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As the latest generation of Chinese Geostationary Weather Satellites, Fengyun-4
carries the Advanced Geosynchronous Radiation Imager (AGRI), which has more
spectral bands and higher temporal and spatial resolution than the Visible Infrared
Spin-Scan Radiometer (VISSR) onboard geostationary satellite FY-2. Direct
assimilation of the FY-4A AGRI datasets has been proved to be an efficient way
to improve heavy rainfall simulation. We aim to assess the joint assimilation of AGRI
infrared radiance and ground-based MWR (Microwave Radiometer) data on short-
duration heavy rainfall prediction. RTTOV (Radiative Transfer for the TIROS
Operational Vertical Sounder) is used as the observational operator for FY-4A
AGRI data assimilation. The data assimilation interface is built in WRFDA 4.3 to
achieve direct assimilation of FY4A AGRI radiance. The forecasting effectiveness of
the joint assimilation for a typical heavy rainfall event over northern China is analyzed
with four simulation experiments. The main conclusions are: 1) Assimilating MWR
data can improve the initial humidity condition in themiddle-lower layers, while AGRI
radiance assimilation favors the initial humidity correction in themiddle-upper layers.
The joint assimilation of two datasets can remarkably improve the initial humidity
condition in the entire column. 2) Data assimilation effectively improves the 6-h
accumulated rainfall simulation. The joint assimilation of AGRI radiance and MWR
data is superior to assimilating either of them. The joint assimilation significantly
improves the rainfall forecast over the Beijing area, where the seven MWRs are
distributed. 3) Data assimilation experiments present similar effects on predicted and
initial humidity conditions. The MWR_DA experiment (only assimilate MWR data)
markedly improves the humidity forecast in the middle-lower layers, while AGRI_DA
(only assimilate AGRI data) is effective in the middle-upper layers. The joint
assimilation of AGRI radiance and MWR data could skillfully correct the humidity
distribution in the entire layers, allowing for more accurate heavy rainfall prediction.
This paper provides a valuable basis for further improving the application of FY-4A
AGRI radiance in numerical weather models.
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1 Introduction

To satisfy the massive demand for disaster prevention and
mitigation, numeric weather prediction (NWP) has made
remarkable progress with continuous advances in numerical
simulation theory, computation capability, and comprehensive
observation ability (Li et al., 2014). At present, great efforts are
made to improve the forecast skill of high-resolution NWP in
predicting disastrous mesoscale rainstorms triggered by multiscale
weather systems (Qin et al., 2005; Shen et al., 2021; Xu et al., 2021).
However, as the atmosphere is a highly non-linear system, the forecast
errors of NWP models are susceptible to the initial conditions.
Therefore, the data assimilation (DA) technique helps to fuse
information from background field and observation data to obtain
an optimal initial condition, which is a crucial issue in the research of
NWP (Shen and Min, 2015; Xu et al., 2016; Kutty et al., 2018).

In addition to the continuous development of assimilation methods,
research has been carried out on assimilating various observational data
(De Souza et al., 2022; Ye et al., 2021; Ma et al., 2022;Wang et al., 2022). In
particular, geostationary satellite data, due to its advantages of high spatial-
temporal resolution and less susceptibility to geographic conditions, can
effectively complement observations over land and ocean, and might
optimize the initial conditions, which facilities the improvement of
NWP (Yang et al., 2017; Wang et al., 2018; Xu et al., 2021). Launched
on 11 December 2016, Fengyun-4A (FY-4A) is the first test satellite of the
Fengyun-4 geostationary system, the second generation of the Chinese
geostationary meteorological satellite system. The design of FY-4A
thoroughly considers atmospheric, marine, and environmental science
demands, showing broad application prospects (Dong, 2016). The
meteorological instruments onboard FY-4A include the Advanced
Geostationary Radiation Imager (AGRI), the Geostationary
Interferometric Infrared Sounder (GIIRS), the Lightning Mapping
Imager (LMI), and the Space Environment Monitoring Instrument
Package (SEP) (Yang et al., 2017). Compared with the Visible Infrared
Spin-Scan Radiometer (VISSR) onboard geostationary satellite FY-2, the
FY-4A AGRI has more spectral bands and higher temporal and spatial
resolution to provide more accurate atmospheric information.
Assimilation of AGRI radiance could facilitate the development of
NWP operations in China and promote the full use of China’s
meteorological satellite data (Zhang et al., 2022; Shen et al., 2021).
Radiance assimilation was mostly limited in clear-sky conditions,
although all-sky radiance, containing critical cloud and precipitation
properties, is also of great significance for improving heavy rainfall
simulation (Okamoto et al., 2019). The reason lies in the great
challenges of assimilating all-sky radiance in handling strong non-
linearity and low predictability of complicated cloud-related processes
due to the high sensitivity of infrared radiances to clouds (Honda et al.,
2018a; 2018b; Minamide and Zhang, 2018). Thus, clear-sky radiance
assimilation has already been implemented at many operational
centers, in terms of impact on numerical weather prediction skill
(Okamoto et al., 2019).

As a passive remote sensing instrument, the ground-based microwave
radiometer (MWR) provides continuous unattended operations and real-
time accurate atmospheric observations under nearly all-weather conditions
(Cimini et al., 2007; Löhnert and Maier, 2012). Furthermore, continuous
observations of temperature and humidity profiles from MWR effectively
complement sounding observations. Therefore, assimilating MWR data for
NWP models can help improve weather forecasts. For example, 3-
Dimensional Variational Assimilation (3DVAR) of data from seven

ground-based MWRs has been attempted for a heavy rainfall case in
Bejing (Qi et al., 2021). However, the current applications of MWR
observations, particularly in numerical models, are still insufficient.

Due to the high spatial and temporal inhomogeneous, the moisture
field is hard to be described by initial conditions in NWP models (Shoji
et al., 2011). However, moisture is the essential thermodynamic variable in
the simulation of various physical processes. In the processes of cloud
microphysics, radiative transfer, and cumulus convection, moisture-
associated tri-state phase transformation of water could further affect
the dynamic and thermodynamic conditions of the surrounding
atmosphere. Meanwhile, atmospheric moisture is one of the essential
factors dominating the initiation and development of deep convection.
Therefore, initial moisture errors would directly influence the simulations
of cloud distribution and subsequent precipitation. AGRI channels 9-
10 are water vapor absorption channels depicting the actual moisture
conditions in the middle-upper troposphere (Geng et al., 2020). The
inability of AGRI to observe planet boundary layers (PBL) can be
complemented using the ground-based MWR, which is designed for
profile observation in PBL. The joint assimilation of FY-4A AGRI and
ground-based MWR could effectively correct the initial moisture
conditions in model simulations, which is crucial to the accuracy of
weather forecasts (Xue, 2009).

The experiments of this study are based on the Weather Research
and Forecasting model’s Data Assimilation (WRFDA) v4.3. We
choose the Radiative Transfer for the TIROS Operational Vertical
Sounder (RTTOV) v12.1 as the AGRI observation operator. In
addition, temperature and humidity profiles from the ground-based
MWR are jointly assimilated. In this study, accurate convective rainfall
forecasts can be achieved by the improved initial and simulated
moisture conditions with the two datasets being jointly assimilated.

2 Model and data description

2.1 WRFDA and RTTOV model

As the assimilation system of the Weather Research and
Forecasting model (WRF), WRFDA can assimilate observational

FIGURE 1
Locations of MWR sites.
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data from comprehensive instruments, e.g., surface weather station,
radiosonde, ground-based radar, and satellite, into the model
simulations. WRFDA includes assimilation techniques such as
3DVar, four-Dimensional Variational (4DVar), and Ensemble-
Variational (EnVar) methods. The assimilation experiments in this
paper are based on incremental 3DVar. In addition, the conjugate
gradient method is used to minimize the cost function in the analysis
of control variables, estimating the atmospheric state. The equation is
as follows:

J x( ) � 1
2

x − xb( )TB−1 x − xb( ) + 1
2

y −H x( )( )TR−1 y −H x( )( ). (1)
In Eq. 1, x represents the atmospheric state vector, xb stands for

the background information,H is the observation operator, and y acts
as the observation vector. The covariance matrixes of background
error and observation error are represented by B and R, respectively.

RTTOV is a radiative transfer model developed by the European
Center for Medium Range Weather Forecasts (ECMWF) in the early
1990 s (Saunders et al., 1999; Saunders et al., 2018). The initial version

FIGURE 2
Distributions of AGRI (A) cloud detection (cloud, pcloud, pclear, and clear represent cloudy, probably cloudy, probably clear, and clear observations,
respectively), (B) channel 9 brightness temperature before QC (units: K) at 00 UTC on 9 August 2019.

FIGURE 3
Average deviation (AD, red and green lines) and RMSE (blue and yellow lines) of relative humidity (%) between sounding and MWR observations at station
(A)54399, (B) 54406, (C) 54419, (D) 54421, (E) 54424, (F) 54511, and (G) 54597. RMSE_QC and AD_QC are the RMSE and AD after data quality control,
respectively.
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of RTTOV could only simulate bright temperature (BT) from TIROS
Operational Vertical Sounder (TOVS). To date, RTTOV can simulate
cloudy infrared and microwave radiance from dozens of meteorological
satellites. Given a profile of atmospheric states such as temperature and
atmospheric composition, RTTOV allows rapid simulation of the satellite
radiance data. Therefore, we choose RTTOV v12.1 as the FY-4A radiance
observation operator. The spectral response functions and coefficient files
used in the simulation of the AGRI radiance are jointly provided by the
National Satellite Meteorological Center (NSMC) and the University of
Wisconsin-Madison’s Space Science and Engineering Center (SSEC).

2.2 FY-4A AGRI radiance data

The AGRI radiance data used in this study is the GEO positioning
data and full-disk L1-level raw data with a spatial resolution of 4 km.
AGRI L1-level data is processed from Level-0 raw data after the quality
check, geolocation check, and radiometric calibration. The 4 km full-
disk data contains 2748 scan lines, with 2748 scan points on each line.
We focus on the AGRI clear-sky radiances. Cloud mask is performed
using the 4-km resolution L2-level CloudMask product (CLM), including
a four-level (confidently clear, probably clear, probably cloudy, and

confidently cloudy) product. Meanwhile, we use the full-disk Cloud
Type (CLT) product to identify cloud classification, e.g., clear, water,
super-cooled water, mixed, ice, cirrus, and overlap. The AGRI includes
14 channels in the visible, near-infrared, and infrared (IR) spectral bands
and scans every 5 min with a subsatellite point resolution of 0.5–4 km
(Yang et al., 2017). The spectral coverage, spectral bands, spatial
resolution, and main applications for channels 8–14 can be found in
Yang et al. (2017). The AGRI has a high temporal resolution, completing a
full-disk observation in approximately 15 min, providing one full-disk
image every 1 h, three consecutive full-disk images every 3 h (a total of
40 full-disk images per day), and one image of the Chinese region (10°–-
55°N, 70°–140°N) every 5 min (Zhang et al., 2017). In this study, FY-4A
AGRI channels 9–14 are assimilated, including the water vapor channels
9-10 and the window channels 11–14.

2.3 Ground-based MWR observations

The MWR network over the Beijing region during May-
September 2019, including seven RPG-HATPRO MWRs
deployed in the southern suburbs, Xiayunling Village, Yanqing
District, Haidian District, Huairou District, Shangdianzi Village,

FIGURE 4
TheNCEP FNL analysis at 00 UTC on 9 August 2019. (A) The 500 hPa geopotential height (contours; gpm), wind barbs (a full barb is 5 m/s), and horizontal
wind speed (shading; m/s). (B) 850 hPa geopotential height (contours; gpm), wind barbs (a full barb is 5 m/s), and relative humidity (shading; %).

FIGURE 5
Distribution of (A) 6-hr accumulated rainfall starting from 06 UTC on 9 August 2019, and hourly rainfall on (B) 08 UTC, and (C) 09 UTC.
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and Pinggu District, has been carried out in this study. Figure 1
shows MWR locations and the simulation coverage in this paper.
The RPG-HATPRO MWR has 14 channels, including seven
channels in the K-band, for retrieving water vapor profiles, and
seven channels in the V-band (oxygen band), for retrieving
temperature profile. The level-2 products from the seven
ground-based MWRs are obtained using inversion software
from the MWR manufacturers, including the temperature and
relative humidity profiles (Qi et al., 2021; Guo et al., 2022a).
The level-2 products used in this paper are available at least
once every 2 min with 41 levels from the surface up to 10 km
above ground level (AGL). The vertical resolution below and above
1 km AGL are 100 m and 250 m, respectively. The NCEP FNL
(0.25° × 0.25°) analysis field is used as the initial field for the model
simulation. The observed rainfall includes the 0.1° × 0.1° hourly
precipitation product from Chinese meteorological Data Sharing
Service System (hereafter CMORPH-AWS data), which merged
observations from more than 30,000 automatic weather stations
(AWS) and CMORPH (CPC MORPHing technique) retrieved
satellite data.

3 Data processing

3DVar requires that both the observation error and the
background error can be characterized as unbiased Gaussian
distributions (Dee, 2005). The optimal linear unbiased estimate of
the atmospheric state is determined from the observation, the
background condition, and their error covariance matrix (Zou and
Zeng, 2006; Qin et al., 2010). When performing data assimilation, data
quality control (QC) is an essential step to ensure the requirement of
the assimilation system. The quality of QC directly affects the accuracy
of numerical prediction (Min et al., 2000; Guo et al., 2022b).

3.1 QC of AGRI radiance data

The QC scheme in this paper is modified based on Geng et al.
(2020). The original QC and bias correction schemes of Geng et al.
(2020) are proposed for a typhoon case in which all the observations
over land are removed. In this study, AGRI radiance observations over
land are reserved because the deep convection case in this study
occurred over land. The detailed QC methods are as follows.

1) Remove all the observations in the mixed surface channels,
including mixed predominately sea, mixed predominately sea
ice, mixed predominately land, and mixed predominately snow.

2) Only AGRI clear-sky radiance and satellite zenith angle less than
60° are selected.

3) Cloud liquid water paths in background fields exceeding 0.02 kg/
m2 are removed.

4) Exclude innovations (observed BT minus simulated BT)
exceeding 15 K.

5) Exclude innovations exceeding three times the standard deviation
of the observation error.

This study uses the variational bias correction (VarBC) method to
reduce bias in the AGRI assimilation (Dee, 2005; Auligné et al., 2007).

TABLE 1 Model configurations.

Nested scheme Double nested

Horizontal resolution 9 km, 3 km

Horizontal grid number 501 × 391, 622 × 48

Model top pressure 50 hPa

Microphysics scheme WSM6

Boundary layer scheme YSU

Longwave radiance scheme RRTM

Shortwave radiance scheme Goddard

Cumulus scheme Kain-fritsch for d02, none for d01

FIGURE 6
(A) The WRF model domain. Domain 2 (d02) is outlined by the black box. (B) Map of MWRs (red dots) located in d02. The colour shading represents
topography.
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VarBC changes the observation operator by adding a correction term
at each assimilation time step:

~H x, β( ) � H x( ) + β0 +∑
Np

i�1βipi (2)

where H and ~H(x, β) are the observation operators before and after
the bias correction, respectively. x represents the atmospheric state
vector. β0 is the constant term of bias. pi and βi are the i-th predictor
and corresponding bias correction coefficients, respectively.Np stands
for the number of predictors.

According to the CLM product at 00 UTC on 9 August 2019
(Figure 2A), we only reserve the clear-sky BT. Figure 2B shows the
channel 9 BT before QC, indicating that the clear-sky observed BT is
higher than the cloudy observed BT.

3.2 QC of ground-based MWR data

The temperature and relative humidity profiles provided by the
MWR network are used in this study. It has been widely reported that
considerable observation errors might exist in the relative humidity
retrieval from ground-based MWR (Pan et al., 2020; Posada et al.,
2013). Therefore, QC of MWR observations is needed to run
variational data assimilation. We use the QC scheme proposed by Fu
and Tan, 2017, including extreme value check, time consistency check,
and vertical consistency check. In addition, a bias correction approach
using sounding observations should be applied to MWR profiles before
data assimilations:

~xM � xM + ∑n
i�1 xiM − xiTK( )

n
(3)

Where xM and ~xM represent the MWR observation before and after
bias correction, respectively. xTK is the sounding observation. n is the
number of samples observed simultaneously by MWR and sounding.
Subsequently, temperature and relative humidity profiles obtained from

seven MWRs from May to September 2019 are quality-controlled
(Figures 3A,C–F). Temperature profiles after QC are not presented
here due to minor observation errors. The relative humidity profiles
from seven MWRs present large deviations from the sounding
observations before QC (blue profiles in Figure 3), with the Root-
Mean-Square-Error (RMSE) larger than 20% at each height. The
maximum RMSE before QC can be as large as 40% in Figures 3B, G.
After QC, the relative humidity RMSE decreases (orange profiles in
Figure 3), especially at middle-upper layers. The relative humidity bias is
basically distributed near a zero contour at all heights. Compared to the
raw data, the quality-controlled relative humidity is closer to a Gaussian
distribution, better meeting the requirements of the data assimilation
system. Thus, the temperature and relative humidity profiles after QC can
be used in this paper.

4 Data assimilation application

4.1 The heavy rainfall case

In the present study, we pick the heavy rainfall event that occurred over
North China on 9 August 2019. Figure 4 shows the synoptic conditions
where the heavy rainfall event occurs. At 00 UTC, the upper-level trough is
distributed near 100°E (Figure 4A), presenting a ‘trough-ridge-trough’
atmospheric circulation pattern over the middle-higher latitude in East
Asia. This rainfall event is situated to the south of the upper-level trough.
Associated with the upper-level trough is a Northwest Pacific subtropical
high over the southern Japan Sea, steering thewarm southwesterly carrying
ample moist air to the heavy rainfall area. This circulation situation is
conducive to the production of this heavy rainfall event. Meanwhile, this
heavy rainfall is closely associatedwith the landfalling typhoon ‘Lekima’. At
850 hPa (Figure 4B), typhoon ‘Lekima’ transports sufficient water vapor to
the heavy rainfall area.

The accumulated rainfall observation shows a northeast-southwest
oriented rainfall belt with three heavy rainfall regions (black boxes in
Figure 5A) over North China. The most extensive precipitation occurs in
northeast Beijing, with a maximum rainfall accumulation exceeding
90 mm. The hourly rainfall distributions (Figures 5B, C) show that
this heavy rainfall event is mainly produced in 2 hours. Thus, this
rainfall process is a short-term heavy rainfall event over North China,
with significant rainfall intensity and short rainfall duration.

4.2 Model configurations and experimental
design

In this study, the experiment is carried out using
WRFv4.3 and the associated 3DVAR system. Model

TABLE 2 Assimilation scheme.

Assimilated data Assimilation interval

CTRL No 1-h

MWR_DA temperature and humidity profiles from seven MWRs 1-h

AGRI_DA FY-4A AGRI radiance channels 9–14 1-h

A + M_DA both FY-4A AGRI and MWR data 1-h

FIGURE 7
Workflow for assimilation experiments.
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configurations are listed in Table 1. The simulated area for this
case has two nested domains (Figure 6), with 501 × 391 grid points
(9 km) for domain 1 (d01) and 622 × 481 grid points (3 km) for
domain 2 (d02), with 51 vertical levels and a model top of 50 hPa. The
physical parameterizations are as follows: WSM6 microphysics scheme,
Yonsei University (YSU) planetary boundary layer scheme (Hong, 2010),
Noah land-surface model (Yang et al., 2011), the Rapid Radiative Transfer
Model (RRTM) longwave radiance scheme (Mlawer et al., 1997), Goddard
shortwave radiance scheme (Chou et al., 2001), Kain-Fritsch cumulus
scheme (Kain, 2004) for d02, but with cumulus parameterization for
d01 switched off. All the simulation experiments share the same sets of
parameters. The WSM6 microphysical scheme and the Kain-Fritsch
cumulus scheme were chosen based on extensive previous studies (e.g.,
Tewari et al., 2022) showing that these two parameterization schemes are
better able to produce heavy rainfall at mid-latitudes. In this paper, the
Environmental Prediction (NCEP) Final (FNL) Operational Global
Analysis data (available at https://rda.ucar.edu/datasets/ds083.2/, last
access: 16 January 2023). NCEP FNL is selected to provide the initial

field for themodel simulation. Using the FNL analysis during 1–31 August
2019, the 24-h forecast is initialized at 00 UTC and 12 UTC daily.
Background error covariance is then calculated by the National
Meteorological Center (NMC) method (Parrish and Derber, 1992)
based on the 24-h forecast results, using U and V as dynamic control
variables (CV7). The variance scale factor and length factor are set to 0.
75 and 0.25, respectively.

The experiment in this paper starts at 18 UTC on 8 August. Data
assimilation is conducted after the 6-h spin-up run. Table 2 lists four
experiments, including the control (CTRL) run without data
assimilation. The other three experimental runs assimilate FY-4A
AGRI radiance only (AGRI_DA), temperature and humidity profiles
from seven MWRs only (MWR_DA), and both FY-4A AGRI radiance
and temperature and humidity profiles from the MWR network (A +
M_DA). As depicted in Figure 7, FY-4A AGRI and MWR data are
assimilated at 1-h intervals during 00–06 UTC on 9 August, after the
6-h spin-up run. Finally, a 6-h forecast is performed since 06 UTC on
9 August. FY-4A AGRI channels 9–14 are assimilated, including the

FIGURE 8
Initial specific humidity increments (unit: g/kg) after the first data assimilation from (A) MWR_DA at 850 hPa, (B) AGRI_DA at 500 hPa, (C) A + M_DA at
500 hPa.

FIGURE 9
The cross sections of the specific humidity increments (shaded; unit: g/kg) along 40°N from (A) MWR_DA, (B) AGRI_DA, and (C) A + M_DA.
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water vapor channels 9-10 and the window channels 11–14, using a
dilation of 30 km.

5 Results

5.1 Effects of data assimilation on the initial
humidity condition

Analysis of initial humidity increments for the three data assimilation
experiments is shown in Figure 8 and Figure 9 to determine the separate
and simultaneous effect of two assimilated data sources. In theMWR_DA
experiment, specific humidity increments on 850 hPa are distributed over
the Beijing area, presenting a concentric-circles structure (Figure 8A). The
vertical cross-section along 40°N from MWR_DA shows that the
humidity increment is up to 400 hPa, with its maximum increment
exceeding 0.4 g/kg at 850 hPa. The humidity increments in the AGRI_DA
at 500 hPa are mainly distributed over the three heavy rainfall regions (as
shown in Figure 5B) and to the southeast of Beijing. The assimilation of
AGRI radiance strongly influences the initial humidity in the middle-
upper troposphere between 850 hPa and 500 hPa (Figure 9B). In the A +
M_DA experiment (Figure 8C), the humidity increments are consistent
with that in the AGRI_DA experiment, indicating that the assimilation of
AGRI radiance primarily influences themiddle-upper layermoisture. The

vertical profile further demonstrates the significant influence of AGRI
radiance in the middle-upper troposphere and the evident humidity
increments in the lower troposphere caused by MWR profiles. The joint
assimilation of FY-4A AGRI and ground-based MWR could compensate
for their lack of observations at lower and higher layers, respectively,
providing effective initial moisture correction in model simulations.

5.2 Impact of data assimilation on the 6-h
accumulated rainfall forecast

We choose a typical short-duration heavy rainfall event reaching a
very heavy rainfall level (>60 mm) in all three heavy rainfall areas during a
2-h period (Figures 5B, C). Figure 10 shows the 6-h accumulated
precipitation from four experiments. In the CTRL experiment
(Figure 10A), the observed heavy rainfall amounts (Figure 5A) are not
simulated in the north and south areas and are overestimated in the
central area (Beijing). By conductingMWRassimilation in theMWR_DA
experiment (Figure 10B), the 6-h rainfall forecasts in the Beijing area are
effectively corrected. However, only a slight difference can be seen in the
north and south areas compared to the CTRL experiment. In contrast, the
rainfall distribution in the AGRI_DA experiment (Figure 10C) agrees
better with the observation (Figure 5A). The overestimated rainfall near
the Beijing area in the CTRL experiment is also effectively corrected in the

FIGURE 10
Simulated 6-h rainfall accumulation from (A) CTRL, (B) MWR_DA, (C) AGRI_DA, (D) A+M_DA.
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AGRI_DA experiment.Moreover, the simulatedmaximum rainfall center
and intensity in the AGRI_DA experiment are similar to the observation
(Figure 5A). In the joint assimilation experiment of A + M_DA
(Figure 10D), rainfall intensity and distribution are improved over the
AGRI_DA experiment in the Beijing area. The simulated 6-h rainfall
accumulation in the Beijing area is approximately comparable to the
observed value (Figure 5A). At the very heavy rainfall level (>60 mm), the
A + M_DA experiment gives a considerable TS enhancement than the
other three experiments (Figure 11). The results indicate that such short-
duration heavy rainfall prediction can be noticeably improved by the joint
assimilation of AGRI radiance and ground-based MWR data.

5.3 Analysis of the impact on rainfall forecast

To explore the underlying reason for joint data assimilation
facilitating the short-duration rainfall prediction, we analyze the
essential meteorological elements dominating the initiation and
development of convective storms, that is, temperature, relative
humidity, and wind vector. Learn from the vertical cross-section along
40.5°N from the FNL analysis field (Figure 12A), there exists a moist

FIGURE 11
TS for 6-h rainfall forecasts from all four experiments at different
rainfall thresholds.

FIGURE 12
The vertical cross sections along 40.5°N from (A) FNL, (B) CTRL, (C) MWR_DA, (D) AGRI_DA, (E) A + M_DA at 1200 UTC, superimposed with the
temperature (red contours), relative humidity (shaded), and horizontal wind barbs.
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region (116°E−118°E) at 1–3 km height with the relative humidity
exceeding 80%. The corresponding updraft could lift the moist air
parcel, favoring the initiation of this convective precipitation. The
same cross-section from the CTRL experiment fails to simulate the
high humidity region at 1–3 km AGL, and overestimates the relative
humidity below 1 km (Figure 12B). The MWR_DA experiment
strengthens the relative humidity at 1–3 km AGL and below 1 km
(Figure 12C). Compared to the CTRL experiment, the AGRI_DA
experiment effectively corrects the underestimation at 1–3 km and the
overestimation below 1 km AGL at 116°E−118°E (Figure 12D). However,
data assimilation of AGRI radiance alone brings another humidity
overestimation area at 117°E−118°E below 1 km. This humidity
overestimation is successfully corrected by the joint data assimilation
in the A + M_DA experiment, giving a predicted humidity condition
approximately comparable to the observation (Figure 10E). The joint data
assimilation of AGRI radiance and ground-based MWR data could
skillfully correct the humidity distribution at lower and middle-upper
layers, allowing for more accurate heavy rainfall prediction.

6 Conclusion and discussion

This paper uses RTTOV as the observational operator for FY-4A
AGRI data assimilation. The data assimilation interface is built in
WRFDA 4.3 to achieve direct assimilation of FY4A AGRI radiance.
The effect of joint assimilation ofAGRI radiance and ground-basedMWR
data on short-duration heavy rainfall prediction is investigated. Four data
assimilation experiments are designed to explore the effects of the initial
conditions and predicted variables of a typical short-duration heavy
rainfall event in northern China. The main conclusions are as follows.

(1) The humidity increments caused by the assimilation of ground-based
MWR data are mainly distributed in the middle-lower troposphere,
with a horizontal influence radius of about 100 km, due to the less data
amount of MWR. In contrast, the AGRI radiance assimilation affects
the humidity over a large area, with the main effects distributed in the
middle-upper troposphere. The joint assimilation of AGRI radiance
and ground-based MWR data works together on the entire water
vapor column, resulting in an improved initial humidity condition.

(2) All three data assimilation experiments effectively improve the 6-h
accumulated rainfall forecast. The temperature and humidity profiles
obtained from seven MWRs distributed across the Beijing area
proved to be effective in correcting the heavy rainfall forecast over
Beijing. AGRI radiance provides more skillful rainfall prediction over
the three observed heavy rainfall regions. Compared to the AGRI_
DA experiment, the joint assimilation experiment (A + M_DA)
significantly improves the rainfall forecast over the Beijing area at a
very heavy rainfall level. Thus, such short-duration heavy rainfall
prediction can be noticeably improved by the joint assimilation of
AGRI radiance and ground-based MWR data.

(3) Themain reason for the improvement in precipitation forecasts from
the assimilation experiments is the better forecast in humidity. The
MWR_DA experiment can improve the humidity condition in the
middle-lower layers, while AGRI_DA effectively provides a better

humidity forecast in the middle-upper layers. The joint assimilation
of AGRI radiance and ground-based MWR data could skillfully
correct the humidity distribution in the entire layers, allowing for
more accurate heavy rainfall prediction.

This paper explores the effect of joint assimilation of AGRI radiance
and ground-based MWR data on deep convection prediction. Limited to
the sparse distribution of MWR, mainly located in the Beijing area, the
joint assimilation has remarkably improved the precipitation forecasts for
the Beijing region and the other two rainfall regions to a lesser extent. This
paper provides a basis for the joint assimilation of the two data sources as
an efficient way to improve forecasts of such deep convective weather. It is
a question for further study whether the results would be better if more
MWRs were available for the joint assimilation with FY-4A AGRI.
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