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The swift urbanization in China during the past two decades heightened the
environmental pressure on cities from anthropogenic production and
consumption beyond the regional capacity. The Sichuan Basin, situated in
southwest China, faced severe air pollution as its unique topography as a basin
surrounded by mountains caused frequent temperature inversion and trapped air
pollutants. In this paper, we investigated the evolution of spatiotemporal patterns
of particulatematter with diameter not greater than 2.5 µm (PM2.5) across eighteen
cities in the Sichuan Basin. In addition, a spatial association network was
characterized through social network analysis using China’s air monitoring data
and relevant socioeconomic data. The results were as follows: (1) A significant
reduction in PM2.5 emissions in the Sichuan Basin occurred from 2015 to 2020, but
challenges remain: the number of cities with a PM2.5 annual concentration above
35.00 µg/m3 decreased from seventeen to six, and the annual concentration
declined from 62.92 µg/m3 to 40.83 µg/m3 in Chengdu and from 55.08 µg/m3 to
32.67 µg/m3 in Chongqing. PM2.5 concentrations were the highest in the winter,
around 1.50–2.00 times the annual concentration. (2) The PM2.5 overall network
displayed significant spatial association with periodic changes implying that the
inter city association strengthened , then weakened, and then strengthened again
from 2015 to 2019 despite a sharp drop in the PM2.5 concentration. Network
density remained at 0.29 between 2015 and 2019 but increased to 0.30 in 2017,
efficiency increased from 0.72 to 0.80 and connectedness from 0.78 to 1.00. A
“core edge” pattern explicitly presented that Chengdu and Chongqing were
located at the center with degree of 94.40 and 82.35, respectively, while other
cities marginalized less than 35.30. (3) The driving factors of network structure
were explored by quadratic assignment procedure, which showed that enlarging
the difference in gross domestic product gap between secondary and tertiary
industries and urban population and narrowing the difference among urban ratio,
the number of civilian vehicle and distance between cities efficiently promotes the
PM2.5 spatial association in the Sichuan Basin. The dominant factors impacting the
PM2.5 spatial and temporal differences were the gross domestic product gap
between secondary and tertiary industries, urban population and the number of
civilian vehicle identified by quadratic assignment procedure. A synergetic effect
among these factors played an important role as the cities with annual
concentration PM2.5 < 35.00 µg/m3 corresponded to those with a combination
of relatively small value for these driving factors.
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1 Introduction

China has experienced swift urbanization during the past two
decades, with the urban ratio climbing from 36.22% in 2000 to
63.89% in 2020, accompanied by a huge population influx into cities
(National Bureau of Statistics of China, 2001, 2021). This has
heightened the environmental pressure on cities from
anthropogenic production and consumption beyond the regional
capacity. Air pollution has been recognized as one of the most
critical threats to human health as no one is able to escape from the
risks posed by severe haze episodes (Yin et al., 2017; Zhang et al.,
2022). In 2019, it was the fourth-leading cause of early death
throughout the world and strong attention has been focused on
three pollutants in particular: PM2.5, ground-level ozone and indoor
fine particulate matter. In the same year, over 90% of the population
was exposed to PM2.5 concentrations greater than 10.00 μg/m3

annually, while 51.00% of the population experienced even worse
conditions, with PM2.5 concentrations exceeding 35.00 μg/m3, the
standard and interim target-1 level in the World Health
Organization (WHO) guidelines. Approximately 6.67 million
deaths were ascribed to diseases linked to air pollution worldwide
in 2019, of which 4.14 million were specifically related to PM2.5

pollution. In China, around 1.85 million deaths were associated with
air pollution and 1.42 million deaths with PM2.5 pollution (Song
et al., 2017; Health Effects Institute, 2020). The WHO tightened the
standard from the previous 10.00 to 5.00 μg/m3 in 2021 (WHO,
2006; WHO, 2021). In China, Ambient Air Quality Standards
(AAQS, GB3095-2012) were upgraded by including standards for
PM2.5: 15.00 μg/m

3 (annual Grade-I), 35.00 μg/m3 (annual Grade-II
and daily Grade-I) and 75.00 μg/m3 (daily Grade-II) in 2012. This
came into implementation in 2016, but PM2.5 monitoring data for
major cities have been available publicly since 2015 (Ministry of
Environmental Protection of China, 2012). Therefore, a study on
PM2.5 emissions and control in the context of the Sichuan Basin’s
(SCB’s) rapid socioeconomic development is of great significance.

Normally PM2.5 samples are taken across different seasons at a
certain location, such as Chengdu, Lanzhou, Nanjing, Tianjin,
Shenzhen, Beijing Chongqing, and Hangzhou. Further analysis
found that inorganic ions and organic carbon dissolving in water,
microelements, carbonaceous species, and certain aromatic
hydrocarbons were the main components of PM2.5 samples. A
positive matrix factorization model was employed to explore
whether road dust, coal combustion, power plants, secondary
aerosol and sulfate, vehicle emissions, iron-steel industry,
biomass burning and crustal dust were the sources. PM2.5

emissions were extremely severe in winter (Gu et al., 2011; Liu G
et al., 2015; Li L et al., 2017; Tan et al., 2017; Kong et al., 2020).

Regional studies of the main megacity cluster in China have
highlighted similar topics, with consideration of transportation on
PM2.5 emission between cities. In the Yangtze River Delta region, the
main components of PM2.5 were sulfate, nitrate, organic matter, and
ammonium, originating from biomass burning and vehicle emissions.
PM2.5 pollution was exacerbated by adverse meteorology (Hua et al.,
2015). In the Beijing-Tianjing-Hebei megacity cluster, extreme haze

events were driven by local emissions from Beijing andHebei, whereas
in Tianjin, external transport was the predominant source (Li J et al.,
2017). In this region, the spatial association of PM2.5 pollution was
studied using Pearson’s correlation coefficient (An et al., 2020). In the
Pearl River Delta region, ionic species were amajor PM2.5 component,
accounting for 53.30% in winter and 39.40% in summer. Source
apportionment identified industrial sources as the largest contributors
while nitrate and ammonium ion mainly originated from agricultural
emissions. Strong seasonal fluctuation in chemical composition was
also found, with higher concentrations of ionic species occurring in
the winter (Lai et al., 2007; Huang et al., 2018; Hou et al., 2019). The
SCB is situated in southwest China; its unique topography as a basin
surrounded by mountains causes frequent temperature inversion and
traps air pollutants, inducing severe pollution in the winter (Zhang
et al., 2012; Tao et al., 2013; Chen et al., 2014). Regional stagnant
meteorology tended to prevent the particles from dispersing. Crustal
elements were the predominant natural source of PM2.5 whereas
anthropogenic activities contributed heavily to other ion species (Feng
et al., 2020; Qiao et al., 2019). In south SCB, high PM2.5 concentrations
were found (Ning et al., 2018; Fan et al., 2020). Previous studies have
attempted to find out how PM2.5 spatial variation is impacted by
human activities and natural conditions in Chinese cities using global
regression models, the drivers of air pollution in Sichuan province by
structural decomposition method and the economic agglomeration
impact on PM2.5 pollution by output density model and spatial
Durbin model in the Yellow River region (Liu et al., 2018; Wang
et al., 2022).

It is noteworthy the primary concerns regarding PM2.5 study
have shifted from individual cities to regional scales. But they mainly
focused on the chemical characteristics and composition, source
apportionment, and seasonal and regional fluctuations in PM2.5

pollution. However few studies have investigated the overall PM2.5

spatial association, relationship between cities and evolution as well
as its drivers in SCB by social network analysis. An investigation in
this field is essential to understand its formation and inform effective
mitigation measures.

Here, the concentration of PM2.5 from 2015 to 2020 and the
statistical data for anthropogenic activities from 2015 to 2019 were
collected to reveal trends in PM2.5 concentrations and its spatial
association network in SCB through social network analysis (SNA)
using a gravity model with the following objectives: The PM2.5

spatiotemporal evolution was visualized using ArcGIS. Its spatial
association network was studied at the regional scale in SCB using a
modified gravity model, with the characterization of overall network
and each individual node by SNA. An intuitive spatial association
network with a core-edge pattern was observed and the evolution
displayed. Its driving factors were further investigated using the
quadratic assignment procedure (QAP) method, which can generate
realistic results due to its ability to deal with multicollinearity
between independent variables. The root causes behind the
driving factors are discussed and further regional-scale mitigation
proposals are suggested herein; a clean industrial chain by life cycle
assessment and an environmentally friendly ideology for lifestyle are
expected from production and consumption in future development.
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2 Methodology

In SNA, the social agent, considered as a node in the social
network, is an individual, company, organization, city or country
and the connections between the nodes, edges, form the whole
network structure. Originally used in sociology (Wasseman and
Faust, 1994; Luo, 2005; Scott, J., 2007), SNA has been progressively
applied to management, politics, geography, economics, physics
(Liu, 2019), and environments (Song et al., 2019; An et al.,
2020). The SCB includes eighteen cities with huge population
and swift industrialization (Figure 1). It ranks as one of the most
severely polluted regions in China due to its basin topography
surrounded by high mountains and anthropogenic emission
(Zhang et al., 2012). Therefore, the eighteen cities in SCB can be
considered as nodes and the interactions between them as the edges
in the study of the PM2.5 spatial association, together with the
driving factors.

The PM2.5 spatiotemporal evolution in SCB from 2015 to 2020,
including the annual average concentration and peak monthly average
concentration in December and January, was visualized using ArcGIS.
The PM2.5 spatial association network was studied by considering each
individual city as a node and inter-city PM2.5 circulation as an edge.
Firstly, a spatial correlation matrix should be established. In the gravity
model the mutual interaction between cities is proportional to the target
parameter but inversely proportional to the distance. It is widely used to
construct the spatial correlation matrix and further to evaluate the
relationship. This gravity model was shown in Eq. 1 and here the
target parameter is PM2.5 concentration in the city (Kuik et al., 2019;
Bai et al., 2020; Wang et al., 2020).

Yij � Kij
Mi × Mj

Db
ij

(1)

Kij � Ci

Ci + Cj
(2)

Yij: the gravitation between two cities; Mi: the mass (PM2.5 annual average
concentration) of city i; Mj: themass (PM2.5 annual average concentration)
of city j;Dij: the distance between two cities; Ci andCj: PM2.5 annual average
concentration of city i and city j; Kij: the empirical constant as Eq. 2; b: the
distance attenuation coefficient and considered as 1 here.

Normally, the gravity model was extended by including the
relevant elements on the target parameter, which was helpful to
make a comprehensive evaluation on the relationship. Therefore, the
“mass” of PM2.5 concentration was modified according to the source
appointment of PM2.5 in Chongqing and Chengdu. The major
components are mainly from coal combustion, vehicle emissions,
industrial pollution, and soil dust (Chen et al., 2017; Kong et al.,
2020). Based on the modified gravity model in previous research and
considering the availability of raw data for each individual city, the
following parameters were integrated: urban population (Pi), land
area of urbanized area (Li); the number of civilian vehicle (Vi), gross
domestic production from secondary industry (Si), and gross
domestic production from tertiary industry (Ti). These variables
were converted to a comparable order of magnitude as PM2.5

concentration by geometric mean; the square root of the
obtained value and PM2.5 concentration was taken as Mi in Eq. 1
producing the modified gravity model in Eq. 3.

Yij � Kij ×

�����������������������
Ci ×

�����������������
Pi × Li × Vi × Si × Ti

5
√√

×
�����������������������
Cj ×

�����������������
Pj × Lj × Vj × Sj × Tj

5
√√

Dij

(3)

A gravity matrix with i rows and j columns was obtained from
Eq. 3. It was dichotomized by comparing individual gravity values
with the average gravity value of the matrix; if greater than the

FIGURE 1
Location of eighteen cities in the SCB.
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average, a value of 1 was assigned, indicating strong association between
the cities, otherwise a value of 0 was assigned (Liu H et al., 2015; Su and
Yu, 2019; Wang et al., 2020). The spatial association was visualized, and
the characteristic parameters of the overall network structure and each
individual city were assessed using SNA and Ucinet. The QAP method
was applied to study the driving factors, without considering the direction
of the spatial association, as this paper studies its formation and evolution,
following Bai et al. (2020).

2.1 Whole network parameters

The overall network of PM2.5 was evaluated with the parameters
network density (D), connectedness (C), and efficiency (GE), as
formulated in Eqs. 4–6. A higher network density and
connectedness, but lower efficiency implies more connections
between nodes, fine accessibility, and fewer isolated nodes
(Wasserman and Faust, 1994; Barnett, 2011).

Network density (D) expresses the closeness of nodes and is
calculated using the actual number of associations (L) and the
maximum potential number of associations (N(N-1)) in the network,
as given in the following formula, where N is the number of nodes. It
represents the cohesion and tightness of nodes in the network, bounding
between 0 and 1. Higher density means themutual and close dependence
among the nodes in the network (Qian et al., 2018).

D � L
N N − 1( ) (4)

Network connectedness (C) measures the accessibility between
nodes and the stability of the overall structure, as given in the
following formula, where (V) is the number of mutually unreachable
point pairs and (N) is the number of nodes: It reveals the robustness
of the overall network structure, with higher value for close
connection with each other in the network (Liu, 2019).

C � 1 − 2V
N N − 1( ) (5)

Network efficiency measures the connection efficiency and
the degree of redundant edges in the network and is calculated
using the number of redundant edges (M) and maximum
number of redundant edges (max (M)). The more redundant
connections there are, the more inefficient the network is (Qian
et al., 2018).

GE � 1 − M
max M( ) (6)

2.2 Parameters for nodes in the network

Three parameters were employed to study node behavior in the
network and relevant calculation in Eqs. 7–9, (Freeman, 1979).

Nodes with higher degree centrality (DC) have more direct ties
with others, greater power, and a more central position in the
network (Bai, et al., 2020). The relative degree was calculated
using the number of direct associations of the nodes (n) and the
number of nodes in the network (N) as follows:

DC � n
N − 1

(7)

Betweenness centrality (BC) measures the “bridge” function for a
node in the network (Liu, 2019). It is defined by howmany shortcuts exist
between two nodes, considering the number of shortcuts cross node i as
follows: gjk(i) is the number of shortest paths connecting node j and node
k throughnode i; gjk is the total number of shortest paths connecting node
j and node k, N is the number of the node. It can reflect the intermediary
role played by a node in the network.

BC �
2∑N

j ∑N
k

gjk i( )
gjk

N − 1( ) N − 2( ) j ≠ k ≠ i, j< k (8)

Closeness centrality (CC) measures whether a node is controlled
by others or not and is defined as the shortest length between two
nodes (dij) in the following equation, N is the number of the node
(Song et al., 2019). It shows how quickly a node reaches all the other
nodes in the network and the central nodes not easily affected by
others are normally with higher value.

CC � N − 1

∑N
j�1dij

× 100 (9)

2.3 Investigation of driving factors by QAP

The driving factors of the network were investigated by QAP,
which is a non-parametric method, and the multicollinearity
problem among multiple independent variables were avoided
with the following operations (Song et al., 2019; Bai et al., 2020):
firstly, the correlation coefficient was checked by QAP correlation
analysis between one independent matrix and one dependent matrix
by randomly permuting the data. The relationship between one
dependent matrix and multiple independent matrices was explored
by QAP regression analysis. The driving factors promoting the
network were identified from the independent matrix with the
coefficient falling into the accepted region.

2.4 Data collection and preparation

PM2.5 concentrations in SCB were obtained from
125 monitoring stations in the eighteen cities from China
National Environmental Monitoring Centre (http://www.cnemc.
cn), China Urban Statistical Yearbook (National Bureau of
Statistics of China, 2016–2021) and an air quality on-line
monitoring platform (https://www.aqistudy.cn/). These data were
compared with the annual mean PM2.5 concentration data extracted
from the gridded global surface PM2.5 concentration dataset on the
basis of aerosol optical depth retrievals from the NASA MODIS,
MISR, and SeaWIFS instruments as well as subsequent calibration
by Atmospheric Composition Analysis Group, Washington
University in St. Louis (https://sites.wustl.edu/acag/datasets/
surface-pm2-5/). The correlation coefficient were greater than
0.85 for seventeen cities except Guanyuan. Guangyuan exhibited
the lowest PM2.5 from 2015 to 2020 in the SCB: 22.00-27.97 μg/
m3 from above datasets and 22.00-28.08 μg/m3 from monitoring
stations, with the maximum difference of 5.97 μg/m3 from the
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two origins. Meanwhile, most data from monitoring stations
were greater than those from datasets. Therefore, the
monitoring data from the stations were used in the study. The
straight-line distance between cities was determined using
ArcGIS. The socioeconomic data were derived from Sichuan
Statistical Yearbook (Sichuan Provincial Bureau of Statistics,
2016-2020) and Chongqing Statistical Yearbook (Chongqing
Bureau of Statistics, 2016-2020). These data were substituted
into the modified gravity model in Eq. 3 to construct the
dependent matrix. The difference of socioeconomic data
between cities was used to build the independent matrix.

3 Spatiotemporal evolution and spatial
association network of PM2.5 in SCB

3.1 Spatiotemporal evolution

3.1.1 Annual concentration of PM2.5

The annual average concentration of PM2.5 in eighteen cities in SCB
from 2015 to 2020 is displayed in Figure 2, with the subdivided range
referring to the China Ambient Air Quality Standard: 15.00 μg/m3 for
annual grade I, 35.00 μg/m3 for annual grade II and daily grade I, and
75.00 μg/m3 for daily grade II in national standard GB 3095-2012.

In 2015, only one city, Guangyuan, located in the northernmost
part of SCB had a PM2.5 concentration below 35.00 μg/m3, while
eight cities including Chongqing in the central belt from

northwest to southeast had PM2.5 concentrations between
36.00 and 55.00 μg/m3. The PM2.5 concentrations in seven cities
including Chengdu in the southwest and Nanchong and Dazhou
in the north were higher, ranging 56.00–75.00 μg/m3. This most
polluted area in the southwest is enclosed among the edge of SCB
and two megacities: Chengdu and Chongqing. Gradual improvement
occurred from 2015 to 2020; heavy PM2.5 pollution
(56.00–75.00 μg/m3) was eliminated and twelve cities reduced
their annual concentration to below 35.00 μg/m3. Notably, PM2.5

concentrations decreased from 62.92 to 40.83 μg/m3 in Chengdu
and from 55.08 μg/m3 to 32.67 µg/m3 in Chongqing. Unfortunately,
PM2.5 exceeded 35.00 μg/m3 in six cities including Chengdu, and no
city had levels below than 15.00 μg/m3 in any of the years.

3.1.2 PM2.5 in peak month
Severe PM2.5 pollution occurred in the winter, particularly in

December and January. The spatial pattern of monthly PM2.5

concentrations from 2015 to 2020 was visualized on the basis of
the daily concentration standard 35.00 μg/m3 and 75.00 μg/m3

(Figure 3). In 2015, the highest monthly PM2.5 concentration
(116.00–155.00 μg/m3) was in the southwest of SCB and the
lowest was in Guangyuan, partly consistent with the distribution
of annual concentration in Figure 2. However, Guang’an listed as
the most polluted city in Figure 3 did not exhibit the highest annual
concentration. In 2015, PM2.5 levels were greater than 75.00 μg/m3

in fifteen cities, whereas only one city exceeded this level in 2020.
No city achieved concentrations less than 35.00 μg/m3 in any of the

FIGURE 2
PM2.5 annual concentration in SCB 2015-2020. (A) Annual PM2.5 in 2015 (B) Annual PM2.5 in 2016 (C) Annual PM2.5 in 2017 (D) Annual PM2.5 in 2018 (E)
Annual PM2.5 in 2019 (F) Annual PM2.5 in 2020.
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years. These monthly concentrations were around 1.50–2.00 times
the annual concentration. Figure 4 shows this remarkable gap, with
a similarly global decrease, which increases in certain years as
annual concentration. The maximum concentration (annual from
73.58 to 43.17 μg/m3; monthly from 136.00 to 77.00 μg/m3) and
minimum concentration (annual from 28.08 to 22.00 μg/m3;

monthly from 55.00 to 38.00 μg/m3) are plotted in Figure 5. The
number of days experiencing PM2.5 levels greater than 75.00 μg/m3

was the highest in December and January across all cities (Figure 5)
and declined dramatically but with increases in 2017 and 2019.
PM2.5 pollution in the winter is the key factor that must be
addressed to mitigate the impact comprehensively and adequate

FIGURE 3
PM2.5 peak monthly concentration (December and January) in SCB 2015-2020. (A) Monthly PM2.5 in 2015 (B) Monthly PM2.5 in 2016 (C) Monthly
PM2.5 in 2017 (D) Monthly PM2.5 in 2018 (E) Monthly PM2.5 in 2019 (F) Monthly PM2.5 in 2020.

FIGURE 4
PM2.5 concentration gap 2015-2020.

FIGURE 5
PM2.5 maximum and minimum 2015-2020.
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attention should be paid to emissions rebounds following
reductions. Spatial heterogeneity has been smoothed since 2015.

3.2 Parameters of the spatial association
network

3.2.1. Parameters of overall network
The relation matrix was established by the modified gravity

model in Eq. 3, and the corresponding visualized spatial
association network structure was drawn intuitively using
NetDraw in the Ucinet software in Figure 6 for the PM2.5

pollution in SCB in 2015 and 2019. A formed spatial network
structure is observed and it changes slightly with Bazhong and
Guangyuan no more isolated in 2019. Chengdu and Chongqing
take the center with powerful strength in the network while
Ya’an, Bazhong and Guangyuan are poorly connected with
others and are explicitly marginalized.

Additionally, density, connectedness, and efficiency were
calculated for the overall network using Eqs. 4–6; this is
illustrated in Figure 7. There was a change in density from
0.29 in 2015 to 0.30 in 2017, followed by a decline to 0.25 in
2018 and subsequent increase to 0.29 in 2019, representing that the
closeness degree rises, falls, and rises again in the network structure.
The network efficiency exhibits a global increase from 0.72 to
0.80 with an exceptional decrease to 0.75 in 2017, coinciding
with the increased density that year. Network connectedness was
0.78 in 2015 and reached 1.00 in 2019, consistent with the network
consisting of two isolated nodes in 2015 to being completely
connected in 2019 (Figure 6). These data demonstrate the overall
network is of significant spatial association effect with periodic
changes implying the inter-city association strengthens, then
weakens, and then strengthens again.

This evolution could be ascribed to the multiple impacts of rapid
development, national environmental policy, and technological
improvement. From 2015 to 2019, the relevant socioeconomic
data in SCB rose significantly with ratio of 1.14 for urban
population, 1.92 for civilian vehicles, 1.28 for urban built area,
1.61 for secondary industry, and 1.51 for tertiary industry
(Sichuan Provincial Bureau of Statistics, 2016–2020; Chongqing
Bureau of Statistics, 2016–2020). Accordingly, more emission and
mutual flow between cities accelerate the formation of PM2.5

association network. In 2017, the rebound of PM2.5 peak
monthly concentration in Figure 3, the highest density and the
decreasing efficiency in Figure 7 are the consequence. However, this
can be prevented by smart urban planning, strict industrial and
environmental policy, and green technology. A reasonable urban
spatial planning pattern allows less spatial segregation between
different functions and shortens daily commutes. A series of
policies and technologies for clean production, green
transportation, and eco-friendly cities are trying to reverse this
trend. The explosion of environmental policy in 2016–2017 such
as the National 13th Five-Year Plan for the Environmental

FIGURE 6
Spatial association network of PM2.5 pollution in SCB (The size of point is positively proportional to the degree). (A) PM2.5 spatial association network
in 2015 (B) PM2.5 spatial association network in 2019.

FIGURE 7
Overall network density, connectedness and efficiency.
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TABLE 1 Typical degree, closeness and betweenness of different cities in PM2.5 association in SCB.

Group Degree Closeness Betweenness

2015 2019 2015 2019 2015 2019

Chengdu 88.23 94.12 33.33 94.44 42.67 66.00

Chongqing 82.35 82.35 32.69 85.00 28.67 35.00

Maximum of other cities 47.06 35.29 28.33 60.71 2.67 16.00

Minimum of other cities 0.00 5.88 0.00 36.96 0.00 0.00

FIGURE 8
Spatiotemporal evolution of degree, closeness and betweenness in PM2.5 association in SCB (2015, 2019). (A) Degree in 2015 (B) Degree in 2019 (C)
Degree difference between 2015 and 2019 (D)Closeness in 2015 (E)Closeness in 2019 (F)Closeness difference between 2015 and 2019 (G) Betweenness
in 2015 (H) Betweenness in 2019 (I) Betweenness difference between 2015 and 2019.
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Protection, the explicit statement of green and sustainable
development in the report at the 19th National Congress of the
Communist Party of China explain the turning point in 2018 shown
in Figure 7 (State Council of the PRC, 2016; Chinese People’s
Publishing House, 2017). These regional and national policies
emphasize intense concerns about environmental issues.
Combined with strict inspection measures throughout the
country by central steering group, preliminary success was
achieved in 2018. The balance between environmental and
economic is changing and the formation in 2019 was strengthened.

3.2.2 Centrality analysis of node characteristics
Degree, betweenness, and closeness centrality evaluate the

power of each individual node in the network. They were
calculated using Eqs. 7–9 with typical data presented in Table 1.
Figure 8 presents a visualization of their spatiotemporal evolution.

Table 1 shows that the three indicators were the highest for
Chengdu: in particular from 2015 to 2019, closeness and
betweenness increased 3.00 fold and 1.50 fold respectively, and
degree increased only slightly. Chongqing followed its lead
closely but at a slower pace. This means the direct relationship
among the two metropolises and other cities is remarkably strong.
Their powerful influence is further strengthened by frequently
acting as bridges in the association network and being much less
susceptible to being controlled by others. Their predominant
position can be attributed to their administrative status: Chengdu
is the capital of Sichuan province and Chongqing is a municipality
directly under the Central Government.

In the other cities, both the maximum closeness and
betweenness increased while the maximum degree decreased.
Only five cities: Leshan, Yibin, Mianyang, Dazhou and
Nanchong, displayed increase in all three parameters.
Surprisingly, a decrease both in degree and betweenness occurred
in Meishan, Ziyang, Zigong and Neijiang, which lie adjacent to
Chengdu and Chongqing, and neither of them has an equivalent
influence on the association as compared to their location. This
indicates heterogeneity and differentiation occur in the association.
The betweenness in these cities was quite small: the maximum was
for Dazhou (16.00), was less than 3.00 for the other four cities, and
remained 0.00 in 2019. This implies that they were unable to serve as
a bridge in the region (Table 1; Figure 8).

The above illustration presents a core-edge pattern for PM2.5

association in SCB predominated by Chengdu and Chongqing and
supported by Yibin and Leshan in south, Mianyang, Nanchong, and
Dazhou in north. These cities exhibited more spatial ties with other
cities, acting as strong bridges, whereas the remaining cities were
highly marginalized. Therefore, further PM2.5 mitigation policies
should prioritize these core cities.

3.3 Drivers analysis of spatial association

The drivers of the PM2.5 association network in SCB were
investigated. Specifically, the spatial matrix was considered as the
dependent variable. The potential factors were focused on three
aspects: population, economic and urban development and
construction on the basis of a driving mechanism that all the
PM2.5 emission is ascribed to consumption and production

behavior. Therefore, the difference in eight indicators between
the two cities was considered as the independent matrix: direct
distance (V1), urban population (V2), urban ratio (V3), the number
of civilian vehicle (V4); gross domestic product (GDP) gap between
secondary industry and tertiary industry (V5), GDP per capita (V6),
per capita road area (V7), and greening rate (V8). These variables
were normalized using the Z-score method to be of the same order of
magnitude for subsequent QAP analysis.

3.3.1 QAP correlation analysis
The similarities between the PM2.5 association matrix and

each individual potential independent variable matrix were
quantified by the correlation coefficient using QAP correlation
analysis in the UCINET software. The matrix data were randomly
permuted 5000 times to obtain the detailed result (Table 2).
There was a significant negative correlation between the direct
distance and the spatial association, the difference of per capita
road area and the spatial association at the 1% significance level.
Conversely, there was a significant positive correlation among the
difference in urban ratio, urban population, the number of
civilian vehicle, and GDP gap between second industry and
tertiary industry with PM2.5 spatial association at 1% level and
between PM2.5 spatial association and GDP per capita at the 5%
level. Additionally, the difference in greening rate failed to pass
the significance test and no correlation was observed with PM2.5

spatial association.

3.3.2 QAP regression analysis
QAP regression analysis was further performed to study the

relation between the PM2.5 spatial association matrix and multiple
independent variable matrices with significant correlation in
Table 2. Data were randomly permuted 5,000 times in Ucinet to
obtain the information provided in Table 3:

Notably, the coefficient of the difference in GDP gap between the
secondary and tertiary industry matrices and the difference in urban
population matrix reached 0.93 and 0.63, respectively, and was positive
at a significance threshold of 1%. This demonstrates that enlarging the
differences in these variables between cities play a critical role in
influencing the evolution of PM2.5 spatial association Industry has
been universally regarded as the origin of PM2.5 emissions and
particularly different structure gives diverse impact even with same
GDP. Secondary industry is generally recognized as being much more
polluting than tertiary industry. This is consistent with the findings of
the present study, which identified the GDP gap between secondary and
tertiary industries as the most important driver of patterns of PM2.5

concentrations. Urban population size is the most fundamental driver
of PM2.5 emissions as the source of all consumption and production
activities. Huge consumption drives numerous productions and PM2.5

emissions are made worse by the synergistic effect of mutual
performances. During rapid urbanization, people move into cities
and this influx enlarges the difference in urban population between
cities. The PM2.5 spatial association is strengthened accordingly.

In contrast, the coefficients of the direct distance matrix, the
difference in the urban ratio matrix and the difference in the civilian
vehiclematrix were−0.34,−0.33, and−0.50, showing significant negative
relationships at the 1%, 5%, and 10% level respectively. This implies that
when differences in the three indicators between cities are smaller, the
PM2.5 spatial association is accelerated. Materials and population flow
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more frequently between adjacent cities, which subsequently causes
anthropogenic PM2.5 emissions and atmospheric circulation are
interflowed between them to strengthen the spatial association.
Serious PM2.5 pollution always occurs in highly urbanized cities,
accompanied by urban ratio enhancement. Transportation is
universally criticized for its PM2.5 emissions, particularly from
vehicle exhausts and the disturbance to the atmosphere from
friction between tires and road surfaces. The number of car of
Chengdu and Chongqing rank second and third in number,
respectively, in China. Their civilian vehicle increased to
1.41 and 1.66 fold, respectively, from 2015 to 2019; similar
increases occurred in other cities but with a much smaller total
number of cars, less than 20% of the two big cities (Sichuan
Provincial Bureau of Statistics, 2016–2020; Chongqing Bureau
of Statistics, 2016–2020). This significant negative indicates an
overflow effect with the decreasing the difference of civilian
vehicles between cities promotes the relation of the current
spatial association.

Additionally, the difference in GDP per capitamatrix and that in
per capita road area matrix failed to pass the significance test in the
QAP regression analysis, indicating that the observed spatial
association pattern is not impacted by these factors.

4 Discussion

The spatiotemporal evolution shows that PM2.5 levels in most cities
in the SCB exceeded the national standard in 2015 and dropped sharply
from 2015 to 2020. Nevertheless, a slightly strengthened PM2.5 spatial
association network is observed by SNA analysis based on the modified
gravity model from 2015 to 2019. Alongside the dual impacts of
socioeconomic growth and strict environmental regulations
discussed previously, the regional fusion policy in SCB plays an
important role: developed as Chengdu-Chongqing Metropolitan
Area in 2016 and updated as Chengdu-Chongqing Economic Circle
in 2021 (National Development and Reform Commission, Ministry of
Housing and Urban-Rural Development, 2016; State Council of the
PRC, 2021). However, two cities, Guangyuan and Bazhong, excluded
from the latest economic circle, also exhibited an increasingly stronger
relationship with other cities in the PM2.5 spatial association in 2019 as
compared to their initial isolation in 2015. This phenomenon reminds
us regardless of how cities are economically classified, PM2.5 emissions
and dispersion inevitably cause interdependent impacts across the
whole region. Therefore, regionalism is critical to realize further
PM2.5 control and mitigation. Attempting to tackle the emissions of
each city individually will likely fail to achieve the desired targets.

TABLE 2 Coefficient between PM2.5 spatial association and potential driving factors by QAP correlation analysis.

Independent variables Coefficient Significance Average Standard deviation

V1 −0.39 0.00 −0.0010 0.11

V2 0.61 0.0080 −0.0020 0.18

V3 0.54 0.0080 −0.0020 0.16

V4 0.66 0.0060 −0.0020 0.17

V5 0.66 0.0050 −0.0020 0.17

V6 0.44 0.017 −0.0030 0.16

V7 −0.27 0.0070 −0.0020 0.15

V8 0.057 0.29 −0.0020 0.13

TABLE 3 Driving factors investigated by QAP regression analysis.

Independent Un-standardized coefficient Standardized coefficient Significance

Intercept 0.30 0.000

V1 −0.17 −0.34 0.00

V2 0.28 0.63 0.0040

V3 −0.15 −0.33 0.028

V4 −0.22 −0.50 0.095

V5 0.41 0.93 0.000

V6 −0.016 −0.035 0.39

V7 0.012 0.025 0.31

R2 0.62 Adj. R2 0.61

Probability 0.00 Observation 306
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The evolution of the density, efficiency, and connectedness of
the overall network shows that the closeness degree of spatial
association is promoted by some fluctuations. Despite the rapid
drop in PM2.5 concentration due to strict environmental regulations,
upgrades to the economic structure and smart urban planning, the
rebound of the overall network parameters implies the collaborative
governance effect of inter-city PM2.5 emissions show a backward
trend. The growth of all the socioeconomic parameters is a lasting
motivation for local governments. Environmental targets have been
outlined in national policy but occasionally fail to be fully addressed
in practice. The degree, closeness, and betweenness reveal that
Chengdu and Chongqing occupy the center of the network and
their strong influence is intensified evidently, of which Chengdu is
even more powerful. Based on this core-edge model, they should be
prioritized to control PM2.5 emissions.

Ultimately, the driving factors identified by QAP regression call
for regional collaboration concentrating on the cities with short
distances, small differences in the number of civilian vehicle and
urban ratio, but with a large difference in urban population and
GDP gap between secondary industry and tertiary industry. These
driving factors exhibit a significant impact on the evolution of PM2.5

overall network and the relationship between the nodes in the SCB.
Direct distance is mainly involved in the PM2.5 transportation and
ties between nodes and the difference of urban ratio is relative small,
both with coefficient around 0.33-0.34 from QAP regression.
Therefore, GDP gap, urban population and the number of
civilian vehicle with the coefficient above 0.50 in the QAP regression
were considered to explore the relationship of spatiotemporal
evaluation for PM2.5 in individual city in Figure 2. They were
illustrated in Figure 9 for sixteen cities except Chengdu and

FIGURE 10
Driving factors in Chengdu and Chongqing (2015, 2019).

FIGURE 9
The relationship of driving factors and PM2.5 in the SCB (2015, 2019). (A) Driving factors and city with PM2.5 < 35.00 μg/m3 in Figure 2A in 2015 (B)
Driving factors and city with PM2.5 < 35.00 μg/m3 in Figure 2E in 2019.
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Chongqing whose data were quite huge and unsuitable for the scale
herein. Moreover, the GDP sum for secondary industry and tertiary
industry were also included. All the data increased from 2015 to
2019 except the GDP gap which were all positive in 2015 but
negative for most cities in 2019. This negative GDP gap implies the
extent to tertiary industry greater than secondary industry in the
economic structure. Its shift partly explains the PM2.5 annual
concentration decrease from 2015 to 2019 observed in Figures 2A, E
although the other data climbs heavily. The cities with PM2.5< 35.00 μg/
m3 in Figures 2A, E correspond to those with a combination of relatively
small value for driving factors in Figure 9. However, Ya’an and
Bazhong, with quite small driving factors in Figure 9A is not
observed in Figure 2A PM2.5 < 35.00 μg/m3 as their PM2.5 annual
concentrations were 36.00 μg/m3, exceeding the standard slightly.
Moreover, a synergetic effect among these factors plays an
important role as some cities with quite low value in one or two
driving factors fails in reaching the PM2.5 < 35.00 μg/m3. These findings
demonstrate the dominant factors impacting the spatial and temporal
differences are the GDP gap between secondary industry and tertiary
industry, urban population and the number of civilian vehicle identified
by QAP regression. In Figure 10, Chengdu and Chongqing shows the
same trend for all the driving factors which accounts for their PM2.5

mitigation from 2015 to 2019. The negative GDP gap indicates their
tertiary industry exceeded second industry since 2015. It is inadequate
to achieve PM2.5 < 35.00 μg/m3 in 2015 and 2019 without the synergetic
effect of all the factors mentioned above.

Although the study findings provide some interesting and
valuable insights, they do not reveal the fundamental influencing
mechanism of these factors; hence, further study is required. A
knowledge of the mechanism could help propose more accurate and
precise policy and measures for PM2.5 mitigation. Moreover, the
data for the subdivision of tertiary industry are unavailable publicly
for each individual city, preventing a comprehensive in-depth
analysis of its impact. Further research could be continued with
more specific information in the future.

5 Conclusion

Herein, we discuss the spatiotemporal evolution of PM2.5 pollution
by visualizing PM2.5 concentrations from 2015 to 2020 in SCB. Overall
network structure and node behavior was investigated using SNA based
on the modified gravity model of the PM2.5 spatial association from
2015 to 2019. In addition, the driving factors were explored by QAP
analysis. The following conclusions were made:

(1) PM2.5 levels dropped significantly from 2015 to 2020 in SCB. The
annual PM2.5 concentration decreased from 62.92 to 40.83 μg/m3

in Chengdu and from 55.08 to 32.67 μg/m3 in Chongqing. The
number of cities with an annual PM2.5 concentration above
35.00 μg/m3 fell from seventeen to six. The most heavily
polluted season was typically winter, particularly in December
and January, which had a monthly concentration around
1.50–2.00 times the annual average. The maximum annual and
monthly concentration globally decreased. The number of days
where pollution exceeded 75.00 μg/m3 dropped dramatically from
more than 600 days to approximately 200 days. Nevertheless,
ensuring the continuous improvement of PM2.5 in SCB remains

a great challenge in the face of the swift socioeconomic growth, as
no city reached less than 15.00 μg/m3 annually and PM2.5 levels
rebounded, particularly in peak months occasionally but
significantly.

(2) The PM2.5 overall network was significantly spatially associated
with periodic changes implying the inter-city association
strengthens, then weakened and further strengthened again in
SCB from 2015 to 2019; the PM2.5 concentration dropped
greatly, the density remained 0.29 both in 2015 and 2019 but
increased to 0.30 in 2017, efficiency grew from 0.72 to 0.80, and
connectedness from 0.78 to 1.00. There were no more isolated
nodes in the network.

(3) A strong “core-edge” pattern in the PM2.5 spatial association
network is apparent from the results of degree, betweenness, and
closeness centrality analysis. Notably, the two leading cities
Chengdu and Chongqing occupied the center of the network,
while other cities were marginalized in the network. They
exhibited many more spatial associations with other cities
and frequently acted as “bridges” between cities. The spatial
association network strengthened from 2015 to 2019, during
which, the PM2.5 concentrations decreased sharply.

(4) QAP regression analysis found that enlarging the difference of
GDP gap between secondary and tertiary industries and larger
urban population and narrowing the difference of urban ratio,
the number of civilian vehicle, and distance between cities accelerates
the formation of the spatial association of PM2.5 in SCB. The variation
of GDP gap between secondary industry and tertiary is the
predominant factor to explain the global mitigation of PM2.5 in
SCB. A synergetic effect of GDP gap between secondary industry
and tertiary industry, urban population and the number of civilian
vehicle leads to the spatiotemporal difference in the PM2.5 in the SCB.
In 2015 and 2019, all the cities with PM2.5 < 35.00 μg/m3 in annual
concentration exhibit a combination of small value for driving factors.

These conclusions direct us to the following proposals:

(1) A comprehensive regional strategy should be adopted to control
PM2.5 emissions in SCB; its effectiveness should be continuously
evaluated and adjusted accordingly, particularly in the peak
emissions months in winter. The Construction outline of
Chengdu-Chongqing Economic Circle (State Council of the PRC,
2021) stipulates that the air quality excellent rate should reach 88%,
excluding two cities in SCB. Integration of the economic and
environmental spheres is heavily recommended. PM2.5 emissions
rebounds should be prevented by strictly and persistently
implementing environmental measures.

(2) For the driving factors demonstrated inQAP regression analysis, the
distance between cities is fixed and the increased tendency of
number of civilian vehicle and urban ratio is hardly reversed
with socioeconomic development. Emissions from traditional
secondary industry have received the most attention, but efforts
should be diverted to tertiary industry with its swift growth as the
transport, real estate, and catering industries are major contributors
to PM2.5 emissions. Clean transport has gradually begun to reduce
emissions from gasoline, but the upstream production of electricity
and cell batteries for electric vehicles have adverse environmental
impacts. In the real estate industry, green architecture is a promising
measure for PM2.5 mitigation. In China, Green Building Assessment
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Standard GB/T50378-2019 could be returned to 2006 standard
following revisions in 2014, 2016, 2019 (MOHURD, 2019).
Nevertheless, it remains a recommended national standard and a
conversion to green building across all industries is expected to cover
the relevant upstreamanddownstream industry chain. Catering does
not significantly change the traditional cooking style; improving this
industry could involve better containment of PM2.5 by evacuation
and filtration in cooking facilities. Life cycle assessments of each
individual industry chain is important and continuous
improvements to tertiary industry are necessary.

(3) Encouraging clean lifestyles should be a priority given human beings’
dual roles as consumers and producers in society. A shift in the
perception of what constitutes a good life from one of extreme
comfort, convenience and luxury to one that is environmentally
friendly will guide individual daily behavior towards cleaner
consumption and production. Primary school lessons could help
create this awareness, and trial system of a clean lifestyle index with
scores for motivation could be implemented, similar to smart
watches used for recording progress in physical training.
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