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Satellite-retrieved vegetation phenology has great potential for application in
characterizing seasonal and annual land surface dynamics. However, obtaining
regional-scale vegetation phenology from satellite remote sensing data often
requires extensive data processing and computation, which makes the accurate
and rapid retrieval of regional-scale phenology a challenge. To retrieve vegetation
phenology from satellite remote sensing data, we developed an open-source tool
called phenoC++, which uses parallel technology in C++. phenoC++ includes six
common algorithms: amplitude threshold (AT), first-order derivative (FOD),
second-order derivative (SOD), third-order derivative (TOD), relative change
rate (RCR), and curvature change rate (CCR). We implemented the proposed
phenoC++ and evaluated its performance on a site scale with PhenoCam-
observed phenology metrics. The result shows that SOS derived from MODIS
images by phenoC++ with six methods (i.e., AT, FOD, SOD, RCR, TOD, and CCR)
obtained r-values of 0.75, 0.76, 0.75, 0.76, 0.64, and 0.67, and RMSE values of
21.36, 20.41, 22.38, 19.11, 33.56, and 32.14, respectively. Satellite-retrieved EOS by
phenoC++ with six methods obtained r-values of 0.58, 0.59, 0.57, 0.56, 0.36, and
0.40, and RMSE values of 52.43, 46.68, 55.13, 49.46, 71.13, and 69.34, respectively.
Using PhenoCam-observed phenology as a baseline, SOS retrieved by phenoC++
was superior to MCD12Q2, while EOS retrieved by phenoC++ was slightly inferior
to that of MCD12Q2. Moreover, compared with MCD12Q2 on a regional scale,
phenoC++-retrieved vegetation phenology yields more effective pixels. The
innovative features of phenoC++ are 1) integrating six algorithms for retrieving
SOS and EOS; 2) quickly processing data on a large scale with simple input startup
parameters; 3) outputting phenology metrics in GeoTIFF format image, which is
more convenient to use with other geospatial data. phenoC++ could aid in
investigating and addressing large-scale phenology problems of the ecological
environment.
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1 Introduction

Vegetation phenology is a first-order control of ecosystem
productivity that reflects and affects the physiological, physical,
and chemical processes of vegetation ecosystems. It also plays a
key role in energy exchange and affects the carbon balance of the
earth system (Foley et al., 1996; Ganguly et al., 2010; Elmore et al.,
2012; Zhang et al., 2020; Gao et al., 2021). It is an essential
component of the earth’s ecology (DeFries et al., 1995; Foley
et al., 1996). In the context of global warming, characterizing
seasonal and annual land surface dynamics is critical for
monitoring climate change scenarios (Peng et al., 2017; Caparros-
Santiago et al., 2021; Kollert et al., 2021).

Satellite remote sensing data with rich historical records and
suitable spatial-temporal resolutions are frequently employed to
monitor the variation of vegetation phenology (Ganguly et al.,
2010; Peng et al., 2017; Ao et al., 2020; Peng et al., 2021).
Satellite-retrieved phenology has great application potential in
characterizing both seasonal and annual land surface dynamics
(De Beurs and Henebry, 2008; Zhang et al., 2018), such as
monitoring climate–vegetation interaction and extreme events,
modeling carbon cycles, crop-type discrimination, crop-yield
estimation, and land cover mapping (Walker et al., 2012; Elmore
et al., 2017; Bolton et al., 2020; Peng et al., 2021). Most studies based
on satellite remote sensing data (such as AVHRR, MODIS, and
SPOT VGT) have developed related algorithms for retrieving
regional- or global-scale phenological products, such as
amplitude threshold (AT) (ORNL Distributed Active Archive
Center, Fischer, 1994; Zhou et al., 2016), first-order derivative
(FOD) (Yu et al., 2003), second-order derivative (SOD)
(Sakamoto et al., 2005), third-order derivative (TOD) (Tan et al.,
2011), relative change rate (RCR) (Piao et al., 2006), and curvature
change rate (CCR) (Zhang et al., 2003). Previous researchers
integrated one or more phenological retrieval algorithms into
software toolkits such as TIMESAT (Jönsson and Eklundh,
2004), phenofit (Kong et al., 2022), and the phenor R package
(Hufkens et al., 2018). These are of great significance and aid in
vegetation phenology. However, these software tools frequently
require complex parameters to be entered, are slow to process
data at runtime, lack open-source code, or lack ground-based
observations to evaluate their performance results.

In the past, few ground-based observational datasets of
vegetation phenology were publicly available online, preventing
researchers from accessing ground validation data to evaluate the
performance of retrieving algorithms (Zhou et al., 2016). Recently,
some vegetation phenology datasets obtained from ground-based
observations have been directly downloaded from the internet,
including United States of America National Phenology Network
(USA-NPN) data resources, the Pan-European Phenological
database (PEP725) (Templ et al., 2018), and the PhenoCam
Dataset (Seyednasrollah et al., 2019). The PhenoCam Dataset
mainly applies red–green–blue (RGB) digital cameras to record
the timing of the specific phenophases of plants, which differs from
the USA-NPN and PEP725, which are collated by human
observation. The use of digital cameras to observe changes in
the phenological states of vegetation may reduce the uncertainty
caused by non-uniformity compared to traditional human
observations (Menzel, 2002; Richardson et al., 2018) and may

be more appropriate for evaluating the performance of satellite-
based vegetation phenology.

Our study developed an open-source tool called phenoC++ for
retrieving vegetation phenology. The innovation of this tool is
threefold. First, it integrates six algorithms for retrieving data at
the start of season (SOS) and end of season (EOS). Second,
phenoC++ quickly processes data, and the input startup
parameters are simple. Third, it outputs phenology metrics in
GeoTIFF format images, which are more convenient to use with
other geospatial data. Furthermore, in this study, we implement this
open-source tool to retrieve vegetation phenology and evaluate its
performance on both site and regional scales using PhenoCam-
observed phenophases and existing MODIS phenology products.

2 Data and methods

2.1 The algorithms of phenoC++ for
retrieving vegetation phenology

The open-source tool phenoC++ includes six methods that
correspond to different algorithms for retrieving vegetation
phenology from satellite remote sensing data (see Table 1. These
six methods have been widely used to retrieve SOS and EOS from
remote sensing time-series data such as EVI2, NDVI, and LAI. In
this study, we employed the EVI2 time series data from
MOD09Q1 as input data for phenoC++ and obtained the
EVI2 time series data fromMOD09Q1 using the following equation:

EVI2 � 2.5
PN − PR

PN + 2.4PR + 1
, (1)

where EVI2 denotes a two-band enhanced vegetation index, PN

denotes the near-infrared band reflectance, and PR denotes the red
band reflectance.

We used the Savitzky–Golay (S-G) method (Savitzky and Golay,
1964) to remove the outliers of the EVI2 time series and interpolated
the eight-day EVI2 time series to one-day intervals. We divided the
EVI2 time series of a growing season into a growth period and a
dormancy period and used Eq. 2 to fit them.

y t( ) � c

1 + ea+bt
+ d, (2)

where t denotes the day of the year, y(t) denotes the EVI2 value on
date t, and a, b, c, and d are fitting parameters. We used this data
series when fitting the EVI2 of vegetation dormancy with Eq. 2.

2.2 Test region

We selected the conterminous United States as the test region; it
has a rich distribution of vegetation types, such as a large number of
deciduous broadleaf forests distributed in its east and west, and vast
grassland, shrub, and some deciduous broadleaf forests distributed
in its center. In addition, many digital camera observation stations
for tracking vegetation phenology have been established in the
conterminous United States, and data from these stations can be
used to evaluate the performance of vegetation phenology extracted
from satellite remote sensing data using phenoC++.
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2.3 MODIS data

The MODIS/Terra surface reflectance eight-day 250-m product
(MOD09Q1, Version 6) (Vermote et al., 2015) was used to retrieve
the vegetation phenology in the developed open-source tool.
MOD09Q1 includes two surface reflectance bands (red band,
620–670 nm; near-infrared band, 841–876 nm) with eight-day
temporal resolution and an approximately 250-m spatial
resolution. The MODIS/Terra and Aqua Land Cover Dynamics
Yearly L3 Global 500 m SIN Grid (MCD12Q2, Version 6), which
provides vegetation phenology over global land surfaces (Friedl
et al., 2019), was used as reference data for evaluating the
performance of the developed open-source tool. Both
MOD09Q1 and MCD12Q2 are available from https://search.

earthdata.nasa.gov/. We used the greenup layer (i.e., SOS) and
the dormancy layer (i.e., EOS) of MCD12Q2 for analysis. In the
MCD12Q2 product, SOS and the EOS would be obtained when
EVI2 crosses 15% of the segment EVI2 amplitude for the first or last
time, respectively.

2.4 PhenoCam data

We used PhenoCam Dataset v2.0 (Seyednasrollah et al., 2019) as
validation data for evaluating the performance of vegetation
phenophases extracted from the MOD09Q1 EVI2 time series by
phenoC++. The PhenoCam sites were established in 2008 and use
networked digital cameras to track vegetation phenology. There are

TABLE 1 Description of the six algorithms for extracting the start-of-season (SOS) and end-of-season (EOS) from the EVI2 time series.

Method Index SOS EOS Reference

Amplitude threshold AT 0.2 × (max(EVI2s) −min (EVI2s)) 0.2 × (max(EVI2a) −min (EVI2a)) Zhou et al. (2016)

First-order derivative FOD max(dt(EVI2s)) min(dt(EVI2a)) Yu et al. (2003)

Second-order derivative SOD max(dt2(EVI2s)) max(dt2(EVI2a)) Sakamoto et al. (2005)

Relative change rate RCR max(EVI2s(t+1)−EVI2s(t)EVI2s(t) ) min(EVI2a(t+1)−EVI2a(t)EVI2a(t) ) Piao et al. (2006)

Third-order derivative TOD max(dt3(EVI2s)) min(dt3(EVI2a)) Tan et al. (2011)

Curvature change rate CCR max(K′
s(t)) max(K′

a(t)) Zhang et al. (2003)

Note: EVI2s represents EVI2 at the periods of sustained increase for phenological cycles (i.e., spring): EVI2a represents EVI2 at the periods of sustained decrease for phenological cycles

(i.e., autumn); t represents the day of the year in the EVI2 time series; K′
s represents the rate of change of the curvature of the logistic-fitted EVI2 time series during the periods of sustained

increase for phenological cycles (i.e., spring);K′
a represents the rate of change of curvature of the logistic-fitted EVI2 time series during the periods of sustained decrease for phenological cycles

(i.e., autumn) (for more details, please see Zhang et al. ,2003); max () andmin () denote the maximum andminimum of the time series data, respectively; dt(), dt2(), and dt3() denote obtaining
the first-order, second-order, and third-order derivatives of time series data, respectively.

FIGURE 1
Test region and locations of selected PhenoCam sites, including deciduous broadleaf forest (DBF), shrubland (SHR), and grassland (GRA).
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500 sites, particularly located in North America. The PhenoCam
Dataset v2.0 (Seyednasrollah et al., 2019) can be obtained from
https://phenocam.sr.unh.edu/webcam/. We used the phenology
records of 28 deciduous broadleaf forest (DBF) sites, 43 shrubland
(SHR) sites, and 38 grassland (GRA) sites from 2009 to 2018 for
satellite-retrieved phenology validation (as shown in Figure 1). In the
PhenoCam Dataset, three threshold values (i.e., 10%, 25%, and 50%) of
the green chromatic coordinate indexmean (Gcc-mean) were employed
to retrieve vegetation phenophases. Among them, the threshold value of
50% of the vegetation index time series is rarely used to retrieve
vegetation phenophases from remote sensing data, while the SOS
and EOS retrieved by threshold values of 10% and 25% of the
vegetation index time series are similar (Ruan et al., 2021).
Therefore, SOS and EOS of the PhenoCam Dataset v2.0, which
were retrieved from the threshold values of 25% of Gcc-mean
amplitude, were selected for validation.

3 Results

3.1 Performance of phenoC++ on a site
scale

After obtaining the EVI2 time series from MOD09Q1, we
used phenoC++ with the six methods to retrieve the vegetation

phenology from 2009 to 2018 and evaluated the retrieved
vegetation phenology using PhenoCam-observed phenology.
Pearson correlation coefficient and root-mean-square error
(RMSE) were used to evaluate the performance of vegetation
phenology retrieved by the open-source tool. Figure 2 shows the
scatterplots for the regression result between the PhenoCam-
observed SOS and the satellite-retrieved SOS using multiple
methods. In Figure 2, most points are around 1: 1,
demonstrating that SOS derived from two independent
datasets is consistent. Compared with PhenoCam-observed
SOS, the SOS derived from MOD09Q1 EVI2 by phenoC++
with six methods obtained r-values of 0.75, 0.76, 0.75, 0.76,
0.64, and 0.67, and RMSE values of 21.36, 20.41, 22.38, 19.11,
33.56, and 32.14, respectively. The TOD method produced the
worst SOS, while the other methods performed similarly to each
other.

Figure 3 shows the scatterplots for the regression analysis
between the PhenoCam-observed EOS and the satellite-retrieved
EOS using phenoC++ with six methods. Most points in Figure 3 are
also around 1: 1, but they are more discrete than the SOS scatter
points, as shown in Figure 2. Compared with PhenoCam-observed
EOS, the EOS derived fromMOD09Q1 EVI2 by phenoC++ with six
methods obtained r-values of 0.58, 0.59, 0.57, 0.56, 0.36, and 0.40,
and RMSE values of 52.43, 46.68, 55.13, 49.46, 71.13, and 69.34,
respectively. The CCR method obtained the worst EOS, and the

FIGURE 2
Scatterplots for the regression analysis between the PhenoCam-observed SOS and the satellite-retrieved SOS using the methods of (A) amplitude
threshold (AT), (B) first-order derivative (FOD), (C) second-order derivative (SOD), (D) relative change rate (RCR), (E) third-order derivative (TOD), and (F)
curvature change rate (CCR). ** denotes a p-value of two-tailed Student’s t-tests of <0.01. N denotes the number of PhenoCam observation sites.
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other methods had similar performance to each other. Figures 2 and
3 show that, compared with PhenoCam-observed phenology, the
accuracy of satellite-retrieved SOS is slightly higher than that of

satellite-retrieved EOS, which is consistent with previous results
reported by Li et al. (2019). This may be caused by the different
sensitivities of Gcc and EVI2 for detecting vegetation growth

FIGURE 3
Scatterplots for the regression analysis between the PhenoCam-observed EOS and the satellite-retrieved EOS using the methods of (A) amplitude
threshold (AT), (B) first-order derivative (FOD), (C) second-order derivative (SOD), (D) relative change rate (RCR), (E) third-order derivative (TOD), and (F)
curvature change rate (CCR). ** denotes a p-value of two-tailed Student’s t-tests of <0.01. N denotes the number of PhenoCam observation sites.

FIGURE 4
Scatterplots for the regression analysis between the PhenoCam-observed SOS/EOS and the SOS/EOS of MCD12Q2 at (A) the start of season (SOS)
and (B) the end of season (EOS). ** denotes a p-value of two-tailed Student’s t-tests of <0.01. N denotes the number of PhenoCam observation sites.
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changes. During vegetation growth, Gcc and EVI2 both rapidly
increase. EVI2 decreases slightly during vegetation dormancy, but
Gcc rapidly decreases if leaf color changes.

Figure 4 illustrates the regression analysis of SOS/EOS
obtained from MCD12Q2 and the PhenoCam Dataset. We
used it to indirectly evaluate the performance of phenoC++.
The regression analysis indicated that the SOS of
MCD12Q2 achieved an r-value of 0.45 and an RMSE value of
25.22, and the EOS of MCD12Q2 achieved an r-value of 0.64 and
an RMSE value of 50.67. Comparison with the PhenoCam
Dataset found that the SOS of MCD12Q2 is unfavorable with
the SOS retrieved by the phenoC++. The least desirable method
of phenoC++ (TOD) obtained an r-value of 0.64, and its
performance shows that it is better than the MCD12Q2 SOS,
with an r-value of 0.45. For EOS, that of MCD12Q2 (r = 0.64;
RMSE = 50.67) is better than the EOS obtained by phenoC++.
Nevertheless, the SOS/EOS for retrieval by phenoC++ (N ≈ 420)
obtained more effective pixels in the PhenoCam observation sites
than MCD12Q2 (N = 288). Through the regression analyses
between the phenoC++-retrieved phenology/MCD12Q2 with
PhenoCam-observed phenology, we found an RMSE range of
about 20–55 days. This is similar to the results of Xin, et al. [42],
who used satellite-retrieved phenology for comparison with US
National Phenology Network data (RMSE ~25–55 days), and Li,
et al. [43], who used 30 m fine-resolution satellite-retrieved
phenology to compare PhenoCam-observed phenology (RMSE
about 25 days; r of SOS is 0.66 and r of EOS is 0.43). The main
reason for the large RMSE could be that the observation scale
between the satellite and PhenoCam is inconsistent, and the

observation of spectral difference between the satellite sensor
and PhenoCam-camera.

Figure 5 shows the profile of phenophases obtained from
MOD09Q1 by phenoC++ with six methods and MCD12Q2. The
average SOS estimated by the six methods and the AT and SOD
methods were similar to the MCD12Q2 SOS. Compared with the
MCD12Q2 SOS, the FOD and RCR methods were overestimated,
while the TOD and CCRmethods were underestimated. Meanwhile,
the average EOS estimated by the six methods and the AT and SOD
methods were similar to the MCD12Q2 EOS. Compared with the
MCD12Q2 EOS, the TOD and CCR methods were overestimated,
while the FOD and RCR methods were underestimated. Overall, the
phenophases (SOS and EOS) estimated by phenoC++ were in line
with those of MCD12Q2 with reliable performance.

3.2 The performance of phenoC++ on a
regional scale

Figure 6 shows the spatial distribution for SOS over the
conterminous United States, including the MCD12Q2 SOS
and the SOS obtained from the MOD09Q1 EVI2 time series
by phenoC++ with six methods. The SOS values obtained from
MOD09Q1 EVI2 (Figures 6B–G) are close to MCD12Q2 SOS
(Figure 6A) on a regional scale, while the former SOS is generally
slightly earlier than the latter SOS in the southwest of the USA
and slightly more delayed than the latter SOS in the northeast.
Compared with Figure 6A, the SOS retrieved by phenoC++ shows
high-value (red) pixels in North Dakota, South Dakota,

FIGURE 5
Profile of the start of season (SOS) and the end of season (EOS) in 2017 derived from two different data sources. (A) Profile of SOS; (B) profile of EOS;
(C) location of the profile. The average value of phenophases was calculated every 0.05° along the profile. MCD12Q2 denotes the phenophases obtained
from the MCD12Q2 product; AT, FOD, SOD, RCR, TOD, and CCR denote the phenophases estimated from the MOD09Q1 EVI2 time series using
corresponding methods, and “mean” denotes the average value of the phenophases estimated from the fused EVI2 time series by six methods.
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Minnesota, Iowa, Illinois, Indiana, Ohio, and Pennsylvania,
especially in the results from the FOD and RCR methods.
From Figures 6A–G, the SOS in the southwest of the USA
(less than 80 days) is earlier than in the northeast of the USA
(more than 80 days, mostly more than 140 days). This shows that
the vegetation season begins earlier in the southwest of the USA
than that in the northeast. In addition, the MCD12Q2 SOS
(Figure 6A) shows more data gaps in the southwest of the
USA, which is not shown in the SOS retrieved by phenoC++.
This phenomenon could be caused by the

MOCD12Q2 algorithm’s inability to effectively retrieve
phenological dates from remote sensing data in places with
relatively sparse vegetation.

Figure 7 shows the spatial distribution of the EOS over the
conterminous United States, including theMCD12Q2 EOS and the
EOS obtained from the MOD09Q1 EVI2 time series with
phenoC++ with six methods. The EOS values obtained from
MOD09Q1 EVI2 (Figures 7B–G) are close to MCD12Q2 EOS
(Figure 7A) on the regional scale, especially in Figures 7B and 7D.
The EOS obtained from MOD09Q1 EVI2 with the FOD

FIGURE 6
Spatial distribution for the start of season (SOS) in 2017. (A) SOS obtained from MCD12Q2; (B) SOS derived from MOD09Q1 EVI2 time series by
amplitude threshold (AT); (C) SOS derived from MOD09Q1 EVI2 time series by first-order derivative (FOD); (D) SOS derived from MOD09Q1 EVI2 time
series by second-order derivative (SOD); (E) SOS derived from MOD09Q1 EVI2 time series by relative change rate (RCR); (F) SOS derived from
MOD09Q1 EVI2 time series by third-order derivative (TOD); (G) SOS derived from MOD09Q1 EVI2 time series by curvature change rate (CCR).
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(Figure 7C) and RCR (Figure 7E) methods are slightly earlier than
the EOS of MCD12Q2, and the EOS obtained from
MOD09Q1 EVI2 with the TOD (Figure 7F) and CCR
(Figure 7G) methods are generally slightly delayed than the
EOS of MCD12Q2. From Figures 7A–G, the EOS in the
northwest of the USA (about 240 days) is earlier than that in
the southeast (more than 300 days, mostly more than 320 days).
This suggests that the vegetation season ends later in the southeast
of the USA than that in the northwest. In addition, like Figure 6A,
Figure 7A also has data gaps in the southwest of the USA.

4 Discussion

Previous research has provided phenology-retrieval tools, such as in
the R package (Hufkens et al., 2018; Kong et al., 2022) and the
MATLAB platform (Jönsson and Eklundh, 2004). However, their
stability and speed in large-scale vegetation phenology retrieval are
not as effective as programs written in C++. This study provides a C++
compiled running program (phenoC++), which is compiled under the
Linux system. If users need to run it under Windows, they must install
the C++ and GDAL environments before compiling it. phenoC++ only

FIGURE 7
Spatial distribution for the end of season (EOS) in 2017. (A) EOS obtained from MCD12Q2; (B) EOS derived from MOD09Q1 EVI2 time series by
amplitude threshold (AT); (C) EOS derived from MOD09Q1 EVI2 time series by first-order derivative (FOD); (D) EOS derived from MOD09Q1 EVI2 time
series by second-order derivative (SOD); (E) EOS derived from MOD09Q1 EVI2 time series by relative change rate (RCR); (F) EOS derived from
MOD09Q1 EVI2 time series by third-order derivative (TOD); (G) EOS derived from MOD09Q1 EVI2 time series by curvature change rate (CCR).
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retrieves two commonly used and critical phenology metrics (i.e., SOS
and EOS). If users need to retrieve other phenologymetrics or addmore
algorithms, the source code of phenoC++ can be modified.

We compared the performance of TIMESAT software for retrieving
the phenologymetrics to that of phenoC++.Areas of 802 × 642 pixels and
5164 × 4193 pixels (about the area of Texas) fromMOD09Q1 were used
to test the performance of TIMESAT software and phenoC++. The test
computer was configured as follows. The computer system was Ubuntu
16.04, and the CPUmodel was Intel(R) Xeon(R) Platinum 8269CY CPU
@ 2.50 GHz (52 threads) with 512 GB of computer memory. After data
preprocessing, TIMESAT ran for approximately 2.5 min in the 802 ×
642-pixel region, occupying 0.2 GB ofmemory, while in the 5164 × 4193-
pixel test, the running time was approximately 25min and the memory
occupied 0.4 GB. After data preprocessing, the phenoC++ test in the
802 × 642-pixel region took approximately 0.63 min and used 0.2 GB of
memory, while the test for 5164 × 4193 pixels took approximately
24.5 min and used 4.8 GB of memory. This shows that the running
speeds of the TIMESAT and phenoC++ are similar and that phenoC++
occupiesmorememory when the same number of CPU threads are used.
This is because TIMESAT uses multiple steps to retrieve vegetation
phenology, whereas phenoC++ is integrated, which ismore user-friendly.
Compared with TIMESAT, phenoC++ also has the following advantages.
1) phenoC++ outputs six algorithms’ results for SOS or EOS, while
TIMESAT only outputs threshold method results for SOS and EOS. 2)
phenoC++ outputs phenology metrics in GeoTIFF format images with
geographical coordinates, which are more convenient for use with other
geospatial data, while TIMESAT outputs binary files. 3) The code of
phenoC++ is open source, while TIMESAT is not. In addition, we also
tested phenoC++ for retrieving vegetation phenology from
MOD09Q1 EVI2 with 250-m spatial resolution over the USA
(22,731 × 9774 pixels). The run time of phenoC++ was
approximately 4.5 h, and the memory occupied was approximately
57.9 GB. Therefore, phenoC++ is an efficient and easy-to-use
software tool.

5 Conclusion

Vegetation phenology is a first-order control on ecosystem
productivity, so its accurate and rapid retrieval from satellite remote
sensing data is key to understanding the feedback between the climate
and the biosphere. We developed phenoC++, a tool that uses parallel
C++ technology to retrieve start-of-season (SOS) and end-of-season
(EOS) vegetation data from satellite time series data. Compared to
traditional tools, the innovative features of phenoC++ include 1)
integrating six algorithms for retrieving SOS and EOS; 2) rapid
large-scale data processing with simple input startup parameters; 3)
outputting phenology metrics as GeoTIFF format images, which are
more convenient to use with other geospatial data.

We implemented phenoC++ to quickly and easily obtain the spatial
distribution of SOS and EOS at 250-m spatial resolution over the
conterminous United States using MODIS time-series data. We then
evaluated phenoC++ performance for retrieving SOS and EOS on a site
scale using PhenoCam Dataset v2.0. The results show that SOS derived
fromMODIS images by phenoC++ with six methods obtained r-values
of 0.75, 0.76, 0.75, 0.76, 0.64, and 0.67, and RMSE values of 21.36, 20.41,
22.38, 19.11, 33.56, and 32.14, respectively. The satellite-retrieved EOS
by phenoC++ with six methods obtained r-values of 0.58, 0.59, 0.57,

0.56, 0.36, and 0.40, respectively, and RMSE values of 52.43, 46.68,
55.13, 49.46, 71.13, and 69.34, respectively. Using PhenoCam-observed
phenology as a baseline, SOS retrieved by phenoC++ outperforms
MCD12Q2 SOS, while EOS retrieved by phenoC++ is slightly inferior
to that of MCD12Q2 EOS. Moreover, compared to MCD12Q2,
phenoC++-retrieved vegetation phenology yielded more effective
pixels on a regional scale.

phenoC++ can rapidly produce robust vegetation phenology on
a large scale. The SOS and EOS spatial distribution information on
vegetation is more easily accessible through phenoC++, which will
help solve large-scale ecological phenology problems.
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