARCH(1,1) model is selected for
the crude oil market and all stock markets to characterize their
marginal distributions. The estimation results and fitting effects of
the crude oil market and selected stock markets are reported in
Supplementary Tables A1, A2 in Supplementary Appendix.

TheARCHcoefficient α and theGARCHcoefficient β indicate that all
stock markets and the crude oil market exhibit volatility and volatility
clustering effects. The asymmetric effect parameter λ shows that during
both commitment periods, the crude oil market and stock markets of
Brazil, UnitedKingdom,Germany, and Japan demonstrate leverage effects
and are susceptible to negative news because of their positive λ. The main
reason for such phenomena is that most investors are risk averse. The
emergence of adverse information affects investors’ investment decisions
and trading behaviors, often causing them to sell in large quantity out of
fear. LB, LB2, and ARCH statistics suggest that the standard residuals of
most stock markets and the crude oil market have no autocorrelation or
heteroscedasticity during the two commitment periods. KS and AD tests
confirm that after the probability integral transformation, the marginal
distributions all follow the uniform distribution.

3.2.2 Regime switching characteristics
To further analyze the return characteristics, this paper adopts

the Markov regime switching model to examine the periodicity

TABLE 2 Descriptive statistical results.

Country Commitment period Mean Standard deviation JB LB ARCH ADF

China 1st −.001 .027 558.360*** 28.163 53.725*** −17.491***

2nd .000 .021 1891.987*** 75.016*** 159.194*** −8.255***

India 1st .000 .025 1,613.108*** 20.449 77.944*** −23.643***

2nd .001 .015 1,513.886*** 17.061 108.017*** −29.989***

Brazil 1st .000 .027 2,633.74*** 23.843 198.381*** −24.940***

2nd .001 .023 2,953.873*** 30.685* 281.101*** −31.235***

United Kingdom. 1st .000 .019 1925.283*** 27.104 201.544*** −12.72***

2nd .000 .015 8,559.854*** 42.338*** 216.527*** −12.112***

Germany 1st .000 .023 1,441.268*** 24.205 102.945*** −23.378***

2nd .001 .018 5,337.648*** 44.888*** 170.839*** −9.711***

Japan 1st −.001 .023 1,068.328*** 26.186 85.632*** −12.856***

2nd .001 .019 955.439*** 36.049** 126.969*** −9.858***

Crude oil 1st .000 .039 1,310.191*** 51.687*** 166.005*** −5.815***

2nd .000 .042 153865.942*** 78.616*** 142.193*** −9.449***

Note: ***, **, * indicate significance at 1%, 5%, and 10%, respectively. JB, LB, ARCH, and ADF, are the Jarque-Bera test, Ljung-Box test; ARCH-LM, test and unit root test for the returns, respectively.

1 Since the United States and Canada withdrew from the Kyoto Protocol, they
are not included in the study.
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and asymmetry of the crude oil market and 28 stock markets. The
estimation results are shown in Table 3. The transition
probabilities indicate that both bear market and bull
market have strong continuity, that is, the probabilities for a
rising or falling state of the return to continue are almost all
above .8. For example, the durations of bear and bull markets for
the Chinese stock market are 7.519 and 17.857 days respectively.
The bull market in China, India, United Kingdom, and Japan lasts
longer than the bear market, while the bear market in the Brazilian
and German stock markets as well as the crude oil market lasts
longer than the bull market. The regime-switching behavior in
stock and crude oil prices manifests financial market psychology
and underlying capital movements. When institutional capital
buys or sells stocks or crude oil futures according to a market’s
expected prosperity, retail investors tend to follow due to the
herding effect. Consequently, stock and crude oil prices often
demonstrate a certain degree of trend within a short period
of time.

3.2.3 Correlation between crude oil and stock
markets

Next, we use the TV Normal Copula function, the TV Student t
Copula function, the TV SJC Copula function, the TV Plackett Copula
function, the TV Clayton Copula function, and the TV Gumbel
Copula function to connect the marginal distribution of the crude
oil market and stock markets. The optimal Copula function is selected
according to the AIC criterion. Table 4 shows the Copula parameter
estimation results between the crude oil market and selected stock
markets, where the TV Student t or SJC Copula function is the
preferred model.

The last column in Table 4 shows the mean value of Spearman’s
rank correlation coefficient ρs. Along with Figure 1, they reveal the
dynamic correlation between the crude oil market and global stock
markets. There are positive correlations between global stock
markets and the crude oil market, and the correlations are
weaker during the second commitment period. The main reason
is that corporations have developed and adopted more green
technologies by the second commitment period, which
somewhat reduce their degree of dependence on crude oil. As
the stock markets serve as a “barometer” of corporations’
operations, the correlations become weaker in the second
commitment period.

3.2.4 Risk spillover effect between crude oil market
and stock markets

Time-varying Copula-CoVaR models can not only measure the
correlation between the crude oil and stock markets, but also gauge the
risk spillover effect between the two.

CoVaRdown
0.05,0.05 and CoVaRup

0.05,0.05 indicate the tail risk of stock
markets ― from the perspective of long and short positions
respectively ― conditional on crude oil market being at risk. The
difference between CoVaRdown

0.05,0.05 and VaRdown
0.05 characterizes the

downside spillover effect, and the difference between CoVaRup
0.05,0.05

and VaRup
0.05 depicts the upside spillover effect. The results are shown

in Figure 2.
It is evident in Figure 2 that in both commitment periods, the

upside tail risk of the crude oil market to the stock markets in
various countries is significantly higher than the downside tail
risk. The upside tail risk has obvious spillover effects (as indicated
by the discrepancy between CoVaRup

0.05,0.05; VaR
up
0.05), especially

during and shortly after the 2008 global financial crisis,
2015 Chinese stock market crisis, and 2020 global pandemic.
In contrast, downside tail risk spillover effects are much
limited. The asymmetry in tail risk spillover demonstrates
differences in the association between crude oil and stock
markets under diverse market conditions. Global markets seem
to be more susceptible to the impact of good news. Optimism in
economic prosperity has a more notable impact on energy and the
stock markets.

Table 5 shows through ΔCoVaRdown
0.05,0.05 and ΔCoVaRup

0.05,0.05 the
downside risk spillover effect and upside risk spillover effect of the
crude oil market to the stock markets in 28 countries. The mean values
of ΔCoVaRdown

0.05,0.05 and ΔCoVaRup
0.05,0.05 for most countries in the

second commitment period are smaller than those in the
first commitment period. These results echo the weaker
correlations in the second commitment period, during which more
advanced green technologies had been developed, reducing countries’
reliance on crude oil. Therefore, the risk spillover by extreme crude oil
market is reduced. In the meantime, during the two commitment
periods, the crude oil market has both upside and downside risk
spillover effects to most stock markets, but the upside risk spillover
effects are much stronger than the downside spillover effects. This
finding suggests that short positions in stock markets are more
susceptible to risk spillover from the crude oil market than long
positions.

TABLE 3 Estimates for Markov regime switching model.

Country Bear market Bull market Transition probabilities LogLik

μ1 Persistence μ2 Persistence p11 p22

China −.0038 7.519 .0012 17.857 .867 .944 3881.83

India −.0022 10.000 .0013 33.333 .900 .970 4191.972

Brazil .0012 35.714 −.0041 6.993 .972 .857 3760.09

United Kingdom. −.0039 7.246 .0007 40.000 .862 .975 4447.307

Germany .0017 33.333 −.0045 9.091 .970 .890 4134.309

Japan −.0043 6.329 .0016 25.641 .842 .961 4063.078

Crude oil .0007 24.390 −.0053 4.762 .959 .790 3186.162

Note: The transition persistence of a bear market and a bull market is 1
1−p11

and 1
1−p22

, respectively.
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TABLE 4 Parameter estimates of copula functions.

CommitmentPeriod Optimal copula ψ0 (ωU) ψ1 (βU) ψ2 (αU) n (ωL) βL αL AIC ρs (mean)

China-Crude oil First TV SJC 2.794 −19.694 −.348 1.585 −13.42 −.574 −54.358 .240

(3.546) (15.053) (2.971) (2.093) (8.033) (2.783)

Second TV Student t .257 .163 −.343 3.433 — — −76.086 .127

(.174) (.132) (1.361) (.511) — —

India-Crude oil First TV SJC 2.210 −12.133 −9.382 −3.778 4.882 3.960 −70.703 .290

(.763) (3.117) (2.950) (.892) (2.370) (.835)

Second TV Student t .418 .117 −1.821 6.053 — — −30.633 .108

(.150) (.212) (.318) (1.247) — —

Brazil-Crude oil First TV SJC 2.946 −13.781 −4.693 −.067 −3.935 1.395 −217.133 .486

(1.132) (6.070) (.538) (.926) (2.246) (1.259)

Second TV Student t .674 .037 −.213 4.899 — — −116.466 .285

(1.345) (.107) (4.499) (.962) — —

United Kingdom.-Crude oil First TV SJC 1.808 −8.284 −3.240 1.753 −11.499 .155 −195.133 .452

(1.105) (3.331) (2.449) (1.465) (4.357) (1.642) — —

Second TV Student t .443 .102 .141 4.855 — — −103.726 .242

(.838) (.182) (3.53) (.989) — —

Germany-Crude oil First TV Student t .234 .291 1.120 4.798 — — −155.962 .369

(.221) (.187) (.769) (1.177) — —

Second TV Student t .540 .278 −1.638 4.598 — — −71.500 .166

(.171) (.161) (.483) (.914) — —

Japan-Crude oil First TV Student t .731 .152 −1.736 10.035 — — −28.901 .195

(.249) (.283) (.727) (4.525) — —

Second TV Student t .007 .038 1.814 5.222 — — −37.189 .079

(.014) (.030) (.208) (.695) — —

Note: ψ0, ψ1, ψ2 are the parameters (n is the degree of freedom) of the time-varying Student t Copula; ωU , βU , αU , ωL , βL , and αL are the parameters of the time-varying SJC Copula. Reported in parentheses are the standard deviation of copula parameters.
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FIGURE 1
Spearman’s dynamic correlation (ρs) between crude oil and stock markets.

FIGURE 2
Tail risk and spillover effects between oil and stock markets.
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3.3 Cross-country risk spillover network
analysis

Based on the risk connectedness network proposed by Diebold
and Yilmaz (2012, 2014), this section constructs a risk spillover
index through the CoVaR of the crude oil market to the stock
markets of various countries. An analysis of the topological
characteristics of static and dynamic tail risk spillovers
determines the risk exporters and risk receivers among
signatories and non-signatories. A generalized variance
decomposition based on the Adaptive Lasso-VAR model is
established using CoVaR values, for which the optimal lag order

is selected according to AIC. Following Diebold and Yilmaz (2012)
and Liu et al. (2022), the forecast period H is set to 10 days (i.e., two
trading weeks).

3.3.1 Static network analysis
First, the static network analysis is conducted to examine the

risk spillover characteristics among the stock markets conditional
on the crude oil market at risk during the two commitment
periods, with the results shown in Table 6. Due to space
limitations, only the top five and bottom five countries in each
category—TO, FROM, and NET—are listed. Take the risk
spillover characteristics of CoVaRdown

0.05,0.05 during the first

TABLE 5 Risk spillover effects indicated by ΔCoVaR.

Country ΔCoVaRdown
0.05,0.05 ΔCoVaRup

0.05,0.05

1st commitment
period

2nd commitment
period

1st commitment
period

2nd commitment
period

Non-signatory
countries

China .002 .001 .046 .060

India .001 .001 .055 .024

Brazil .004 .002 .064 .057

Israel .002 .001 .034 .027

South Korea .003 .000 .030 .036

Mexico .002 .002 .055 .035

Indonesia .001 .002 .071 .026

South Africa .001 .002 .067 .037

Thailand .001 .001 .053 .031

Turkey .001 .001 .064 .036

Malaysia .000 .001 .038 .024

Signatory countries Australia .001 .002 .039 .013

Austria .002 .001 .064 .049

Belgium .002 .002 .053 .040

Denmark .001 .001 .058 .036

Finland .002 .002 .068 .038

France .003 .001 .044 .044

Greece .002 .002 .070 .101

Italy .003 .002 .046 .050

Netherlands .002 .002 .052 .038

New Zealand .001 .001 .021 .018

Norway .003 .003 .068 .040

Spain .002 .002 .042 .055

Sweden .002 .002 .042 .034

Switzerland .001 .001 .035 .030

United Kingdom .003 .001 .049 .035

Germany .003 .002 .051 .042

Japan .001 .000 .032 .033
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commitment period as an example. France, Netherlands,
Germany, United Kingdom, and Sweden are the top five
countries in terms of the net spillover value of CoVaRdown

0.05,0.05

— which are all greater than zero—indicating that these five
countries’ stock markets are the net exporters of risk spillovers
in the first commitment period. In contrast, during the first
commitment period, Thailand, New Zealand, Denmark, China,
and Indonesia are ranked in the bottom five countries in terms of
CoVaRdown

0.05,0.05 net spillover value—which are all
negative—indicating that the stock markets of these five
countries are main receivers of risk spillover.2 These results
suggest that signatories are the primary risk exporter
while non-signatories usually play the role of risk receivers.
Most signatories have highly developed financial markets

where capital and information flow more freely. Therefore,
due to the influence of prevalent market sentiment and
international investment strategy adjustments, the stock
markets of signatories tend to transmit more risks to those of
non-signatories.

3.3.2 Dynamic network analysis
The static network analysis above explores risk spillover

between the stock markets of various countries when the crude
oil market is at risk by estimating the models’ fixed parameters over
a sample period. Since risk spillovers between stock markets are
time-varying, this section draws on Diebold and Yilmaz (2012) to
conduct dynamic spillover analysis with a step of 1 and a rolling
window of 200. That is, the first spillover is calculated with the data
from the 1st to the 200th sample observations, and the second
spillover is calculated with the data from the 2nd to the 201st
sample observations, and so on.

Figure 3 depicts the total tail risk spillovers — CoVaRdown
0.05,0.05 or

CoVaRup
0.05,0.05 — in the stock markets of the 28 countries when the

TABLE 6 Static risk spillover effects (top and bottom 5 countries).

Ranking 1 2 3 4 5

1st commitment period CoVaRdown
0.05,0.05 TO Netherlands France Germany United Kingdom. Sweden

FROM Denmark South Korea Australia Japan Norway

NET France Netherlands Germany United Kingdom. Sweden

2nd commitment period CoVaRdown
0.05,0.05 TO Netherlands France Sweden United Kingdom. Germany

FROM South Korea France Netherlands Germany Sweden

NET Netherlands France United Kingdom. Sweden Germany

1st commitment period CoVaRup
0.05,0.05 TO Netherlands France United Kingdom. Sweden Germany

FROM China Indonesia South Africa Greece India

NET Netherlands France United Kingdom. Austria Belgium

2nd commitment period CoVaRup
0.05,0.05 TO Netherlands France United Kingdom. Austria Belgium

FROM France South Africa Austria Netherlands Belgium

NET France South Africa Austria Netherlands Belgium

Ranking 24 25 26 27 28

1st commitment period CoVaRdown
0.05,0.05 TO New Zealand Thailand South Africa Indonesia China

FROM Greece Indonesia Israel South Africa China

NET Thailand New Zealand Denmark China Indonesia

2nd commitment period CoVaRdown
0.05,0.05 TO Turkey Japan Malaysia Indonesia China

FROM Greece Mexico Brazil Turkey China

NET South Korea India Japan Malaysia Indonesia

1st commitment period CoVaRup
0.05,0.05 TO South Korea India Japan Malaysia Indonesia

FROM Australia United Kingdom. Norway South Korea Belgium

NET South Africa New Zealand South Korea Malaysia India

2nd commitment period CoVaRup
0.05,0.05 TO South Africa New Zealand South Korea Malaysia India

FROM Brazil Greece Mexico Turkey China

NET Brazil Greece Mexico Turkey China

2 See the Supplementary Table A3 in Supplementary Appendix for the
complete information of static risk spillovers for all sample countries.
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crude oil market is at risk during the two commitment periods. It can
be seen that during the first commitment period CoVaRdown

0.05,0.05 and
CoVaRup

0.05,0.05 in the stock markets fluctuate between 80% and 90%.
Compared to the first commitment period, the fluctuation range in the
second commitment period is wider, when CoVaRdown

0.05,0.05 and
CoVaRup

0.05,0.05 swing between 75% and 95%. In either commitment
period, the risk spillovers from other countries account for more than
75% of total risk. This indicates that when the crude oil market is at
risk, the tail risk of each stock market mainly comes from stock
markets in other countries. Internally generated tail risk is
relatively low.

Three marked periods in Figure 3 are worth close
examinations. The first is the 2008 global financial crisis and its
aftermath. Due to deep debt crisis and high deficit levels, panic was
widespread in the market and the economy in many countries
went into recession. The total tail risk spillover, CoVaRdown

0.05,0.05 and
CoVaRup

0.05,0.05, hovered close to 90%. The implementation of
projects under the Kyoto Protocol was affected due to budget
cuts and reduced spending. With the forceful actions taken by
governments and international institutions such as IMF and EU,
the risk spillover effect was subsequently contained, which is
visible in the abrupt plummet in CoVaRdown

0.05,0.05 and
CoVaRup

0.05,0.05 in mid 2010. The second dramatic period is mid
2015. The total spillover effects of CoVaRdown

0.05,0.05 and CoVaR
up
0.05,0.05

rose sharply from June to August 2015, when the circuit breaker
was triggered in the US stock market and thousands of stocks
reached limit down repeatedly in the Chinese stock market. The
third notable period is February to March 2020. With the outbreak
of the global pandemic, many enterprises were forced to suspend

or scale down production or business. The interruptions in capital
flow and production chain greatly increased risk spillovers in
global stock markets.

Since the total spillovers do not reflect the directional
information of risk spillover, “TO all others” CH

•← i and
“FROM all others” CH

i ←• represent the risk spillover generated
and received by country i respectively, which are shown in
Supplementary Figure A1 through Supplementary Figure A4
in Supplementary Appendix. Supplementary Figures A1, A2
show the risk spillover by each country to the other
27 countries when the oil market is at risk during the two
commitment periods. Overall, CH

•← i of CoVaRdown
0.05,0.05 and

CoVaRup
0.05,0.05 follow similar trends for almost all countries. In

both commitment periods, risk spillovers by non-signatories to
others are generally below 4%. In contrast, risk spillovers of
signatories are generally above 4%, suggesting that they yield
greater risk spillover effects to others. Therefore, when the crude
oil market is at risk, signatories possess stronger risk spillover
effects to others than non-signatories. Supplementary Figures
A3, A4 illustrate the risk spillover received by each country from
the other 27 countries, CH

i ←•, during the two commitment periods
respectively. Except for China, the upside and downside risk
spillover effects received by most countries are generally stable at
around 3% across the two commitment periods. In contrast to
Supplementary Figures A1, A2, signatories and non-signatories
show little difference in risk spillover received in Supplementary
Figures A3, A4.

Figures 4, 5 characterize the net risk spillover (CH
i ) by each

country, which is defined as the difference between CH
•← i and

FIGURE 3
Total spillovers. Note: The unit of the vertical axis is percentage.
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CH
i ←•. A positive CH

i indicates that a country is an overall risk
exporter, while a negative CH

i indicates an overall risk receiver.
During both commitment periods, the net spillover values of
CoVaRdown

0.05,0.05 and CoVaRup
0.05,0.05 of non-signatories are mostly

negative, indicating that they are net risk spillover receivers. In
contrast, the net spillover values of CoVaRdown

0.05,0.05 and CoVaRup
0.05,0.05

are mostly positive for signatories, suggesting they are net
risk spillover exporters. The fundamental reason behind this
contrast is that the signatories are all developed countries
that occupy advantageous economic positions in the world. When
their economies or stock market experience crisis or turbulence,
other countries will quickly feel the impact via the global financial
system. Therefore, the risk exported by signatories to other countries
is usually higher than what they import.

4 Conclusion

This paper examines and compares the correlation between the
crude oil market and 28 major global stock markets and risk spillover
effects during the first and second commitment periods of the Kyoto
Protocol. Our major findings are as follows.

There are positive correlations between the crude oil market
and stock markets in the world. In comparison, the correlations
and risk spillovers between the crude oil and stock markets are

weaker in the second commitment period. In addition, during
both commitment periods, the crude oil market has risk spillover
effects on most stock markets, and the upside risk spillover effect
is stronger than the downside effect. This means that compared
to long positions, short positions in stock markets are more
susceptible to risk spillovers from the crude oil market.
Last but not least, according to the total spillover, when the
crude oil market is at risk, the tail risk of a stock market
mainly comes from risk spillover of other countries rather than
from within. The dynamic network analysis reveals that non-
signatories are mostly net receivers of risk spillovers, while
signatories are net exporters of risk spillovers when the crude
oil market is at risk.

The findings in this study offer some advice to market
participants and regulators. Stock market investors should be
aware of the risk spillover effects from the crude oil market.
When formulating and adjusting their portfolios, investors
should assess the relationship between crude oil and stock
markets to mitigate potential risk caused by extreme oil price
fluctuations. As the upside spillover effect of the crude oil market
on stock markets is much stronger than the downside effect,
stock investors taking short positions should be particularly keen
of risk spillover from extreme crude oil market. Overall, investors
should maintain a prudent attitude and conduct rational analysis
when making investment to avoid being overwhelmed by market

FIGURE 4
Net spillovers (1st commitment period). Note: The unit of the vertical axis is percentage.
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sentiment or herding in financial markets. Financial regulators
should be prepared for cross-market and cross-border risk
contagion. Besides designing and implementing prudential
policies to mitigate tail risks in individual markets, they
should also pay attention to the risk spillover effects between
different markets, and improve cross-market risk handling and
regulatory coordination. In particular, since signatories usually
export risk spillovers to non-signatories when the crude oil
market is at risk, it would be worthwhile to discuss a financial
firewall mechanism to prevent the outbreak and spread of
financial crisis. Regular communications among regulators in
different countries would facilitate international cooperation
and coordination.

This study focuses on the relationship between global stock
markets and the crude oil market. In reality, besides stock and
crude oil markets, investors often also participate in foreign
currencies, fixed income securities, and gold investment, thus
benefiting from enhanced diversification or hedging. This paper
uses the time-varying Copula-CoVaR model to study the
correlation and risk spillover between stock and crude oil
markets, but does not consider the impact of exchange rates,
interest rates, gold, or other factors. The conventional
multivariate Copula model requires that the correlation
between each pair of variables is identical, which does not fit
the reality of multi-market portfolios. As a future project, we plan

to employ the vine Copula model to describe the
complex interdependence among various financial markets. By
calculating CoVaR, we can explore the risk spillover
effects between the markets of crude oil, foreign currencies,
fixed income securities, and gold, as well as stocks markets
of various countries. Generalized variance decomposition
based on the Adaptive Lasso-VAR model would enable the
construction of a risk spillover network to identify risk
exporters and receivers.
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