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Prediction and assessment of water quality are important aspects of water
resource management. To date, several water quality index (WQI) models have
been developed and improved for effective water quality assessment and
management. However, the application of these models is limited because of
their inherent uncertainty. To improve the reliability of theWQImodel and quantify
its uncertainty, we developed a WQI-Bayesian model averaging (BMA) model
based on the BMA method to merge different WQI models for comprehensive
groundwater quality assessment. This model comprised two stages: i) WQI model
stage, four traditional WQI models were used to calculate WQI values, and ii) BMA
model stage for integrating the results frommultipleWQImodels to determine the
final groundwater quality status. In this study, a machine learning method, namely,
the extreme gradient boosting algorithmwas also adopted to systematically assign
weights to the sub-index functions and calculate the aggregation function. It can
avoid time consumption and computational effort required to find the most
effective parameters. The results showed that the groundwater quality status in
the study area was mainly maintained in the fair and good categories. The WQI
values ranged from 35.01 to 98.45 based on the BMA prediction in the study area.
Temporally, the groundwater quality category in the study area exhibited seasonal
fluctuations from 2015 to 2020, with the highest percentage in the fair category
and lowest percentage in themarginal category. Spatially, most sites fell under the
fair-to-good category, with a few scattered areas falling under the marginal
category, indicating that groundwater quality of the study area has been well
maintained. The WQI-BMA model developed in this study is relatively easy to
implement and interpret, which has significant implications for regional
groundwater management.

KEYWORDS

water quality index, bayesian model averaging (BMA), machine learning (ML),
groundwater quality assessment, shenzhen

OPEN ACCESS

EDITED BY

Joshua Nosa Edokpayi,
University of Venda, South Africa

REVIEWED BY

Camilo Allyson Simões de Farias,
Federal University of Campina Grande,
Brazil
Xiaofan Yang,
Beijing Normal University, China
Xiaolang Zhang,
The University of Hong Kong, Hong Kong
SAR, China

*CORRESPONDENCE

Chongxuan Liu,
liucx@sustech.edu.cn

SPECIALTY SECTION

This article was submitted to Water and
Wastewater Management,
a section of the journal
Frontiers in Environmental Science

RECEIVED 01 November 2022
ACCEPTED 20 February 2023
PUBLISHED 02 March 2023

CITATION

Wang X, Tian Y and Liu C (2023),
Assessment of groundwater quality in a
highly urbanized coastal city using water
quality index model and bayesian
model averaging.
Front. Environ. Sci. 11:1086300.
doi: 10.3389/fenvs.2023.1086300

COPYRIGHT

© 2023 Wang, Tian and Liu. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 02 March 2023
DOI 10.3389/fenvs.2023.1086300

https://www.frontiersin.org/articles/10.3389/fenvs.2023.1086300/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1086300/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1086300/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1086300/full
https://www.frontiersin.org/articles/10.3389/fenvs.2023.1086300/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2023.1086300&domain=pdf&date_stamp=2023-03-02
mailto:liucx@sustech.edu.cn
mailto:liucx@sustech.edu.cn
https://doi.org/10.3389/fenvs.2023.1086300
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2023.1086300


1 Introduction

Sustainable management of water resources is a major challenge
worldwide. With economic development and accelerated
urbanization, water resources and supply are in increasing
demand. Groundwater is an important water resource, and
approximately 50% of the urban population worldwide has been
estimated to draw water from groundwater (United Nations, 2022).
Despite the abundance of groundwater, various problems, such as
groundwater quality degradation, have increased with increasing
population and water demand. Drinking contaminated groundwater
has been reported to cause various health problems, including
cholera, diarrhea, dysentery, and skin infections (Li and Wu,
2019). Therefore, it is important to assess the quality of
groundwater as a water supply resource.

The research progress of WQI models has been extensive,
with various models being developed, tested, and applied to
different water bodies (Ibn Ali et al., 2020; Wu et al., 2021).
Some of the traditional models include the National Sanitation
Foundation (NSF) index, Weighted Quadratic Mean (WQM),
Scottish Research Development Department (SRDD) index, and
West Java (WJ) index (Uddin et al., 2021). Traditional WQI
models are generally simple and easy to use. They provide a
simple numerical value for assessing water quality, which can be
used to compare different areas or to provide a general assessment
of the water quality. However, the accuracy of the WQI model is
limited due to its inability to take into account all the factors that
may affect water quality. Additionally, the models may be difficult
to interpret in certain cases, as they may not provide clear
guidance on what actions should be taken in order to improve
water quality (Sutadian et al., 2015). Recently, researchers have
developed WQI models based on machine learning (ML)
methods, such as Support Vector Regression and Decision
Tree Regression (Asadollah et al., 2021). ML based methods
are advantageous over traditional methods as they can provide
accurate results with less human effort and time. In addition, ML
based methods are able to detect hidden patterns and correlations
in the data, which can be used to better understand water
pollution sources and develop effective management strategies.
However, WQI-ML models, on the other hand, are more complex
and require more data (Lap et al., 2023).

WQI models usually consist of four major structural elements:
parameter selection, parameter weight assignment, sub-index
generation, and aggregation. However, these four elements may
lead to model uncertainty because the selection of water quality
parameters is based on actual needs or concerns, while the
assignment of weights is mainly based on expert empirical
methods without any system rules. Sub-index generation and
aggregation have been developed based on local guidelines,
resulting in many region-specific models (Tomas et al., 2017;
Bilgin, 2018; Abdelaziz et al., 2020). Moreover, diversity in the
sub-index and aggregation functions leads to differences in the
final water quality evaluation results.

Many methods quantify model uncertainty using statistical
analyses and/or expert judgment (Lowe et al., 2017). Bayesian
model averaging (BMA) is an intuitive and attractive solution for
quantifying model uncertainty (Hoeting et al., 1999). BMA provides
a coherent mechanism for quantifying the overall uncertainty of the

multi-model structure and parameters for model uncertainty. Some
studies investigating the effects of different parameter selections,
aggregation functions, and weight allocation processes on the final
WQI values have reported that the WQI values vary over a wide
range (Sutadian et al., 2017; Wu et al., 2018; Nong et al., 2020; Pan
et al., 2022). Classification of water quality evaluation grades is based
on theWQI values, which may confuse the decision maker or render
the values unusable for decision-making. Therefore, it is important
to reduce this uncertainty from the WQI water quality model.

In this study, we developed aWQI-BMAmodel for groundwater
quality assessment. The model comprised two stages. First stage
involved the construction of four traditionally used WQI models to
assess the water quality. The results from these WQI models were
then merged using BMA to quantify the inherent uncertainty of the
WQImodels and obtain the final calculation of groundwater quality.
Groundwater quality data from the coastal city of Shenzhen, China
from 2015 to 2021 were used to demonstrate the application of this
model, assess the groundwater quality status, and study its spatio-
temporal variations in the city. This WQI-BMA model can account
for the uncertainty of multiple WQI models and provide a
quantitative and comprehensive groundwater quality assessment.
Therefore, the developed model and results of this study have
important implications for the sustainable management of
regional groundwater quality and water resources.

2 Materials and methods

2.1 Study site

Shenzhen is a coastal city located in southeast China,
Guangdong Province, lying between 113°46′–114°37′E and
22°27′–22°52′N (Figure 1). The study region included
11 watersheds covering approximately 2000 km2 area (Qiu et al.,
2022). The region has a subtropical marinemonsoon climate with an
annual average precipitation of 1,830 mm. Precipitation is mainly
concentrated from April to October, accounting for approximately
85% of the annual rainfall (Shenzhen Statistics Bureau, 2020). The
study area terrain was high in the southeast and low in the
northwest, mostly in low-hilly areas with gentle terraces.
Groundwater types include quaternary loose deposits, pore water,
bedrock fissure water, and karst water. The groundwater level was
shallow and generally in the range of 1.5–4.5 m.

2.2 Data source

Groundwater quality data used in this study were obtained
from the Water Authority of Shenzhen Municipality (http://swj.
sz.gov.cn/). Water samples were collected from 30 monitoring
wells in the study area from 2015 to 2021, covering the wet and
dry seasons (684 samples; Supplementary Table S1). In this study,
March and December represented dry season. June and
September represented wet season. Locations of the sampling
points are shown in Figure 1. The groundwater quality data
included levels of pH, total dissolved solids (TDS), total
hardness (TH), chloride (Cl−), fluoride (F−), ammonia-nitrogen
(NH3-N), nitrate (NO3-N), nitrite (NO2-N), sulphate (SO4

2–),
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arsenic (As), total iron (Fe), total manganese (Mn), lead (Pb),
cadmium (Cd), mercury (Hg), and dissolved oxygen (DO). Thirty
monitoring wells were uniformly distributed throughout the
study area.

2.3 WQI-BMA model

Figure 2 shows the framework of the WQI-BMA model
integrating four traditionally used WQI models based on the
BMA method to assess groundwater quality. In this framework,
the implementation of the WQI-BMA model involves two stages.
First stage involved the construction of four traditionally used WQI
models as members of the BMA. In the first stage, the groundwater
quality parameters were determined. All measurable groundwater
quality parameters were used for comprehensive groundwater
quality assessment. Once the groundwater quality parameters
were determined, a machine learning approach, called the
extreme gradient boosting algorithm, was used to systematically
assign weights based on the rank order centroid weight method. The
sub-index functions are then calculated based on a uniform
calculation rule. The final step was to calculate the aggregation
functions based on the four WQI models, and the results were then
used for stage two, BMA merging. In stage two, BMA merged the
four WQI models from stage one to quantify their uncertainty and
provide a final groundwater quality assessment. By combining WQI
methods and Bayesian model, the WQI-BMA model can provide
more accurate and reliable predictions of water quality. This is due
to the fact that the WQI-BMA model combines the strengths of
multiple WQI models. The Bayesian model can take into account
the uncertainty of the WQI models, which can be used to generate
more accurate predictions. Additionally, the WQI-BMA model is

FIGURE 1
Location of the study area (A, B) and distribution map of the groundwater monitoring wells (C).

FIGURE 2
Framework of the water quality index (WQI)-Bayesian model
averaging (BMA) model.
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more robust and less sensitive to outliers than any single WQI
model.

2.4 WQI models

WQI models are widely used tools for assessing the water
quality. They can analyze large amounts of temporally and
spatially varying water quality data to inform decision-makers
about the water quality. The construction of a WQI model
typically involves four steps. First step is to collect and analyze
the water quality data to determine the number of parameters
needed to evaluate the water quality. In the second step,
parameter weights are assigned based on the importance of the
water quality. In the third step, these parameters are normalized to a
0–100 scale using sub-index functions. Finally, the normalized sub-
indices and parameter weights are combined into an overall WQI
value using a suitable aggregation function, and the water quality is
inferred using a classification scheme that defines the water quality
classes.

Parameter selection is the first step for the WQI model. The
parameters are usually selected based on data availability, expert
opinion, and the environmental impact of water quality (Gupta and
Gupta, 2021). In this study, 16 parameters that commonly reflect the
water quality were considered for the WQI models. These
16 parameters included the levels of pH, TDS, DO, TH, Cl−, F−,
NH3-N, NO3-N, NO2-N, SO4

2–, and heavy metals (As, Fe, Mn, Pb,
Cd, and Hg).

Parameter weight is a key component of WQI models. It is
typically determined based on the environmental importance of the
groundwater quality parameters, together with the recommended
guidance value. Such parameter weight allocations are usually biased
towards the subjectivity of experts and do not follow any systematic
technique. In this study, an objective weighting approach based on
machine learning (ML) (Uddin et al., 2022) was employed to assign
weights to groundwater quality parameters. This approach differs
from the subjective approach used in the literature (e.g., expert
opinion) and aims to reduce the uncertainty caused by inappropriate
weighting. Two processes are involved in the objective weighting
approach: i) extreme gradient boosting (XGBoost) ranking of the
parameter, and the ii) rank order centroid (ROC) weight method,
which attributes weightings based on rank.

ML can quantify the importance of input variables based on
their influence on model output variables (Uddin et al., 2022).
Similarly, it can be used to quantify the importance of water
quality parameters. In this study, 16 water quality parameters at
30 monitoring wells were used as inputs for the ML model, and the
corresponding groundwater quality status estimated based on the
Environmental Quality Standards for Surface Water (GB3838-2017)
was used as the output. Then, an initial assessment was conducted
using several ML methods according to 5-folds of the k-fold cross-
validation, including decision tree (DT), random forest (RF), naive
Bayes (NB), extremely randomized trees (ERT), and XGBoost
algorithms. All ML methods in this study were applied using
Python-based open-source scikit-learn codes.

In this study, an approach combining the XGboost and ROC
weight methods was used to assign weights to provide a better
allocation than the expert opinion method (Uddin et al., 2021;

Uddin et al., 2022). XGBoost is a widely used ensemble ML method
based on the gradient boosting algorithm (Zhu et al., 2022). Some
studies have used XGBoost to extract key variables, including water
quality (Naghibi et al., 2020), air pollution (Li et al., 2022), and
wastewater treatment (Wang D. et al., 2022), for developing new
models. XGBoost has lower prediction errors than other algorithms
as its regularized boosting technique controls the complexity of the
model and prevents overfitting by adding regularization terms to the
loss function. XGBoost can rank features based on their relative
importance using SHapley Additive exPlanations (SHAP) values.
SHAP values are local interpretation methods that provide more
detailed, additional, and individualized explanations and
attributions than global interpretation techniques (Li, 2022). This
study ranked the relative importance of the groundwater parameters
based on XGBoost and SHAP methods for subsequent weight
calculations.

Hyperparameters are important for determining the structure
and prediction accuracy of the model. In this study, grid search
optimization method (Abbaszadeh et al., 2022) was used to
determine the hyperparameters in the XGBoost model to achieve
high prediction accuracy. XGBoost performance was evaluated
using the accuracy and R2 of the training and test datasets, where
the input data were randomly divided into two groups: 80% of
training dataset and 20% of testing dataset.

ROC weight method estimates the weights that minimize the
maximum error of each weight by identifying the centroids of all
possible consequences, while maintaining the rank order of objective
importance. ROC weights of a set of n variables ranked from j = 1 to
n were calculated using the following equation (Roszkowska, 2013):

wj � 1
n
∑n
i�j

1
ri

(1)

where wj is the jth weight and ri is the rank position of wj.

Sub-index converts the measured groundwater quality values
into unitless values. Sub-index values (qj. ranging from 0 to 100)
were obtained using the Delphi technique (Bordalo et al., 2001),
which was used to indicate whether the variable had a poor or good
status. In this study, the linear interpolation rescaling approach by
Uddin et al. (2022) was used to compute the sub-index for all
groundwater variables using Eqs. (2) and (3):

qj � SIu − SIl( ) − SIu*Cj( )
SITu − SITl( ) (2)

qj �
Cj − SITl( )
SITu − SITl( )*SIu (3)

where SIl and SIu are the lower and upper limits of the possible qj
values (0 and 100, respectively); SITl and SITu are the lower and
upper threshold values, respectively; and Cj is the measured value of
the water quality parameter. Threshold guidelines are listed in
Supplementary Table S2.

Final step of the WQI model involves the aggregation function,
which converts multiple water quality parameters into a single value
to express the overall water quality status. Several studies have
shown that different results from different WQI models are
related to the aggregation function (Lumb et al., 2011; Juwana
et al., 2016; Ma et al., 2020). In this study, we considered four
common traditional weighted aggregation functions in the WQI
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models: NSF, WQM, SRDD and WJ (Table 1). The output of the
final WQI model was recommended for the four water quality
classes listed in Table 2, according to Uddin et al. (2022). A WQI
value in the range of 0–29 indicates that the water quality is very
poor, and the water cannot be used for any purpose. AWQI value in
the range of 30–49 indicates that the water can only be used for a
small number of specific cases, with a high the risk of water
pollution. A WQI value in the range of 50–79 indicates that the
water body has minor pollution, with some indicators meeting the
water quality standards. A WQI value in the range of
80–100 indicates that the water quality is good, satisfying most of
the water quality standards.

2.5 BMA

BMA is a statistical method for multi-model ensembles that has
higher reliability and accuracy than the single-model method (Duan
et al., 2007). BMA results are usually better than those of single
models in terms of skill and reliability (Ashofteh et al., 2022). BMA
has been used in many studies for groundwater vulnerability
assessment (Gharekhani et al., 2022), mortality forecasting
(Ashofteh et al., 2022), soil moisture estimation (Chen et al.,
2020), merging of precipitation products (Yumnam et al., 2022),
and streamflow simulation (Wang J. et al., 2022). BMS is a free R
package for performing BMA using the open-source software R. In
this study, the BMA model was applied using the BMS package in R
version 4.1.2. For more information refers to BMS package is
available at http://bms.zeugner.eu.

Based on Bayes’ theorem and the total probability law, posterior
distribution of the BMA predicted quantities Δ) for the given dataD)
is (Hoeting et al., 1999):

p Δ D|( ) � ∑K
k�1

p Δ Mk,D
∣∣∣∣( )p Mk D|( ) (4)

where p (Δ|D) is the probability of the prediction of data Δ) given
the observed data D); p (Δ|Mk,D) is the conditional probability of
the predicted quantity given the observed data D) and given
model (Mk), which is the output of SRDD, NSF, WJ, and WQM
models; and p (Mk|D) is the posterior probability of the model
given the data D), which is the model weight. Posterior
probability of the model (Mk) is calculated using the following
equation (Gharekhani et al., 2022):

p Mk D|( ) � p D Mk|( )p Mk( )∑K
i�1p D Mi|( )p Mi( ) (5)

where,

TABLE 1 Overview of four water quality index (WQI) model aggregation functions.

WQI models Aggregation function References

National Sanitation Foundation index
NSF � ∑n

j�1
qjwj (4)

Uddin et al. (2021), Smith (1990)

Weighted Quadratic Mean
WQM �

������∑n
i�1
wjq2j

√
(5)

Uddin et al. (2021)

SRDD index
SRDD � 1

100(∑n
i�1
wjqj)2 (6)

Bordalo et al. (2006), Carvalho et al. (2011)

West Java index
WJ � ∏n

i�1
q
wj

j (7)
Sutadian et al. (2018)

TABLE 2 Classification of water quality based on WQI values.

Water quality classification WQI value

i) Good 80–100

ii) Fair 50–79

iii) Marginal 30–49

iv) Poor 0–29

TABLE 3 Statistical analysis results of the groundwater quality parameters in
the study area.

Parameters Min Max Mean SD CV

pH 5.14 8.60 6.84 0.83 12.17

NO2-N (mg/L) 0 3.66 0.06 0.28 428.53

NH3-N (mg/L) 0 56.40 1.40 4.49 321.68

F− (mg/L) 0 6.00 0.33 0.80 247.15

DO (mg/L) 0 32.20 1.76 2.24 127.11

TDS (mg/L) 5.90 2,570 235.25 195.99 83.31

TH (mg/L) 7.10 724.00 111.61 79.47 71.20

NO3-N (mg/L) 0 36.80 6.06 7.11 117.45

Cl− (mg/L) 0 1,150.00 47.36 84.90 179.26

SO4
2– (mg/L) 0 837.00 36.30 62.27 171.54

Hg (mg/L) 0 0.001 0.0001 0.0002 140.70

As (mg/L) 0 1.06 0.012 0.07 618.94

Pb (mg/L) 0 1.14 0.009 0.06 588.71

Fe (mg/L) 0 17.80 0.49 1.62 329.39

Mn (mg/L) 0 3.56 0.20 0.36 182.92

Cd (mg/L) 0 0.003 0.0001 0.0003 209.18
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p D Mk|( ) � ∫p D θk,Mk|( )p θk Mk|( )dθk (6)

Here, p (D|Mk) is the integrated likelihood of modelMk; θk is the
vector of parameters of modelMk; p (θk|Mk) is the prior density of θk
under model Mk; p (D|θk, Mk) is the likelihood, and p (Mk) is the
prior model probability for the model Mk.

3 Results and discussion

3.1 Statistical analysis of groundwater quality
variables

Statistical analysis results of the groundwater quality parameters in
the study area are listed in Table 3. The parameters include many
variables, such as the minimum value (Min), maximum value (Max),
mean, standard deviation (SD), and coefficient of variation (CV). NH3-
N concentration values ranged from 0 to 56.40 mg/L with a mean value
of 1.40 mg/L, which exceeds the limit of 0.5 mg/L set by the World
Health Organization. pH varied from 5.14 to 8.60 with a mean value of
6.84, indicating that most groundwater within the study area was
slightly acidic. Mean concentrations of As, Fe, and Mn were 0.012,
0.49, and 0.20 mg/L, respectively. Mean concentrations of the other
parameters in the groundwater were less than the thresholds proposed
in the WHO and Environmental Quality Standards for Surface Water
(GB3838-2002) guidelines (Supplementary Table S2). CV for heavy
metals ranged from 618.94% to 140.70% in the order As > Pb > Fe >
Cd >Mn >Hg, indicating a large difference in the distribution of heavy
metals in groundwater. SD of the groundwater quality data indicated
high variability; therefore, variation in the mean value of the data was
also high (Elbeltagi et al., 2022).

3.2 Performance of XGBoost

Supplementary Table S3 lists the findings of an initial
assessment conducted using several ML methods (DT, RF, NB,

ERT, and XGBoost) according to 5-folds of the k-fold cross-
validation. Accuracy is a metric for evaluating ML classification
problems and indicates the ratio of all correctly classified samples
to the total number of samples. Among the 4 ML methods, the
XGBoost model exhibited the highest prediction accuracy (83%).
Prediction accuracies of DT (82%), RF (82%), ERT (77%), and
NB (65%) were slightly lower than that of XGBoost. Thus, the
XGBoost model was selected to rank the parameters according to
the relative importance of the selection of important
groundwater quality parameters. Table 4 lists the final
adjusted hyperparameter values for the XGBoost model
obtained using the grid-search optimization method.
Combination of the hyperparameters in Table 4 resulted in
the highest R2 and accuracy in the predicted and observed
values. A maximum tree depth of seven and a learning rate of
0.1 were used to increase the maximum effect of interactions
between variables. The training and testing accuracies of the
XGBoost model were 1 and 0.95, respectively, and the training
and testing R2 were 0.99 and 0.92, respectively. Results of the
selection of important groundwater quality parameters using the
XGBoost model integrated with SHAP values are shown in
Supplementary Figure S1. At the study site, the most
important factors influencing the water quality status were
NH3-N and Mn (Supplementary Figure S1). The order of
importance of the groundwater parameters was NH3-N >
Mn > pH > NO3-N > TDS > Pb > Fe > As > Hg > DO >
SO4

2– > Cd > Cl− > F− > TH > NO2-N.
Table 5 lists the weight values of the groundwater quality

parameters calculated using the ROC method. Weight values

TABLE 4 Optimized extreme gradient boosting (XGBoost) algorithm
hyperparameter values.

Model hyperparameters Optimum hyperparameter value

nrounds 180

learning 0.1

max.depth 7

gamma 0

subsample 0.9

colsample_bytree 0.9

cv.folds 5

training accuracy 1

testing accuracy 0.95

training R2 0.99

testing R2 0.92

TABLE 5 Ranks and weight values of groundwater quality parameters.

Parameters Rank Weight

NH3-N (mg/L) 1 0.211

Mn (mg/L) 2 0.149

pH 3 0.118

NO3-N (mg/L) 4 0.097

TDS (mg/L) 5 0.081

Pb (mg/L) 6 0.069

Fe (mg/L) 7 0.058

As (mg/L) 8 0.049

Hg (mg/L) 9 0.041

DO (mg/L) 10 0.034

SO4
2– (mg/L) 11 0.028

Cd (mg/L) 12 0.023

Cl− (mg/L) 13 0.017

F− (mg/L) 14 0.013

TH (mg/L) 15 0.008

NO2-N (mg/L) 16 0.004

Sum of weight 1
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followed the same order as the rankings of the groundwater
quality parameters, with NH3-N, Mn, and pH exhibiting the
highest weight values and F−, TH, and NO2-N exhibiting the
lowest weight values.

3.3 Performance of the WQI-BMA model

In this study, four WQI models based on different weighted
aggregation functions were used to calculate WQI values and
infer the groundwater status. Figure 3 shows the range of the WQI
values calculated for each function within the study area. Overall,

there were significant differences in the WQI values obtained
using different WQI models (Figure 3). WQM provided the
smallest distribution of scores and the highest mean score.
Conversely, WJ provided the largest distribution of scores and
the lowest mean score. The mean score for NSF was lower than
that for WQM but greater than that for SRDD. For the NSF and
WQM models, the groundwater quality evaluation grade was
higher than that for the SRDD and WJ models. In addition, most
of the groundwater quality in the study area was above the grade
“poor,” indicating that the groundwater quality in the study area
was in the marginal to good level. In this study, all WQI models
used the same groundwater quality parameters and sub-index
functions, except the aggregation function, to calculate the WQI
values. Therefore, the differences were caused by the different
aggregation functions.

Figure 4 shows the groundwater quality classification results
for WQI-BMA value distribution predicted using BMA.
Groundwater quality status can be categorized into four types
based on WQI values: poor (0–29), marginal (29–49), fair
(50–79), and good (80–100) (Table 2). WQI-BMA values
ranged from 35.01 to 98.45 based on BMA prediction.
According to the groundwater quality classification of WQI
values (Table 2), the groundwater quality status was classified
into three categories: marginal, fair, and good. Based on the WQI-
BMA model, 17.6% of the groundwater fell under the marginal
category, 45.7% fell under the fair category, and 36.7% fell under
the good groundwater quality category.

3.4 Spatiotemporal distribution of
groundwater quality

Figure 5 shows the percentages of groundwater quality
classification in the study site over the dry and wet seasons
from 2015 to 2020. Percentage of groundwater quality
classification refers to the percentage of wells classified as

FIGURE 3
WQI values computed by four different WQI models. Horizontal
dashed lines indicate the values used to classify the groundwater
quality (see Table 2). Hollow squares indicate the mean values, and
solid black lines in each box indicate the median WQI values.

FIGURE 4
WQI-BMA values after groundwater quality classification predicted by BMA. Hollow squares indicate the mean values, and solid black lines in each
box indicate the median WQI-BMA values.
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marginal, fair, or good. During the period 2015–2020, the
fairness category had the highest percentage of all categories,
ranging from 43.3% to 83%, with an annual average of 54.7%. In
contrast, the marginal category had the lowest percentage,
ranging from 3.3% to 40%, with an annual average of 16.7%.
The percentage of good categories was between fair and
marginal, ranging from 13.3% to 43.3%, with an annual
average of 28.6%. Regarding seasonal variation, there were
differences in the groundwater quality status over the dry and
wet seasons during the study period (2015–2020). For example,
the seasonal variation in the groundwater quality in the fair
category was small, ≤7%, except in 2015. However, groundwater
quality in the marginal and good categories varied the most in
2020 at 20% and 13%, respectively.

Geographic information system-based spatiotemporal
analysis was used to determine the spatiotemporal distribution
of the WQI map in the study area from 2015 to 2020 (Figure 6).
Spatially, most sites fell under the fair-to-good category, with a
few scattered areas falling under the marginal category, indicating
that groundwater quality of the study area has been well
maintained over the past few years. Specifically, the best areas
for groundwater quality classification are the eastern parts of the
city, such as Dapeng and Yantian. This area is mostly
mountainous and hilly, with abundant forest resources. Due to
the lack of heavy industry, the maintenance of groundwater
quality is better. There are a total of 12 monitoring wells in
the region. In 2015, there were two wells fell under the good
category, nine wells fell under the fair category, and one well fell
under the marginal category. With the development of smart
water management, groundwater quality has gradually improved
by 2019. There were seven wells fell under the good category, four
wells fell under the fair category, and one well fell under the
marginal category. The western region of the study area is an

industrial agglomeration, the central part is the city center area
with dense population, and the quality of groundwater is worse
than that of the eastern region. Subsequent monitoring of
groundwater quality should be strengthened in the central and
western regions, especially in the coastal areas of the west. None
of the samples in the study area fell under the poor and
inappropriate for drinking categories. These results indicate
that during the scarcity of surface water, groundwater can be
used as a recharge source. Overall, the spatial distribution of
groundwater quality in the study area showed that most of the
groundwater in the study area was above the fair category and
suitable for most applications.

Temporally, the groundwater quality in the study area showed
seasonal fluctuations from 2015 to 2020. Relatively, the number of
wells in the marginal groundwater quality category first
increased, then decreased, and subsequently increased over
time. Notably, 2020 had the highest number of sites in the
marginal category. The number of wells in the good
groundwater quality category first increased and then
stabilized, followed by a decrease over time. The number of
wells in the good groundwater quality category increased
significantly compared to those in 2015. In contrast, the fair
groundwater quality category remained at a relatively stable level.
Overall classification of groundwater in the study area was mainly
above the marginal category and suitable for domestic and
agricultural use. Basic data for the model input were
groundwater monitoring data. For emerging pollutants, the
monitoring data of the relevant pollutants can be collected and
introduced into the model for evaluation; however, currently,
there is no threshold standard for the limit value of emerging
pollutants in groundwater. Therefore, threshold standards need
to be determined in the future along with relevant toxicological
studies.

FIGURE 5
Percentage of groundwater quality classification over dry and wet seasons from 2015 to 2020. Percentage of groundwater quality classification
indicates the percentage of wells classified as marginal, fair, or good in terms of water quality.
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4 Conclusion

In this study, a WQI-BMA model was developed by
combining the BMA and WQI methods to assess the
groundwater quality status. The developed model could
quantify model uncertainty and reasonably assess the
groundwater quality status. As this model uses an approach
combining the XGboost and ROC weight methods, it provides
better results than other models using the expert opinion method.
Sub-index calculation in this model is based on a uniform
calculation rule to reduce model uncertainty owing to
differences in the sub-index functions. We used the BMA
method to quantify the uncertainty caused by four different
WQI models. WQI-BMA model is a generic model that can be
used to assess the groundwater quality in regions where the
groundwater monitoring data are available.

In this study, the groundwater in Shenzhen was assessed to
demonstrate the application and reliability of the proposed WQI-
BMA model. Groundwater quality data from 2015 to 2021 were
used to assess the groundwater quality and determine its

spatiotemporal distribution. WQI values ranged from 35.01 to
98.45 based on the BMA prediction in the study area. The
groundwater quality status could be classified into three
categories: marginal, fair, and good. No water sample in the
study area was categorized as poor or inappropriate for
drinking. Most sites fell into the fair-to-good category.
Temporally, the groundwater quality in the study area showed
seasonal fluctuations from 2015 to 2020. Moreover, the highest
percentage of seasonal variations was in the fair category. WQI-
BMA model developed in this study can assess the suitability of
groundwater sources and quantify uncertainty by incorporating
the BMAmethod to provide a reliable assessment. It also provides
a decision-support tool to aid decision-makers in groundwater
quality management.
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