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The rapid expansion of aquaculture in coastal areas is typically associated with
ecological negligence and low water quality owing to the economic exploitation
of these areas. However, evaluation of these water bodies tends to be laborious,
time-consuming, and costly. Therefore, to overcome the limitations of field
surveys, in this study, we evaluated the water quality of the cultured water in
the Beibu Gulf of Guangxi, obtained spectral reflectance by unmanned aerial
vehicle with multispectral sensors, and constructed inverse models of 11 water
quality parameters, namely, ammonia nitrogen (NH3-N), chemical oxygen
demand (COD), active phosphate (PO4

−), dissolved oxygen, nitrate nitrogen
(NO3-N), nitrite nitrogen (NO2-N), inorganic nitrogen, total nitrogen, total
phosphorus, suspended solids (SS), and chlorophyll a (chl-a), based on the
partial least squares method to invert the water quality distribution of regional
aquaculture. Furthermore, we compared the retrieval accuracy of different water
quality parameters. The following results were obtained: 1) the constructed
model’s results showed that the retrieval models for COD, NO3-N, SS, and chl-
a had better accuracy compared with those of other parameters; 2) application of
the model to the validation set data yielded a correlation coefficient of
0.93 between the measured and predicted SS values, with a mean absolute
error of prediction of 4.65 mg L−1; this parameter constructed the best
prediction model. According to the validation set results, the correlation
coefficients of chl-a, COD and NO3-N are all greater than 0.8, which had
better performance effects compared with the remaining models, which are
0.87, 0.86, and 0.81 respectively. This study provides a reference for remote
sensing monitoring of water quality in mariculture in cloudy and rainy areas.
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1 Introduction

Total global production from fisheries and aquaculture reached
a record 214 million tons in 2020, including 178 million tons of
aquatic animals and 36 million tons of algae. This increase in
production was mostly due to growth in the aquaculture
industry, with the greatest increase in Asia, particularly China
(FAO, 2022). Since the late 1980s, the rapid expansion of
aquaculture in coastal areas has made China the world’s largest
aquaculture producer (Ren et al., 2019). Economic interests drive the
rapid development of mariculture in these areas, often leading to
high inputs (e.g., in sea farming, large amounts of bait are input) to
achieve high income while neglecting the ecological balance of
aquaculture waters and the protection of the aquatic
environment, which in turn has impacted the regional ecological
environment (Ren et al., 2019). The deterioration of the ecological
environment will not only affect the yield of products but also
seriously threaten the quality and yield of products and even the
income of farmers (Carter et al., 2017; Yuan et al., 2021). Therefore,
the monitoring of mariculture water quality is particularly
important, not only to ensure the quality of seafood but also to
generally protect the environment.

The impact of mariculture on the environment is mainly caused
by two aspects, firstly, the bait invested in the mariculture process,
and secondly, the metabolites produced during the growth of
seafood. In the mariculture process, a large amount of bait is
provided, but only a portion of this bait is effectively used, and
the rest is discharged into the water column in the form of residual
bait and excreta, including feces, forming endogenous pollutants in
the water column (Li et al., 2021). Discharging pollutants into the
ocean leads to increased nutrient levels in the marine ecosystem,
posing a threat to the surrounding ecological environment (Wang
et al., 2020; Yuan et al., 2020; Liu et al., 2021).

The traditional water quality monitoring method uses field
sampling for laboratory analysis to obtain water quality
information or automatic in-situ measurements. Although the
accuracy is high, the increased labor cost, sampling time
consumption, and other multi-factor constraints pose certain
limitations (Liang et al., 2021; Liu et al., 2021). In contrast,
remote sensing technology offers an effective approach for
water quality monitoring owing to advantages such as low
cost, high speed, effective synchronization, and large area of
observation (Bean et al., 2017; Sagan et al., 2020). Remote water
quality monitoring refers to the establishment of water quality
retrieval models by studying the relationship between the spectral
reflection characteristics of water bodies and each water quality
parameter by combining the retrieval models with remote
monitoring image data to inverse the water quality condition
of the entire region, which is suitable for the regional monitoring
of water bodies (Liang et al., 2021). Moreover, with the
development of satellite remote sensing technology, water
quality remote sensing technology is becoming increasingly
advanced, and researchers worldwide have achieved great
results regarding the retrieval of water quality parameters. For
optically water quality parameters such as CDOM and chl-a,
there have been very mature studies, while for non-optically
water quality parameters such as TN and TP, machine learning
methods have been used for estimate in recent years. (Lobo et al.,

2015; Peterson et al., 2020; Liang et al., 2021; Zhao et al., 2021;
Guo et al., 2020; Chen et al., 2021). However, the low spatial
resolution of satellite remote sensing imagery has limited the
ability to obtain the spatial distribution of water quality in small
and micro waters, such as aquaculture ponds. As noted by Liu
et al. (2019), high-resolution images are required to overcome
this limitation. The novelty of this study lies in its focus on
remote sensing of water color in small water bodies, which has
received relatively limited attention. Moreover, remote sensing of
water color in small water bodies presents challenges, including
the low signal level due to limited water volume and the potential
influence of bottom reflectance. Thus, our study aims to address
these challenges and provide a comprehensive analysis of water
quality parameters using remote sensing in small water bodies
(Zehra et al., 2019). In addition, optical satellite images are
susceptible to different weather conditions (e.g., clouds and
rain), and the image acquisition period is long, making it
difficult to obtain efficient images over the water bodies (Rui
et al., 2021). So that we have to find another sate source to
supplement, while, unmanned aerial vehicles (UAVs) are highly
mobile, have low operating costs, result in high image resolution,
and require short operation cycles (Liu et al., 2021), making them
suitable for water quality monitoring through remote sensing.

Recently, UAV remote sensing technology has been widely
applied to aerial land surveys, agriculture and forestry plant
protection, atmospheric detection, disaster mitigation, and
national defense security (Rui et al., 2021; Liu, 2022). Some
researchers have studied the application of UAV remote sensing
technology in water quality monitoring. Cheng et al. (2020)
demonstrated for the first time the use of UAVs to quantitatively
map the Chl-a distribution of surface water in coastal waters from
low altitude. Liu et al. (2019) constructed an inverse model based on
UAV multispectral images for three water quality parameters,
namely, total phosphorus (TP), suspended solids (SS), and
turbidity. McEliece et al. (2020) used UAV multispectral imagery
to inverse chlorophyll-a (chl-a) and turbidity in nearshore water
bodies. Moreover, Matsui et al. (2021) used UAV remote sensing
imagery combined with neural networks to compensate for the lack
of resolution of satellite remote sensing imagery to achieve high-
resolution monitoring of suspended sediment concentrations. Chen
et al. (2021) have made some achievements in the study of UAV
inversion of non-optically active water quality parameters, they
found GA_XGBoost inversion model has high accuracy and
strong generalization on inverse Chl-a, TP, TN and NH3-N.
However, research on water quality monitoring by UAV remote
sensing is still in the exploratory stage, and thus, further
investigation is required to improve our understanding.

In the present study, to evaluate water bodies in the Beibu Gulf,
we first obtained the spectral reflectance by UAV with multispectral
sensors; then, we constructed retrieval models for 11 water quality
parameters, namely, ammonia nitrogen (NH3-N), chemical oxygen
demand (COD), active phosphate (PO4

−), dissolved oxygen (DO),
nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), inorganic
nitrogen (DIN), TN, TP, SS, and chl-a, based on a partial least
squares method. Finally, we compared the retrieval accuracy of
different water quality parameters. This study will serve as a
reference for future studies on monitoring and investigating
aquaculture water quality in offshore areas using UAVs.
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2 Data and methodology

2.1 Study area and sampling locations

The aquaculture industry in China is widely distributed in
coastal areas. Low-lying coastal areas are the most favorable areas
for aquaculture (Primavera, 2006). The present study considered the
Qinzhou Bay area located in the northern part of the Beibu Gulf of
Guangxi, China. Qinzhou Bay consists of inner and outer bays. The
inner bay, which lies at the confluence of the Maoling River, Qin
River, and Dalan River, is a typical estuarine semi-enclosed tropical
bay with a well-developed aquaculture industry and is an essential
artificial culture base in China (Lao et al., 2021). The study area is
located in an estuary section of the Beibu Gulf, Guangxi and
surrounding area, with a total area of approximately 30.3 km2.
The culture types were mainly South American white shrimp,
tilapia, fork-tailed catfish, and fish–shrimp mixed culture. UAV
multispectral image acquisition and water quality sampling of the
study area were conducted from April 8 to 10, 2021, with a total of
33 sampling points, including 10 sampling points for the
fish–shrimp mixed culture, 2 sampling points for fishponds,
13 sampling points for shrimp ponds, and 8 sampling points for
non-cultured water bodies, and a density of approximately 1.09 km2;
the latitude and longitude were recorded separately during
sampling. The collected water samples reflected different types of
aquaculture types, and the distribution of sampling points is shown
in Figure 1.

A water quality analyzer (AMT-YB101, Shenzhen Yunchuan
IOT Technology Co., Shenzhen, China) was used to determine the
water temperature and pH on site; moreover, 500 mL water samples
were collected and placed in a sealed container to transport back to
the laboratory. Eleven parameters, namely, NH3-N, COD, DO,
NO3-N, NO2-N, DIN, TN, TP, SS, and chl-a, were evaluated.

Sampling points were located at 0.5 m below the water surface;
all samples were collected, pretreated, stored and detection in strict
accordance with the Marine Monitoring Code (GB 17378.4-2007,
China).

2.2 UAV multispectral data

In this study, a DJI Elf 4 multispectral version UAV (SZ DJI
Technology Co., Shenzhen, China) carrying an integrated
multispectral camera with one visible light camera and five
multispectral cameras (blue light, green light, red light, red edge,
and near-infrared), that were responsible for visible light imaging
and multispectral imaging, respectively. Each visible and
multispectral camera had 2 megapixels and a ground resolution
of 5 cm when flying at 100 m. The flight time of the drone was from
9:00 to 16:00 on April 8 to 10, 2021. The flight height was set to
100 m, and a total of 45 sorties were flown; a single flight took
approximately 25 min in an area of approximately 0.6 km2.

The acquired single images were processed using Pix4D™
(V4.4.12) software for multispectral images taken at nearshore
locations. We also completed the mosaicking of each band and
the radiometric correction and calibration of them using
Pix4Dmapper. To analyze and process these images, we
performed four steps using Pix4Dmapper software. First, we
preprocessed the original images with this software and
generated an interior orientation element file (.cal). This file
contained parameters such as focal length, principal point
coordinates, radial distortion coefficients and tangential distortion
coefficients of the camera. These parameters corrected camera
distortion of images in each band. Next, we recorded the attitude
angles (pitch angle, roll angle and yaw angle) during flight with the
inertial measurement unit (IMU) that came with DJI. We used these
angles as one of the parameters in the exterior orientation element
file (.ori). These parameters corrected flight attitude of images in
each band. Then, we performed feature point matching and three-
dimensional reconstruction on the original images with this
software and generated a digital elevation model (DEM). This
model reflected the elevation distribution of the ground. It
corrected terrain relief of images in each band. Finally, we
calibrated ground control point (GCP) and set coordinate system
on the original images with this software and generated a projection
coordinate system file (*.prj). This file contained information such as
projection method, ellipsoid parameters and datum parameters used
by the image. It transformed images in each band from spatial
position to geographic coordinates or projection coordinates. Using
image stitching technology based on junction recognition, we
corrected the image according to changes in camera angle and
distance from the ground and finally read it into ENVI (V5.3)
software. The pixel data of each band corresponding to the sampling
point was used as the independent variable (Table 1).

2.3 Retrieval method

Water quality remote sensing retrieval methods are generally
divided into empirical models based on statistics, machine learning
models, and physical semi-analytical models based on the

FIGURE 1
Sampling point distribution.
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interaction of light and water bodies. Common water quality
retrieval methods include methods such as multiple linear
regression, partial least squares regression (PLSR), and support
vector machine regression. Among them, PLSR combines
multiple linear regression analysis, principal component analysis,
and typical correlation analysis to establish a relationship with the
dependent variable by extracting several mutually independent
principal components from the set of independent variables (Liu
et al., 2011), thus minimizing the impact of potential
multicollinearity problems.

PLSR requires a strong correlation between the eigenvectors
selected from the independent and dependent variables.
Theoretically, multiple variables can be used to model the
prediction of components, but in practice, the standard
prediction model uses only a few variables. The independent and
dependent variables are initially subjected to Pearson correlation
analysis to screen out the appropriate independent variables for
modeling and then further crossed checked by the leave-one-out
method. Furthermore, the best modeling factors are retained by the

leave-one-out experiment to eliminate unnecessary variables. The
details of the modeling process of PLSR were previously described
(Wang, 2006). In the present study, the spectral reflectance
corresponding to five bands was set as the independent variable,
and the feasibility of the water quality retrieval model constructed by
UAV multispectral images applied to the monitoring of key water
quality parameters in aquaculture ponds was discussed.

After the UAV multispectral images were preprocessed, the
reflectance value of each band of the multispectral image data
corresponding to the location of the sampling point was
extracted using ENVI software, and the spectral reflectance of the
single band and band combination pixel was correlated with the
measured concentration of each parameter. In summary, analysis
was performed; the band with the best correlation was selected as the
sensitive band, the measured concentration of each parameter and
sensitive band were taken as dependent and independent variables,
respectively, and the PLSR model was constructed and verified via
the verification dataset. Finally, the accuracy and validity of the
model were evaluated according to the verification results.

TABLE 1 Pixel data of each band corresponding to the sampling point.

Band Band name Center wavelength/nm Wavelength/nm

B1 Blue 450 32

B2 Green 560 32

B3 Red 650 32

B4 Red Edge 730 32

B5 NIR 840 52

FIGURE 2
Scatterplots of partial least squares inversion model accuracy evaluation: (A) NH3-N, (B) COD, (C) PO4−, (D) DO, (E) NO3-N, (F) NO2-N, (G) DIN, (H)
TN, (I) TP, (J) SS, (K) chl-a.
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TABLE 2 Results of the 11 measured parameters per collection site.

Parameter (mg·L−1) Fish and shrimp mixed farming Shrimp farming Fish farming Non-farmed water body

Max Min Mean Std. Max Min Mean Std. Max Min Mean Std. Max Min Mean Std.

NH3-N 5.09 0.06 1.41 1.59 2.73 0.37 1.29 0.85 1.59 0.32 0.95 0.64 0.93 0.24 0.54 0.23

COD 18.70 9.35 12.84 2.71 18.65 7.81 11.42 3.06 21.60 12.10 16.85 4.75 13.15 1.80 5.11 4.22

PO4− 1.34 0.04 0.45 0.41 1.79 0.06 0.59 0.55 0.08 0.08 0.08 0.03 0.89 0.04 0.18 0.28

DO 8.81 4.90 7.20 1.44 9.85 4.90 6.81 1.34 8.16 7.00 7.58 0.58 9.60 4.51 6.17 1.41

NO3-N 0.27 0.01 0.10 0.08 0.30 0.01 0.09 0.09 1.95 0.52 1.23 0.72 1.36 0.01 0.79 0.50

NO2-N 0.64 0.01 0.18 0.19 0.75 0.01 0.18 0.21 1.23 0.12 0.67 0.56 0.09 0.01 0.06 0.03

DIN 5.49 0.07 1.69 1.66 3.11 0.38 1.55 0.87 4.77 0.95 2.86 1.91 2.14 0.91 1.39 0.45

TN 5.70 1.11 2.52 1.48 4.26 0.98 2.51 1.18 9.15 1.85 5.50 3.65 2.83 1.07 1.92 0.58

TP 3.73 0.18 1.11 1.18 3.07 0.27 1.01 0.82 0.56 0.45 0.51 0.06 1.23 0.07 0.30 0.37

SS 64.00 13.00 25.10 14.78 36.00 7.00 19.00 6.67 88.00 58.00 73.00 15.00 29.00 6.00 12.25 7.07

chl-a (μg·L−1) 65.50 2.80 26.30 18.46 75.40 2.60 27.00 19.49 120.00 111.00 115.50 4.50 52.30 1.50 17.51 19.53

Note: Standard deviation (Std.).
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2.4 Model evaluation

The accuracy evaluation indicators of the PLSR model are the
root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R2) of the model interpretation
evaluation index. The smaller the values of RMSE and MAE, the
better the accuracy of the prediction model at describing the
experimental data, and the closer the R2 value is to 1, the better
the model fit. Additionally, it is generally considered that when the
model fit exceeds 0.8, the superiority of the model is relatively high.
The evaluation indicators were calculated as follows:

RMSE �
������������
1
N

∑N
i�1

yi − ŷi( )2,
√√

(1)

MAE � 1
N

∑N
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣, (2)

R2 � ∑N
i�1 ŷi − �y( )2∑N
i�1 yi − �y( )2, (3)

where i is the i-th sample, yi and ŷi denote the measured and
predicted values, respectively, and N is the number of samples.

3 Results

3.1 Model construction

Collected samples were mostly shrimp and fish–shrimp mixed
culture water bodies. The results of the 11 determined parameters

(Table 2) indicate that the concentration of each water quality
parameter in the water bodies where culture activities were performed
was significantly higher than that in the water bodies where non-culture
activities were performed, and the water quality of the rivers was
significantly better than that of the farming areas on both banks.

Combined with the reflectivity of the five bands of the UAV
multispectral images from April 8 to 10, 2021 and the concentration
of each parameter, the Pearson correlation analysis was performed
(Table 3). In general, we observed a positive correlation between the
reflectivity of every single waveband of the UAV and concentration
of each parameter, and the correlation coefficient r ranged
between −0.391 and 0.761. Among the 11 parameters, the single-
band correlation coefficient r value of SS concentration and B4 and
B3 bands ranked first and second in the calculation results at 0.761 and
0.721, respectively. A comprehensive analysis comparing the correlation
calculation results between other water quality parameters and
reflectance of the bands showed that the concentration values of
seven parameters, namely, NH3-N, COD, NO3-N, DIN, TN, SS, and
chl-a, were significantly correlated with some single-band reflectance; in
contrast, the concentration values of four parameters, namely, PO4−,
DO, NO2-N, and TP, were not significantly correlated with all single-
band reflectance. Further correlation analysis of each single-band
reflectance showed that the correlation coefficients among the five
bands were high, ranging from 0.666 to 0.908, and it can be assumed
that there is multicollinearity among the five bands (Table 4).
Furthermore, we found that compared to the accuracy of sensitive
band modeling, that of all-band modeling was better. Therefore, this
study proposes the use five bands, B1, B2, B3, B4, and B5, as
independent variables and the concentration values of each
parameter as dependent variables to establish the PLSR
concentration retrieval model.

A total of 33 water quality samples were collected fromApril 8 to
10, 2021, and because some areas were not covered by the UAV
images, 26 sample points were finally used for inverse modeling,
which was cross-validated by the leave-one-out method. A
standardized partial least squares regression model was finally
constructed (Table 5).

3.2 Model validation

3.2.1 Modeling accuracy
The PLSR concentration retrieval models were constructed

for each parameter and applied to the spectral reflectance of the

TABLE 3 Pearson correlation analysis of the 11 determined parameters with the single-band reflectance.

Band NH3-N COD PO4− DO NO3-N NO2-N DIN TN TP SS Chl-a

B1 0.591** −0.115 −0.051 −0.027 0.226 0.144 0.638** 0.397* 0.224 0.381 0.099

B2 0.380 −0.330 −0.311 −0.025 0.475* 0.228 0.562** 0.361 −0.053 0.329 0.022

B3 0.598** 0.239 −0.003 0.064 0.225 0.321 0.681** 0.567** 0.287 0.721** 0.479*

B4 0.458* 0.234 −0.069 0.158 0.289 0.360 0.589** 0.519** 0.250 0.761** 0.525**

B5 0.338 −0.391* −0.261 −0.059 0.445* 0.189 0.505** 0.305 −0.041 0.218 −0.071

**At the 0.01 level (two-tailed), the correlation is significant.

*At the 0.05 level (two-tailed), the correlation is significant.

TABLE 4 Correlation analysis of each single-band reflectance.

Band B1 B2 B3 B4 B5

B1 1 0.908** 0.878** 0.837** 0.877**

B2 0.908** 1 0.974** 0.778** 0.741**

B3 0.878** 0.974** 1 0.718** 0.666**

B4 0.837** 0.778** 0.718** 1 0.959**

B5 0.877** 0.741** 0.666** 0.959** 1

**At the 0.01 level (two-tailed), the correlation is significant.

* At the 0.05 level (two-tailed), the correlation is significant.
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image elements in each wavelength band; further, the predicted
values of each parameter were calculated, and the optimum
concentration retrieval model for each parameter was obtained
by cross-validation using the leave-one-out method (Figures 2, 3).
The RMSE, MAE, and R2 were calculated to evaluate the model
effectiveness. Among the PLSR retrieval models constructed, the
best fit model was the SS retrieval model, with R2 = 0.87, followed
by the COD retrieval model, with R2 = 0.75; and chl-a retrieval
model, with R2 = 0.74. The R2 values of the four retrieval models,
NH3-N, NO3-N, DIN, and TP, were all greater than those of other
water quality parameters that were modeled with R2 between
0.26 and 0.48 (Table 6).

3.2.2 Validation accuracy
The constructed PLSR concentration retrieval model was

applied to the spectral reflectance of each image pixel in all
sampling points to validate the model (Figures 2, 3). The
predicted values of each parameter concentration were
calculated and compared with the true values. The accuracy of
the models was evaluated by calculating the RMSE, MAE, and
Pearson’s correlation coefficient r between the predicted and true
values. The most considerable correlation among the retrieval
results of all models was the prediction result of the SS retrieval
model, with a correlation coefficient r = 0.93, followed by that of
chl-a, with a correlation coefficient r = 0.87. A comprehensive
comparative analysis of R2 and r for all parameter retrieval
models showed that the models for the four parameters COD,
NO3-N, SS, and chl-a had better retrieval results than those for
the remaining seven parameters. RMSE and MAE of the inverse
model with four parameters, COD, NO3-N, SS, and chl-a, can

only be used as a reference because the concentration criteria
differ between parameters. The RMSE of the four models was
2.24, 0.32, 6.83, and 15.45 μg L−1, respectively, and the MAE was
1.86, 0.25, 4.65, and 12.62 μg L−1, respectively. In summary, the
PLSR retrieval models of COD, NO3-N, SS, and chl-a constructed
in this study can be used to predict the concentrations of these
four parameters in culture ponds.

3.3 Multi-optical image retrieval results in
water quality parameters

First, the data for water bodies in the study area were extracted from
the multispectral images by the normalized difference water index
(McFeeters, 1996), and the established PLSR model was applied to the
acquired multispectral images to estimate each image element. The
concentration of water quality parameters corresponding to each image
element in the area was calculated. Finally, the retrieval results were
displayed to visualize the spatial distribution pattern of the
concentrations of COD, NO3-N, SS, and chl-a in the study area
(Figure 4). This visualization aids in better understanding the spatial
distribution of each parameter and provides useful information for
water resource management and pollution control.

Inverse results of COD showed that the lowest and highest
COD concentrations of water bodies in the study area were
0.69 and 31.76 mg L−1, respectively, with the average value at
10.14 mg L−1, as shown in Figure 4. Generally, culture pond COD
concentrations ranged from approximately 2.41–31.76 mg L−1, in
contrast to river areas where the concentrations were significantly
lower, ranging between 0.69 and 12.48 mg L−1. From the retrieval
results of NO3-N, the average concentration of the entire study
area was 0.32 mg L−1, with a few culture ponds with high NO3-N
concentrations reaching approximately 2 mg L−1. The NO3-N
concentration in the river area was higher than that in most of
the culture ponds, and that in the upstream water was
approximately 1 mg L−1. The retrieval results were the same as
those reflected by the sampling results in this study. SS retrieval
showed that the average concentration in the study area was
15.93 mg L−1, and the SS concentration in a few ponds was as high
as 180 mg L−1. From the retrieval result graph (Figure 4C), most of
the blue-greenish areas in the graph were cultured ponds, which
implies that the SS concentration in cultured pond water bodies
was low. The retrieval results of chl-a concentration showed that
the range of chl-a concentration in the water bodies in the study
area was wide, ranging from 0 to 289 μg L−1 with a mean value of
24.66 μg L−1, which is an overall low concentration level, except
for a few ponds with unusually high chl-a concentration.

As shown in the retrieval results, the concentrations of COD, SS,
and chl-a in the study area were significantly higher than those in the
river area, possibly due to the impact of nutrients, organic pollutants,
microorganisms, and anthropogenic activities in the surrounding area
of the water body during the mariculture process degrading the water
quality in the aquaculture area. In contrast, the distribution of NO3-N
concentrations showed that the concentration in the river area was
higher than that in the aquaculture water body. However, the
concentration in the upstream water was significantly higher than
that in the downstream water, which is likely influenced by the
upstream domestic sewage discharge; however, further verification is

TABLE 5 Established standardized partial least squared regression model.

Parameter Model

NH3-N y = 0.73 × B1 − 0.71 × B2+ 0.29 × B3 − 1.41 ×
B4 + 1.76 × B5

COD y = 2.55 × B1 − 3.27 × B2 − 3.96 × B3 + 7.29 ×
B4 − 3.01 × B5

PO4− y = 0.89 × B1 − 1.42 × B2 + 0.46 × B3 + 0.33 ×
B4 − 0.36 × B5

DO y = 1.60 × B1 + 0.73 × B2 − 2.27 × B3 + 3.59 ×
B4 − 3.79 × B5

NO3-N y = −1.30 × B1 + 0.92 × B2 + 0.25 × B3 −
0.63 × B4 + 1.00 × B5

NO2-N y = −0.58 × B1 + 0.12 × B2 + 0.21 × B3 −
0.16 × B4 + 0.52 × B5

DIN y = −1.14 × B1 + 0.31 × B2 + 0.75 × B3 −
2.20 × B4 + 3.29 × B5

TN y = −2.99 × B1 + 0.23 × B2 + 1.48 × B3 −
2.42 × B4 + 4.81 × B5

TP y = 2.45 × B1 − 2.17 × B2 − 0.08 × B3 + 1.71 ×
B4 − 1.84 × B5

SS y = −18.81 × B1 + 13.97 × B2 − 13.86 × B3 +
17.64 × B4 + 12.31 × B5

chl-a y = −24.37 × B1 + 5.08 × B2 − 19.38 × B3 +
38.88 × B4 + 8.17 × B5
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required. Comparing the graphs of the retrieval results of SS and chl-a,
the concentration distributions for the two parameters were found to be
similar. Moreover, according to the Pearson correlation analysis, the
correlation coefficient r of SS and chl-a was 0.84, indicating a high
correlation, which is consistent with the final retrieval results of this
study. Overall, the concentration levels of all parameters in all culture
ponds were relatively uniform, and some ponds showed poor water
quality. The inverse results of this study can accurately identify the
culture ponds with poor water quality, provide a solid basis for scientific
culture, and further provide relevant measures to control water quality.

3.4 Differences in water quality between
different types of water bodies

UAV aerial photography covers a large scale, and the study area
contains different types of water bodies. To explore the differences in
water quality retrieval results between different water bodies, two areas
were selected for preliminary quantitative analysis for each of the four
types of water bodies: fish and shrimp, fish culture, shrimp culture, and
non-culture water bodies. Some of the details are shown in Table 7.

The two ponds with mixed fish and shrimp appeared grayish-
green from the UAV red-green-blue (RGB) images on the left pond
and darker green on the right pond, with significant differences in
COD and NO3-N concentrations; however, no significant
differences were observed between SS and chl-a concentrations.
Each pond had a relatively uniform concentration distribution. The
fish culture from the UAV RGB image of the left pond appeared
grayish-green, whereas the right pond appeared dark curry brown,
which indicates that the retrieval results of the four water quality
parameters of the two ponds were not very different, and the water
quality of the two ponds is thus similar. Two ponds for shrimp
culture appeared dark blue on the left pond and grayish-curry on the
right pond from the RGB images of the UAV. The concentrations of
COD, SS, and chl-a in the two ponds were not much different.
Moreover, the NO3-N concentration in the left pond was
significantly lower than that in the right pond, and the inverse
concentration of each parameter on the north bank of the right pond
was higher than that on the south bank from the inverse results of
the four parameters. The non-culture water bodies of the two areas
are the water bodies around the near-shore mangroves and the river
water bodies. The water around the mangroves in the UAV RGB
image appeared yellow-green. Results of all four parameters showed
that the concentration of the water body in the narrow area of the

FIGURE 3
Histograms comparing the predicted andmeasured values of each parameter: (A)NH3-N, (B)COD, (C) PO4−, (D)DO, (E)NO3-N, (F)NO2-N, (G)DIN,
(H) TN, (I) TP, (J) SS, (K) chl-a.

TABLE 6 Statistical determination of the effectiveness of the model.

Parameter Training dataset Validation dataset

R2 RMSE MAE r RMSE MAE

NH3-N 0.56 1.06 0.83 0.43 0.78 0.60

COD 0.75 7.34 3.78 0.86 2.24 1.86

PO4− 0.48 0.46 0.37 0.72 0.36 0.29

DO 0.26 2.43 1.72 0.51 1.27 1.05

NO3− 0.59 0.74 0.45 0.81 0.32 0.25

NO2− 0.33 0.52 0.32 0.57 0.23 0.18

DIN 0.57 1.87 1.17 0.76 0.85 0.66

TN 0.45 3.66 1.96 0.68 1.28 0.99

TP 0.56 1.01 0.77 0.67 0.66 0.52

SS 0.87 13.37 7.93 0.93 6.83 4.65

chl-a 0.74 35.38 21.51 0.87 15.45 12.62
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river was higher than that in the open water, with a higher
concentration near the shore. The river water bodies appeared
greenish-yellow from the UAV RGB images, and the
concentrations of COD, NO3-N, SS, and chl-a were low.

Comprehensive comparison of the different types of water
bodies intercepted and removed revealed no direct link between
the color of the UAV RGB images of water bodies and their
retrieval results. Therefore, the water quality cannot be
determined merely by the color of the true color images. In
this study, the concentrations of COD, NO3-N, SS, and chl-a
from PLSR retrieval models can indicate the water quality of the
ponds more intuitively, as the concentration levels in individual
farming ponds did not vary significantly. COD indicates the
amount of oxygen required to oxidize 1 L of organic matter in
sewage by potassium dichromate under strongly acidic
conditions, which can roughly represent the amount of organic
matter in the sewage, and NO3-N and chl-a reflect the nutrient
status of the water body; the concentrations of these three
parameters are related to the bait fed during aquaculture and
metabolites produced during animal growth. SS is a physical
indicator of the solids suspended in water, including inorganic
and organic matter insoluble in water, such as mud, sand, clay,

and microorganisms. Hence, the concentration of SS is generally
high in culture ponds that are less fluid and closed. For the river
with better fluidity and unconfined water bodies, the water quality
condition is significantly better than that of the aquaculture water
bodies, and the concentration of each parameter decreases with
the increase in offshore distance; poorer water quality near the
shore may be influenced by the effect of poor hydrodynamics and
human life.

4 Discussion

In this study, we showed that it is feasible to use UAVmultispectral
images for retrieval studies of COD and SS in water bodies. After
correlation and significance analyses between 11 water quality
parameters and spectral reflectance of the cultured water bodies,
PLSR was performed by selecting the reflectance of all bands as
independent variables. The results obtained from the PLSR models
suggest that they hold great potential for accurately estimating water
quality parameters from remote sensing data, contributing to our
understanding of aquatic ecosystems and their environmental status.
We found that among all the obtained models, the accuracy of the

FIGURE 4
Retrieval results visualizing the spatial distribution pattern of the concentrations of COD (A), NO3-N (B), SS (C), and chl-a (D) in the study area. The
legend indicates the heat map scale corresponding to decreasing concentrations. The reddish-yellow-green areas in (A) are generally culture ponds.
NH3-N: ammonia nitrogen, COD: chemical oxygen demand, PO4

−: active phosphate, DO: dissolved oxygen, NO3-N: nitrate nitrogen, NO2-N: nitrite
nitrogen, DIN: inorganic nitrogen, TN: total nitrogen, TP: total phosphorus, SS: suspended solids, and chl-a: chlorophyll-a.
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retrieval models of COD and SS in the final obtained models were high.
The models of other water quality parameters were challenging to meet
the estimation requirements.

The inverse results of COD, NO3-N, SS, and chl-a were obtained by
applying the constructed partial least squares regression model to the
UAV multispectral images, which showed that the water quality of the
farmedwater bodies in the study area was poor, whichwas related to the
bait input to the aquaculture process and the animal growth and
metabolism. For different types of aquaculture area, only using the
inversion results of the four parameters cannot determine the
differences in water quality. This is because, on the one hand, the
background information collected in this study is limited, so only part of
the sampling points can determine the type of aquaculture, and there
were too few samples for comparison. On the other hand, using only the
four water quality parameters for water quality analysis does not allow
the observation of more subtle differences between different water
bodies. Although the collected water body samples were analyzed for
11 water quality parameters, the model established could not meet the
requirements of prediction. Future research will focus on solving the
problem of inverse model accuracy of other water quality parameters.

Our study has certain limitations that should be
acknowledged. First, because the background information
collected in this study was limited, we could only investigate
certain parts of the sampling points to determine the type of
aquaculture present. This could lead to biases in the
interpretation of the results. Second, the small number of
samples available for comparison may limit the generalizability
of the results to other small water bodies. Hence, the results of the

experiment should be interpreted with caution. Third, the four
water quality parameters used to determine water quality may not
be representative enough to capture the subtle differences
between different water bodies. To address this limitation,
future studies should focus on establishing an inverse model
that accurately predicts other water quality parameters.
Fourth, due to the power limit of the UAV, each operation
time was approximately 25 min, which limits the water quality
monitoring capacity for a large area of rivers, such as open water
bodies. Additionally, the UAV field sampling is operated in
multiple airspaces over water, which can have high tide
dynamics that cause spatial and temporal changes in water
quality. Because of this, the water flow may not be
synchronized with the UAV collection, leading to differences
between the quasi-synchronous water body spectral data and the
actual river water quality distribution data. As a result, the final
retrieval results may exhibit noticeable stripes in some areas. In
summary, while our study provides important insights into the
use of UAV technology for water quality monitoring, the
limitations mentioned above highlight the need for caution in
interpreting the results and emphasize the importance of
conducting future studies to improve the accuracy and
reliability of UAV-based water quality monitoring in small
water bodies.

Overall, the retrieval results provided insights into the spatial
distribution patterns of water quality parameters in the study area’s
water bodies. The map generated in Figure 4 can serve as a helpful tool
for water resource managers and decision-makers who need tomonitor

TABLE 7 Unmanned aerial vehicle (UAV) aerial photography of different water bodies in the study area.

Fish and shrimp mixed
farming

Shrimp farming Fish farming Non-farmed water body

RGB Image

COD

NO3-N

SS

Chl-a

The first row represents UAVRGB, image, followed by COD, NO3-N, SS, and chl-a retrieval results. Every two columns represent the same type of water bodies; the rightmost scale bar from blue

to red indicates increasing concentration.
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and manage the water quality of various water bodies in the study area.
Additionally, the findings can serve as a baseline for future studies that
aim to compare and evaluate changes in water quality over time or after
implementation of water pollution mitigation measures.

It is important to note that remote sensing techniques can
provide valuable information about water quality parameters over
a large area at a low cost, making it a promising technique for water
quality monitoring. However, these techniques have limitations, and
it is necessary to verify the retrieval results through field
measurements and laboratory analysis.

In conclusion, the study demonstrated the potential of remote
sensing techniques combined with PLSR models to estimate and
map water quality parameters in the study area. The retrieval results
for COD, NO3-N, SS, and chl-a were consistent with the actual water
quality conditions in the study area, indicating that this approach
can provide reliable information for decision-making to manage
water resources and prevent water pollution. Currently, research on
low-altitude UAV water quality remote sensing is in the exploration
stage, and further study is required for improved rigorous
multispectral image acquisition and processing.

5 Conclusion

In this study, we discussed the application of unmanned aerial
vehicle (UAV) technology for water quality monitoring in small
water bodies, with a focus on aquaculture ponds in the Beibu Gulf of
Guangxi. We collected water samples and analyzed them for various
water quality parameters, including ammonia nitrogen, chemical
oxygen demand, active phosphate, dissolved oxygen, nitrate
nitrogen, nitrite nitrogen, inorganic nitrogen, total nitrogen, total
phosphorus, suspended solids, and chlorophyll a. We then obtained
spectral reflectance data using UAVs equipped with multispectral
sensors and constructed inverse models of 11 water quality
parameters using the partial least squares method.

Our results showed that the retrieval models for COD, NO3-
N, SS, and chl-a performed better compared to other parameters.
The validation set results demonstrated that the correlation
coefficients of chl-a, COD, and NO3-N all exceeded 0.8, with
chl-a producing the best prediction model. However, we also
acknowledged certain limitations of our study, including the
limited background information collected, the small number of
samples available for comparison, and the restricted monitoring
capacity of UAVs due to power limitations and spatial and
temporal changes in water quality.

Overall, our study provides important insights into the
potential of UAV technology for water quality monitoring in
small water bodies, especially in aquaculture ponds where
traditional monitoring methods may be challenging to
implement. The results suggest that the use of UAVs with
multispectral sensors and the construction of inverse models
can offer more efficient and cost-effective methods for
monitoring water quality parameters in small water bodies.
Despite the study’s limitations, future research in this area
should continue to address these challenges and further refine
the methods for UAV-based water quality monitoring to ensure
more accurate and reliable results.
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