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Under the background of global warming, interaction between heat waves (HWs) and
urban heat island (UHI) has led to trends of increase in the intensity, frequency, and
duration of extreme heat events in urban areas, seriously threatening the health of
urban populations. Taking Guangzhou (a tropical megacity in China) as an example,
this study used automatic weather station data and ERA5 reanalysis data to explore
the interaction betweenHWs and UHI, and to elucidate the effects of wind speed and
local climate zones (LCZs) on such interaction. Results revealed obvious HWs–UHI
interaction in Guangzhou, whereby HWs induces an amplification effect on UHI
intensity (UHII) that was most significant at night. In the main urban area, UHII and
HWs both weakened with increasing wind speed, indicating that low wind speeds
contribute to increased occurrence of HWs and enhancement of UHII. Differently, in
some areas peripheral to the main urban area, the UHII at medium wind speeds was
stronger than that at low wind speeds, which reflect the impact of heat advection
from the urban center. For different LCZs in the main urban area, the strongest UHII,
highest risk of HW occurrence, and most significant HWs–UHI interaction were
found in the compact mid-rise buildings and compact low-rise buildings (LCZ2 and
LCZ3, respectively), followed by the compact high-rise buildings (LCZ1), which was
mainly affected by the shading effect of high-rise buildings. The weakest UHII and
lowest risk of HW occurrence were found in open high-rise buildings and open mid-
rise buildings (LCZ4 and LCZ5, respectively), which generally have good ventilation
conditions. Our findings will help to understand urban warming and its association
with UHI and HW events in tropical urban regions, which has implications for rational
improvement of the urban thermal environment in other tropical urban regions
globally.
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1 Introduction

Heat waves (HWs) show trends of increase in intensity, frequency, and duration under
the background of global warming (Meehl and Tebaldi, 2004; You et al., 2017; Wang and
Yan, 2021). Persistent HWs bring considerable harm to human health and extreme HWs
are the leading cause of increased weather-related human mortality (Basu and Samet, 2002;
Tan et al., 2007). An HW event is a period of intense heat that persists for days or weeks that
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is usually accompanied by a high-pressure synoptic system (e.g., an
anticyclone) (Zong et al., 2022), and is affected by multiple factors
such as soil desiccation, climate variability, urbanization, and
urban heat island (UHI). (Perkins, 2015; Yang et al., 2017; Liao
et al., 2018; Luo et al., 2020; Luo & Lau, 2021).

The UHI refers to the phenomenon whereby the center of an
urban or metropolitan area is warmer than surrounding rural areas
owing to changes in the surface energy balance attributable to
urbanization (Oke, 1982). Earlier studies showed that the
combined effect of HWs and UHI is greater than the sum of
their individual effects (Li and Bou-Zeid, 2013; Sun et al., 2017).
In other words, when an HW event occurs, the increased urban
heat stress will be even greater than that attributable to the sum of
the background UHI effect and background HW effect (Li and Bou-
Zeid, 2013). Interaction between HWs and UHI is mainly reflected
in the strong impact that HW occurrence imparts on the
spatiotemporal characteristics of UHI intensity (UHII), which is
modulated mainly by changes in the radiation budget, differences
in turbulent heat fluxes, and changes in cloud cover and wind
conditions (Li et al., 2016; Zhong et al., 2017; Kong et al., 2021).
Additionally, HWs further increase temperatures in urban areas (Li
and Bou-Zeid, 2013; Kong et al., 2021). Moreover, continued
urbanization leads to intensification of HWs and UHI
(especially at night), while enhanced UHI increases the risk and
duration of extreme heat events (Ren et al., 2008; Yang et al., 2017;
Shi et al., 2021). Previous studies showed that HWs–UHI
interaction is largely attributable to the contrasting responses of
urban and rural surface energy budgets to HWs (Li et al., 2015) and
changes in wind speed (Li et al., 2016; Yang et al., 2022).

The interaction between HWs and UHI remains a controversial
topic. On the one hand, many studies have demonstrated
amplification of UHII by HWs, although the degree of
amplification and the characteristics of UHII vary between
different cities (Ramamurthy and Bou-Zeid, 2016; Ao et al., 2019;
Jiang et al., 2019; Ngarambe et al., 2020; Zong et al., 2021). On the
other hand, some studies have observed a steady or even declining
trend in UHII during HW periods, which imply that climate
differences or changes in soil moisture have certain impact on
HWs–UHI interaction (Chew et al., 2020; Richard et al., 2021)
because differences in the background climate contribute
significantly to changes in UHII (Zhao et al., 2014).

In addition to the influence of background climate differences,
local climate zones (LCZs) also have important impact on the
spatiotemporal distribution of UHII (Stewart and Oke, 2012;
Ngarambe et al., 2020; Chen et al., 2021; Zong et al., 2021).
Generally, that climate change at the surface and boundary layers
is driven by the surface energy balance. Studies have considered
differences in turbulent heat fluxes to be the main cause of
temperature differences between urban and rural areas (Khan et al.,
2020). Generally, LCZs are clustered by their approximate ability to
modify the local surface climates by their fabric, land cover, structure,
and metabolism, which are factors defined to better express the
physical properties that control the climatic responses at a
particular station (Stewart and Oke, 2012; Mu et al., 2020). Based
on LCZs classification, the potential impact of the surface properties at
each station on the UHI and various elements of the surface energy
balance can be described more effectively (Oke et al., 2017). Therefore,
it is of great importance to investigate the change of UHII for different
LCZs and its relationship with HWs.

Guangzhou, a megacity, located on the subtropical coast of
China, has a marine subtropical monsoon climate. The total built-
up area in 2020 was 1,350.95 km2, and the permanent population
comprised 18.68 million people. The annual average temperature
in Guangzhou has risen continuously since 1953, the change rates
from 1953 to 2009, 1973 to 2009, and 1983 to 2009 were 0.22°C/10a,
0.38°C/10a, 0.49°C/10a, respectively. The rise in temperature over

FIGURE 1
(A) Geographical locations of the urban and rural stations in
Guangzhou, and; (B) Google Earth images of the locations of the urban
stations.
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the past 30 years has been consistent with the urbanization process.
Urbanization factors are positively correlated with the annual
average temperature, with the correlation coefficients higher
than 0.80 (Feng and Pan, 2011). In Guangzhou, UHI classified
at the level of strong or above mainly occurs in the central area of
the city, the daytime UHI in the main urban area is particularly
serious in summer and autumn, and more than 95% of the city
blocks have different degrees of UHI effect (Deng et al., 2018).
Additionally, previous studies have found interaction between
HWs and UHI in Guangzhou. For example, the nighttime
maximum UHII in Guangzhou was enhanced by 0.8°C ± 0.20°C
during HWs, and the surface solar radiation during HWs was
approximately 1.5 times greater than the normal level (Jiang et al.,
2019). However, the effects of different LCZs and of urban
ventilation conditions on HWs and UHI in Guangzhou and
their interactions remain unclear.

Using both hourly observations of temperature and wind speed
recorded from automatic weather stations in the warm season
(May–September) in Guangzhou during 2013–2018 and
corresponding ERA5 reanalysis data, this study aims to investigate the
influencing andmodulating effects of different wind speed conditions and
LCZs on HWs and UHI in Guangzhou. The findings will help improve
understanding and awareness of the causes of extreme heat stress and
climate change in tropical megacities.

2 Data and methods

Considering that the heat wave events in Guangzhou in recent
decades are concentrated from May to September, this study used
hourly observations of temperature, wind speed, and wind direction
data (http://data.cma.cn/en) recorded by automatic weather stations
in this warm period in Guangzhou during 2013–2018. In studies of
HWs andUHI, abnormal temperature data are generally considered as
missing, and missing temperature data are replaced using the linear
interpolation method. Among the 126 weather stations in Guangzhou,
data from 10 urban stations (including one national station) and 5
rural stations (including two national stations) were selected in this
study. As shown in Figure 1 (source: Google Earth), the urban stations
are distributed in the southern, central and northern parts of the main
built-up area. The rural stations are all located outside the built-up
area in regions where the coverage of surrounding vegetation is
greater.

Previous studies show that heat waves were related to both
large-scale weather system and local urbanization (Perkins, 2015;
Liao et al., 2018; Luo et al., 2020). For studying urbanization effects,
five rural stations were selected as background stations, which can
reflect the modulation of large-scale weather background with
marginal impacts of human activity. Figure 2. Shows the heat
waves and daily maximum temperatures averaged by rural
stations, which are lower than those of urban stations. Here we
mainly study the contribution of the diversity of complex urban
underlying surfaces to UHI and HWs. Therefore, we can compare
the temperature at urban and rural station to extract the impacts of
local urbanization effects under certain large-scale weather
conditions (e.g., heat wave context), especially for checking the
contributions of the LCZs within the city and to UHI and HWs.

When choosing a rural station for study of UHI, it is important to
note the direction of the local prevailing wind. Generally, rural stations
located downwind of built-up urban areas are not considered to avoid
the influence of heat advection, which lead to large errors in the
calculation of UHII. The classification of LCZs, as defined by Steward
and Oke (2012), combines local floor heights and regional building
densities. Stations near water bodies or at high elevations were also
avoided. The classification of each station into the LCZs is shown in
Table 1. The urban stations consisted of three compact types (LCZ1,
LCZ2, and LCZ3) and two open types (LCZ4 and LCZ5). The
characteristics of the vegetation at the rural stations comprised
dense trees (LCZA), bush and scrub (LCZC), and low plants (LCZD).

This study also used contemporaneous ERA5 reanalysis data that
comprised boundary layer height (BLH) data and surface solar
radiation (downward) data (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview) with 0.
25 × 0.25 grid resolution. In this study, we selected three grid
points (23°00′N, 113°15′E, 23°15′N, 113°15′E, and 23°30′N,
113°15′E) for which the BLH and surface solar radiation data were
positioned reasonably close to the overall built-up area of Guangzhou.
This study focused on the canopy layer UHII, which is defined as the
near-surface air temperature at each urban station minus the average
air temperature at all rural stations (Oke et al., 2017; An et al., 2020).
The definition of HWs used in different studies varies (You et al.,
2017). This study considered the definition of a high-temperature day
given by the China Meteorological Administration, and defined an
HW event as when the daily maximum temperature exceeded 35°C for
three or more days consecutively.

FIGURE 2
(A) Average daily maximum temperature at urban and rural stations
during study period, and (B) average number of Heat Waves and UHII at
urban and rural stations during study period.
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When considering the effect of wind speed, the distributions among
the various stations of days with high wind speeds and days with low
wind speeds are heterogenous. For example, some stations have very few
days with high wind speeds, resulting in fewer UHII data, which will
cause large errors in some statistical results. To reduce such influence,
wind speed data from two national stations (59,287 and 59,481, as
national stations with representative observation environment) were
regarded as the background prevailing wind. The study used k-means
clustering to classify the daily average wind speed data of the two
national stations. We obtained three grades of wind speed: low wind
speed (0–1.34 m/s), medium wind speed (1.34–2.34 m/s), and high
wind speed (2.34–6.70 m/s). The characteristics of HWs and UHII at
each station under the three wind speeds were evaluated based on this
standard.

Additionally, the urban surface transport index (USTI) was
introduced to supplement the effect of wind direction HWs–UHI
interaction. The USTI is defined as follows:

USTI �
�����������������∑n

i�1ui( )2 + ∑n
i�1vi( )2√

∑n
i�1Wsi

where Ws, u, v, and n represent the wind speed, zonal wind speed,
meridional wind speed, and number of samples, respectively
(Berkovic, 2016). The USTI indicates the consistency and stability
of the local wind direction. When the USTI value is large (close to 1),
the wind direction is broadly consistent; conversely, when the USTI
value is small, the wind direction is more chaotic. In the analysis of
wind speed, n was set to the total number of wind speed data at each

station, thereby the clutter in wind direction for each single station
over the 6-year study period was calculated.

The significance of any differences between the mean UHII under
different wind speeds and the LCZs was determined using analysis of
variance (at a 0.001 confidence level) and Tukey’s test.

3 Results

3.1 Temporal characteristics of HWs and UHII

The various temporal-scale characteristics of air temperature and
HW events in the Guangzhou area during 2013–2018 are shown in
Figure 3. Generally, the average temperature at the urban stations in
Guangzhou was approximately 1.00°C higher than that at the rural
stations (Figure 3A). The overall average UHII in 2017 was higher than
in other years (red line in Figure 3B), reaching 1.12°C, which was
approximately 0.2°C higher than in the years with the lowest UHII
(2013 and 2018). During the study period, HW events were
concentrated in May–August (Figure 3C). The highest total
number of HWs (114) was in 2014, with average duration of
53 days per station. The lowest total number of HWs (46) was in
2018, with average duration of 23 days per station (the “average
duration” refers to the sum of heat wave duration of all stations
divided by ten). In other years, there were approximately 60 HW
events with average duration at a single station of approximately
30 days. It can also be seen from Figure 3B that the interannual
fluctuation of high temperature (yellow line in Figure 3B) and UHII

TABLE 1 Geographical location and classification of each of the urban and rural stations.

Station Lon. (°E) Lat. (°N) Elevation (m) Type Local climate zone Proportion of impervious area Building height

711,001 113.31 23.14 5 Urban LCZ1 0.92 33

711,006 113.35 23.3 49 Urban LCZ2 0.86 21

713,222 113.24 23.15 21 Urban LCZ2 0.99 20

713,224 113.27 23.14 28 Urban LCZ3 0.86 9

711,015 113.37 22.95 40 Urban LCZ3 0.96 8

713,108 113.31 22.98 20 Urban LCZ3 0.93 10

711,059 113.27 23.45 45 Urban LCZ3 0.58 6

713,260 113.22 23.41 13 Urban LCZ4 0.83 26

711,093 113.3 23.1 33 Urban LCZ5 0.78 17

59,284 113.22 23.38 38 Urban LCZ5 0.68 14

713,143 113.73 23.42 39 Rural LCZA 0 0

59,294 113.83 23.33 30 Rural LCZC 0.08 0

713,204 113.49 22.78 7 Rural LCZD 0.32 3

713,207 113.52 22.72 17 Rural LCZD 0.34 6

59,285 113.6 23.57 38 Rural LCZD 0.22 5

59,287 113.48 23.22 65 Rural LCZA 0.08 0

59,481 113.32 22.93 12 Urban LCZ4 0.55 29

Notes: The value of proportion of impervious area refers to the proportion of impervious area in the 1 km buffer zone near each station to the total area.
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changes greatly, suggesting that HWs with high temperature might
interact with UHI.

3.2 Differences in UHII between HW and non-
HW (NHW) periods

The diurnal variation of UHII during 2013–2018 is shown in
Figure 4, where the red and blue lines represent the diurnal variation of
UHII during HW and non-HW (NHW) periods. It can be seen that
the overall diurnal variation of UHII in Guangzhou was unimodal, and
that the UHII at night was significantly stronger than that during
daytime, consistent with the findings of Jiang et al. (2019). This is the
typical diurnal variation of UHII. The range of the 6-year average
UHII in HW and NHW periods was −0.28 –3.80 and −1.30°C–3.05°C,
respectively, and the average values were 1.76°C and 0.87°C,
respectively. Compared with NHW periods in each year, UHII in
HW periods increased by 0.58°C–1.33°C (77%–176%), 0.37°C–1.16°C
(44%–137%), 0.11°C–1.12°C (14%–148%), 0.18°C–0.89°C (25%–
124%), 0.49°C–1.26°C (47%–121%), 0.46°C–1.18°C (47%–120%),
respectively (Here we used the hourly average UHII of each year in
the HW and NHWperiods to calculate the magnification and get their
upper and lower limits). HWs amplified UHII by nearly 0.9°C on the
whole, and the 6-year average UHII was increased by 103%. The
overall amplification effect (calculated as the average UHII of the HW

period minus the average UHII of the NHW period) was relatively
strong in both 2013 and 2017, reaching 1.08°C and 1.04°C,
respectively. Conversely, the amplification effect in both 2015 and
2016 was relatively weak at 0.72°C and 0.76°C, respectively.

Figure 5, produced using the differences in diurnal variation of
UHII in HW and NHW periods during 2013–2018, shows that the
ΔUHII was W-shaped and almost always positive with a clear peak at
night (form approximately 20:00 to 06:00 Beijing time (BJT) on the
following day). Larger ΔUHII also appeared during daytime (09:
00–17:00 BJT), which indicates that the HW occurrence had strong
amplification effect on UHI.

3.3 Influence of wind speed on HWs and UHII

To evaluate the role of wind speed, the characteristic of HW events
and UHII under three different wind speed conditions were obtained
by applying k-means clustering to the of wind speeds recorded at the
two national stations considered in this study. First, the total duration
of HW events at each urban station under the conditions of the three
wind speeds was determined. At each of the urban station, the total
number of HW days at low wind speeds was higher than that at
medium and high wind speeds (Figure 6A). The most significant
differences under the different wind speed conditions were observed at
stations 713,222 (LCZ2), 713,224 (LCZ3), and 713,108 (LCZ3), i.e., the

FIGURE 3
(A) Diurnal variation of temperature at the urban and rural stations in Guangzhou during 2013–2018 (BJT: Beijing time), (B) line graph of the annual
average UHII (red) and annual average high temperature (yellow), where high temperature (Th) refers to temperatures no lower than 35°C, and (C) the general
situation of HW events in Guangzhou during 2013–2018. The time resolution of calendar chart is daily. The color scale of the calendar graph represents the
number of stations with HW events on a given day, and the bar graph represents the sum of HW events that occurred at all urban stations each year.
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number of HW days at low wind speeds was more than 100 days
longer than that at medium and high wind speeds. Boxplots of the
daily average UHII for different wind speeds at each urban station are
shown in Figure 6B. Generally, higher values of UHII were found to
correlate with lower wind speeds. The average value of UHII at high,
medium, and low wind speeds were 0.46, 1.02, and 1.11°C,
respectively.

Comparison of Figures 6A, B reveals that the HW and UHII
characteristics at each station under different wind speeds had strong
consistency. The higher the number of HW days at a certain station,
the higher the UHII; however, both decreased with the increasing wind
speed, which again confirms the effect of HWs–UHI interaction.
Results of the analysis of variance and Tukey’s test showed that the
mean UHII at each station under three wind speeds was significantly
different (p < 0.001).

Certain abnormalities were evident at individual stations, e.g.,
station 711,006 (LCZ2), which showed that the average UHII at
medium wind speeds was slightly higher than that at low wind
speeds (Figure 6B) with an average difference of 0.03°C–0.04°C.
Statistics showed that the 6-year prevailing wind direction at this
station is mainly 190°–270°, i.e., from southwest direction
(Figure 7A), and that the number of days on which the wind
direction within a 24-h period was entirely from this quadrant
accounted for more than 57% of the total number of days.
Considering that this station is located at the northeastern edge
of the built-up area, we considered the wind direction to be from
the southwest and observed the variation of the daily average UHII
at the station (Figure 7B). It was found that when the wind speed

FIGURE 4
Diurnal variation in UHII in Guangzhou during HW and NHW periods during 2013–2018 (BJT: Beijing time). The red and blue shaded areas represent the
annual standard deviation of HW and NHW periods, respectively.

FIGURE 5
Diurnal variation in UHII difference (ΔUHII) between HW and NHW
periods in Guangzhou during 2013–2018 (BJT: Beijing time).
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increased, the UHII increased significantly within a certain range of
wind speed, which indicated certain impact of the local prevailing
wind on the energy balance in peripheral urban areas. At moderate

wind speeds, heat from the warmer urban center could be
transported downwind to peripheral areas, causing them to
warm to some extent.

FIGURE 6
(A) Duration of HWs at each urban station under different wind speeds, and (B) UHII at each urban station under different wind speed conditions.

FIGURE 7
(A) Rose diagram of wind direction at station 711,006 (LCZ2), and (B) relationship between daily average UHII and wind speed at station 711,006 (LCZ2)
(range: 190°–270°; when the wind direction was from within this range for 16 h or more within a 24-h period, it was considered that the wind was from the
southwest all day). All wind vectors in the interval were uniformly projected to the direction of 225° to obtain the projected wind speed.
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3.4 Modulation of HWs and UHII by LCZs

The frequency of HW events and the overall level of UHII at
each urban station are shown in Figures 8A, B, respectively.
Stations in LCZ2 and LCZ3, especially 713,222 (LCZ2) and
713,224 (LCZ3) located in the central urban area of Guangzhou,
had the highest number of HW events (Figure 8A) and the

strongest UHII (Figure 8B), i.e., the frequency of occurrence of
HW events was 59 and 55 times and the average UHII was 1.66°C
and 1.47°C at stations 713,222 (LCZ2) and 713,224 (LCZ3),
respectively. Despite all being classified as type LCZ3, the
frequency of occurrence of HW events and the strength of the
UHII at station 711,015 (located in the southern urban area),
station 711,059 (located in the northern urban area) were not as

FIGURE 8
(A) Frequency of HW events for each urban station and LCZ, and (B) overall UHII level for each urban station and LCZ, and (C) number of HWs and
averaged UHII in different LCZs with 31 urban and 6 rural stations in total.
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great as at station 713,224 (located in the central urban area). The
frequency of occurrence of HW events and the strength of the UHII
at station 711,006 (LCZ2) were weaker than at most of the other
stations, i.e., the average UHII was only approximately 0.35°C,
much lower than that at station 713,222 (LCZ2) and 713,224
(LCZ3) in the urban center, mainly because station 711,006
(LCZ2) is located at the periphery of the built-up area close to
the mountains. LCZ4 and LCZ5 (three stations in total as shown in
Figure 8) are open building zones for which the strength of the
UHII was lower than that of LCZ1, 2, and 3 (Figure 8B), i.e., the
average UHII of stations classified as type LCZ4 or LCZ5 were 1.09,
0.82°C and 0.60°C, respectively, and the average number of HWs
was approximately 35. Remarkably, in the central urban area, the
frequency of occurrence of HW events (28 times) and the strength
of the UHII (average: 1.23°C) at station 711,001 (LCZ1) were
inferior to those in nearby areas, e.g., at stations 713,222 (LCZ2)
and 713,224 (LCZ3). Statistical results showed that the overall
average temperature at station 711,001 (LCZ1) was approximately
0.4°C lower than that at station 713,222 (LCZ2) and 713,224
(LCZ3), even though all three stations are located in the city
center. The temperature difference increased sharply after 07:
00–08:00 BJT, and the maximum difference could reach
approximately 1°C. The temperature difference decreased
slightly at noon and then decreased rapidly after 17:00 BJT
(Figure 9). For more robust results, we made statistics on more
ground stations with 31 urban stations and 6 rural stations in
Guangzhou (as shown in Figure 8C), that there were significant
differences among UHII groups in different LCZs. The differences
in HW between the same LCZ types caused by the various
geographical environment near the urban stations with different
location.

The analysis of variance and Tukey’s test showed that the mean
UHII at each LCZ station was significantly different (p < 0.001).

4 Discussion

About research in Guangzhou, namely Jiang et al. (2019), they
mainly focused the diurnal variation of UHII during heat waves and
the contribution of solar radiation to UHII. In contrast, our present
work aims to reveal the influence of different local climate and
environment on the UHII under the large-scale heat wave weather
system, that is, the contribution of LCZ and ventilation are also
considered on a local scale. More importantly, we introduced the
urban surface transport index (USTI) to explore the effect of wind
direction HWs–UHI interaction. At the local scale in the urban area,
particularly, the integrated influence of ventilation, heat advection and
different underlying surface has important impacts on local UHII.

4.1 Potential effect of HWs on the UHI

By comparing the differences in UHII between HW and NHW
periods, this study analyzed the interaction between HWs and UHI in
Guangzhou. Results confirmed that HWs–UHI interaction occurred
in Guangzhou, and that the occurrence of HWs resulted in significant
enhancement of UHII during both daytime and nighttime (but
stronger at night). Generally, open and exposed surfaces have
higher rates of heating and cooling (unless the soil is very wet),
meaning that rural areas gain heat quickly in the morning and lose
it quickly in the evening. Conversely, the high thermal admittance of
urban materials and local shadow blocking mean that the temperature
response in urban areas is not so fast and thus the UHII in urban areas
exhibits abrupt change in the morning and evening (Yow, 2007; Oke
et al., 2017). Rural areas have larger vegetation coverage and more
abundant water resources, and heat is mainly exchanged in the form of
latent heat (Kong et al., 2021). Previous research showed that the
average temperature of vegetated surfaces is generally lower than that
of impervious surfaces (Sun et al., 2012; Song et al., 2014; Estoque et al.,
2016). However, the unique radiative properties of urban materials
cause urban areas to have greater heat storage capacity during daytime
than rural areas, and this heat is released at night in the form of
sensible heat that becomes confined in the near-surface layer owing to
the presence of the stable nocturnal boundary layer and reduced
vertical mixing, contributing to the peak of UHII at night
(Ramamurthy et al., 2014). This process is further enhanced when
an HW occurs. Studies have shown that HW occurrence is usually
accompanied by a persistent high pressure anticyclone system, as well
as enhanced solar radiation, lower cloud cover, and lower wind speed
(Hong et al., 2019; Ngarambe et al., 2020). Figure 10A shows that the
solar radiation at noon generally was increases by about 1.4 times
during HW periods with respect to NHW periods. During daytime,
especially at noon, the increased shortwave radiation and decreased
wind speed resulted in increased heat storage when an HW event
occurs (Sun et al., 2017), while high air temperatures lead to the release
of more anthropogenic heat from sources such as air conditioning.
This may explain why ΔUHII has a peak at noon. The BLH data partly
support this because an elevated urban boundary layer is observed
during daytime when an HW occurs (Figure 10B), indicating
enhancement of near-surface thermal effects. At night, the high
value of ΔUHII means that the amplification effect of UHII during
an HW period is more severe than that during the day because more
heat stored in the urban surfaces is released at night. When an HW
occurs, a stable anticyclonic system and lower wind speeds reduce the

FIGURE 9
Diurnal variation of temperature at stations 711,001 (LCZ1), 713,222
(LCZ2), and 713,224 (LCZ3) (BJT: Beijing time).
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effect of advective cooling (Ngarambe et al., 2020; Kong et al., 2021).
Furthermore, suppression of boundary layer development by
descending air (Figure 10B) further weakens vertical mixing.

4.2 Effects of ventilation condition on
HWs–UHI interaction

Given that weather and surface conditions are important
factors that affect UHII (Memon et al., 2008; Tzavali, 2015), this
study explored the effects of wind speed and LCZs on the
HWs–UHI interaction. Results showed that lower wind speeds
and high-density building clusters contributed to more frequent

and stronger HW events and higher UHII. Generally, wind can
largely mitigate the UHI effect (Kim and Baik, 2005; Yow, 2007)
both by introducing cooler air that mixes with the urban hot air,
resulting in a drop in the urban temperature, and by the stirring
effect of wind to that can dissipate urban heat (He, 2018). Lower
wind speeds that mean less advective cooling and increased surface
roughness that blocks the natural wind flow are both conducive to
restricted ventilation and heat dissipation. The wind speed data
from each station in Guangzhou were analyzed according to the
definition of WsR used by Liu et al. (2022), where WsR represents
the ratio of the average wind speed at each urban station to the
average wind speed at all rural stations, which can effectively reflect
the ventilation capacity. It can be seen from Figure 11 that UHII
and WsR are inversely proportional. It indicates that urbanization
reduces the near-surface wind speed at some stations (WsR <1),
which is accompanied by an increase in UHII; when the wind speed
increases, UHII decreases accordingly. It can also be seen that the
slope of the fitting line at 14:00 BJT is slightly greater than that at
02:00 BJT, which to a certain extent means that the ventilation
effect during daytime has greater impact on UHII than that at
night. The relationship between wind speed and USTI at each
station is shown in Figure 12. It can be seen that the UHII at each
station decreased with the increase of wind speed and USTI,
excepting for station 713,224 (the red dot in the lower right
corner of Figure 12, this may be due to local traffic emission
sources and ventilation corridor effect), indicating that a higher
wind speed and a more uniform wind direction are beneficial to
reduction of UHII. Generally, when the wind speed is low and the
wind direction is disordered, the ventilation effect is weak, which is
not conducive to mitigation of the UHI effect.

At the periphery of the built-up area, e.g., station 711,006
(LCZ2), we found that when the wind speed increased to a
certain extent, the UHII actually increased. Note that the
average wind speed at station 711,006 was 1.48 m/s, second only
to that at station 59,284 (LCZ5), and that the USTI value was 0.56.

FIGURE 10
(A)Diurnal variation of surface solar radiation (downward), and (B) diurnal variation of average boundary layer height (BLH). The criterion for determining
HW is that at least 6 or more stations are in HW period on that day. (BJT: Beijing time).

FIGURE 11
Relationship between UHII and WsR at each urban station. The
straight line in the figure represents the linear trend of each time.
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Referring to analysis of heat advection in earlier studies (Heaviside
et al., 2014; Bassett et al., 2016; Dinda and Chatterjee, 2022), and
considering the influence of wind sources on UHI (He, 2018), this
station had been influenced by upstream heat advection. However,
when the wind speed continued to increase and reached a higher
level, the UHII decreased significantly (Figure 7B), indicating that
the ventilation and cooling effects exceeded the effect of advected
heat. It should be noted that we did not consider the influence of
factors such as precipitation and clouds, which represents an
obvious shortcoming of this study.

4.3 Impact of LCZs on HWs–UHI interaction

Considering the differences between LCZ types, it is recognized
that building density and the canyon aspect ratio have substantial
impact on radiant energy interception and heat storage (Oke et al.,
2017), while building form and spatial pattern can cause
obstruction and disturbance to wind (Mou et al., 2017).
Previous studies have shown that LCZ2 and LCZ3 are relatively
warm areas in some cities (Geletič et al., 2016; Zhou et al., 2021),
and as areas with dense mid-rise buildings and dense low-rise
buildings, respectively, both have high areas of impervious
surfaces, and compact arrangement of buildings. High-density
buildings and tall buildings upwind hinder ventilation
downwind, resulting in relatively high surface temperatures
(Yang et al., 2019), implying increased surface heat storage.
Dense building groups are also conductive to intercepting more
shortwave radiation energy. Therefore, in comparison with other
LCZs in Guangzhou, the UHII of LCZ2 and LCZ3 is stronger and
the frequency of HW occurrence is higher (Figure 8).

The air temperature at 02:00 BJT at all urban stations during
HW and NHW periods was also investigated in this study. To
reduce the temperature difference caused by different months,
temperature samples of each month were calculated separately.
Results showed that in the first third of the high-temperature
descending sequence, station 713,222 (LCZ2), 713,224 (LCZ3),
713,108 (LCZ3), and 711,001 (LCZ1) appeared more frequently,
accounting for 15%, 14%, 13%, and 14%, respectively, and
indicating that LCZ1, LCZ2, and LCZ3 (Especially stations in
the central area of Guangzhou) contributed more to HWs and
UHI and their interaction. Meanwhile, the UHII of these four
stations increased by 46%, 71%, 42%, and 55%, respectively, during

HW periods. LCZ4 and LCZ5, as open high-rise building zones and
open mid-rise building zones, respectively, have lower building
density and smaller canyon aspect ratios, which reduce the effect of
blocking of the natural wind flow and reduce the interception of
shortwave radiation by buildings. One effect of reduction in
impervious area and increase in vegetation coverage is increased
latent heat flux, which is beneficial to cooling of the near-surface
atmosphere (Oke et al., 2017); however, the specific local
environment still has an impact. For example, the four urban
stations of classified as LCZ3 show certain inherent differences
attributable to their urban characteristics at different geographical
location.

Tall and compact buildings can weaken the ventilation effect;
thus, for LCZ1 in particular, the increase in air temperature may
have been limited owing to the possible shading effect (Oke, 1982;
Bourbia and Awbi, 2004). Therefore, the frequency, intensity, of
HW events and the strength of UHII in LCZ1 with a higher
building group were lower than in LCZ2 and LCZ3 with lower
buildings, especially regarding the limitation of the maximum daily
temperature that greatly affected the determination of HWs.
Statistical results also showed that LCZ1 did not warm as much
as LCZ2 (station 713,222) and LCZ3 (station 713,224) in the
morning (Figure 9), and that the overall average temperature
was also slightly lower.

5 Conclusion

In this study, the interaction between HWs and UHI was explored
in combination with consideration of LCZs and wind speed conditions
using hourly data recorded by automatic weather stations in
Guangzhou during 2013–2018. The main conclusions derived can
be summarized as follows.

The interaction between HWs and UHI in Guangzhou was
obvious, which amplifies urban warming. HWs can amplify the
intensity of UHI and the amplification effect was more significant
at night. The average UHII during HW and NHW periods was 1.76°C
and 0.87°C, respectively. The occurrence of HWs caused the overall
UHII to be amplified by approximately 0.9°C.

HWs–UHI interaction was strongly influenced by urban
ventilation conditions. For the entire main urban area, the
number of HW days with low wind speeds was higher than that
with medium and high wind speeds, and the difference between

FIGURE 12
Relationship between USTI, wind speed (Ws), and UHII at each urban station (The dots in the figure represent each station and darker blue(red) dots
indicate weaker(stronger) UHII).
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them in some areas was >100 days. The UHII under low wind speed
conditions was also higher than that under medium and high wind
speed conditions. It shows that lower wind speed is conducive to
strengthening of HWs and UHI and their interaction, whereas
higher wind speed conditions have a mitigating effect on HWs,
UHI and their interaction. However, urban heat advection from the
urban center that leads to a certain degree of warming in peripheral
areas. Overall, HWs, UHI, and their interaction were found
correlated negatively with wind speed.

For various LCZs, The UHII was highest in the compact mid-
rise buildings (LCZ2) and compact low-rise buildings (LCZ3), and
both the highest risk of HW occurrence and the most significant
HWs–UHI interaction were found in such areas. Especially at
stations 713,222 (LCZ2) and 713,224 (LCZ3) located in the
urban center of Guangzhou. The UHII and risk of HW
occurrence in the compact high-rise buildings (LCZ1) were
second highest. This was mainly attributable to the shading
effect of high-rise buildings. The UHII and risk of HWs in open
high-rise buildings (LCZ4) and open mid-rise buildings (LCZ5)
were smaller, mainly attributable to better urban ventilation
conditions. Generally, the compact built-up zones (LCZ1, LCZ2,
and LCZ3) contributed more to HWs and UHII, whereas the
contributions by open high-rise buildings and open mid-rise
buildings (LCZ4 and LCZ5, respectively) were smallest.

In summary, our present work provided a convinced evidence
that urban warming amplified by HWs–UHI interaction were
mainly modulated by both urban ventilation conditions and
LCZs in the tropical Guangzhou mega city. Our findings will
help improve understanding of the changes and causes of UHI
and HWs in tropical urban regions, and support rational
improvement of the urban thermal environment in other
tropical urban regions globally.
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