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Recently, deep learning algorithms have been popularly developed for identifying
multi-element geochemical patterns related to various mineralization occurrences.
Effective recognition of multi-element geochemical anomalies is essential for
mineral exploration, and effective recognition is extremely dependent on integral
clustering. Deep learning algorithms can achieve impressive results in comparison to
the prior methods of clustering indicator elements correlated to mineralization for a
region of interest due to their superb capability of extracting features from complex
data. Although numerous supervised and unsupervised deep learning algorithms
have been executed for the recognition of geochemical anomalies, employing them
for clustering geochemical indicator elements is rarely observed. In this research, a
convolutional deep learning (CDL) algorithm was architected to recognize and
regiment geochemical indicator elements in Takht-e Soleyman District, Iran.
Various opinions and experiments were considered to reach optimum parameters
of this architecture. Fortunately, the achieved root mean square error (RMSE) values
were in the appropriate range (<20%) which display the predicted values of the
dependent variables (Pb as a pioneer of the first group and Ag as a pioneer of the
second group) through their independent variables that are so close to their actual
values. Also, the great R2adj calculated (more than 90%) for the last stage of
regimentation confirms impressive accuracy and performance of the
convolutional deep learning algorithm for clustering geochemical indicator
elements of the study area.
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1 Introduction

Appropriate regimentation of geochemical indicator elements of mineralization
occurrences is a challenging issue due to the complexity of geological features, especially
for a big geochemical data collection of stream sediments on a regional scale (Ghezelbash et al.,
2019; Ghezelbash et al., 2020). Dividing geochemical indicator elements associated with mineral
deposits into efficient and inefficient groups can be different due to employing various
traditional clustering methods or factor analysis techniques (Templ et al., 2008; Yang et al.,
2016). Thus, employment of a suitable methodology such as convolutional deep learning (CDL)
algorithm can regiment big geochemical data into meaningful groups of indicator elements. In
fact, complexity and diversity of geological features and application of various clustering
methods can influence numbers and types of indicator element groups and complicate
geochemical anomaly detection. Therefore, clustering indicator elements analyzed into
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efficient groups is a fundamental operation in the initial stages of
mineral exploration (Ghezelbash et al., 2020). Traditional clustering
procedures such as fuzzy c-means, K-medoids, and K-means classified
as unsupervised techniques are carried out for discriminating
geochemical data into homogeneous groups or clusters for
distinguishing background and anomaly populations (Clare and
Cohen 2001) or alterations and lithological units (Yang et al.,
2016), while machine learning algorithms and the CDL structure
can especially be executed for professional regimentation of
geochemical indicator elements. The big amount of geochemical
data on stream sediments is commonly regarded as compositional
data that display multivariate behavior (Ghezelbash et al., 2020).
Hence, architecting a CDL structure that includes multivariate
regression can be so effective. Previously, response surface
regression, polynomial regression, factorial regression, and multiple
regression were executed by many researchers (Howarth 2001;
Coburn, Freeman et al., 2012; Granian, Tabatabaei et al., 2015;
Sabbaghi 2018). Response surface regression has been widely
applied in earth science fields due to its nature. In fact, the
function achieved from response surface regression has been
prevalently employed to present the behavior of a dependent
variable with respect to independent variables to discover the
optimum position of effective variables through particular
parameters in environmental sciences. Convolutional neural
networks (LeCun et al., 2015), deep belief nets (Hinton et al., 2006),
artificial neural networks (Anderson 1972), logistic regression (Cox
1959), ensemble learning (Dietterich 2002), random forest (Breiman
2001), and support vector machine (Vapnik 1999) classified as
supervised learning algorithms are concentrated on classifying
situations, issues, or objects according to the known data labeled
into a machine. Moreover, feature extraction (Coates et al., 2011;
Sabbaghi and Moradzadeh 2018; Sabbaghi and Tabatabaei 2023),
dimensional reduction (Redlich 1993), and density estimation (Scott
and Knott 1974; Silverman 2018) classified as unsupervised learning
algorithms are applied to detect hidden potential patterns of a big
dataset without the known labeled data (Pal, Ruidas et al., 2022). The
machine learningmethods such as support vector machine and random
forest are considered shallow learning methods and only include one
hidden layer or can even be without hidden layers. Therefore, their
development ability is generally restricted to distribution issues of big
complex data. The observable difference between the aforementioned
networks with a hidden layer and deep learning networks is epitomized
in their depth (Chakrabortty, Pal et al., 2021; Ruidas, Pal et al., 2021; Roy
et al., 2022; Saha et al., 2022). Thus, more complex features can be
extracted through deep learning networks because high-level features
are created by combining low-level features. A deep autoencoder
network was initially applied to map mineralization zones of an iron
polymetallic deposit by Xiong and Zuo (2016). Subsequently, deep
learning networks became more popular in several fields of mineral
exploration (Zuo 2017; Zuo 2020; Zhang et al., 2021). For example, the
GoogLeNet, as a convolutional neural network, was employed to map
potential zones of gold deposits by Yang, Zhang et al. (2021). However,
disregarding domain knowledge and experiments in purely data-driven
deep learning networks can frequently lead to interpretation trouble
from the geochemical perspective. In conclusion, incorporating
geochemical knowledge and expert’s opinions into deep learning
networks can create new challenges in this field. This research
intends to present an unsupervised CDL algorithm for clustering
geochemical indicator elements of the Mississippi Valley-type (MVT)

Pb–Zn deposit in Takht-e Soleyman District in Iran. We attached a
regression layer to the constructed network and performed a known
forward strategy of multivariate regression for predicting values of
pioneer elements of each cluster.

2 Study area

2.1 Takht-e Soleyman zone

This area is considered a significant part of the Takab
mineralization zone in West Azerbaijan Province, Iran. The Takht-
e Soleyman region is restricted between 47° 0′ 0}E and 47° 30′ 0}E
longitudes and 36° 30′ 0}N and 37° 0′ 0}N latitudes, which is exactly
situated between the Urumieh–Dokhtar Volcanic Arc (UDVA) and
the Sanandaj–Sirjan Zone (SSZ) (Figure 1). The extensional faults of
the region commonly has an E–W or NE–SW trend, which is
considered the mineralization factor for MVT Pb–Zn deposits and
epithermal gold deposits. The geological structures of this zone mostly
contain carbonated, metamorphic, and sedimentary rocks and
volcanic outcrops that are rarely observed.

2.2 MVT Pb–Zn mineralization

The MVT Pb–Zn deposits typically occur as stratiform in passive
margin settings and have continuous and huge orebodies that are
weakly associated with their alterations (dolomitization and
silicification) (Wei et al., 2020). It is known that 25% of lead–zinc
requirements of the world are supplied through the MVT Pb–Zn
deposits. Therefore, they are remarkable in mineral prospectivity
mapping (Sabbaghi and Tabatabaei 2020; Sabbaghi and Tabatabaei
2022). These deposits are hosted by carbonate rocks (dolostone and
limestone), which are observed in foreland basins of orogenic belts
(Wei et al., 2020). Their simple ore mineralogy primarily includes Fe
sulfides, galena, and sphalerite (Hosseini-Dinani and Aftabi 2016).

3 Methods

3.1 Multivariate regression

The regression procedure was introduced as a statistical method
for considering relationships between variables. For instance, a
dependent variable (Y) can be delineated through the function of
independent variables (xi) given as follows:

Y � f xi( ) (1)
When Y is a linear function of xi, regression is commonly named
linear. Otherwise, regression would be non-linear with a delineated
non-linear function. Vugrinovich (1989), Saunders et al. (1991), and
Karathanasis (1999) have adequately performed linear and non-linear
regression for investigating the behavior of different geoscience
variables. Accordingly, the multivariate regression function is
expressed as follows:

Y � a0 + a1x1 + a2x2 + . . . + ε (2)
where a0 and ai (i = 1, 2, ..., n) are the constant factor and partial
coefficients, respectively, and Ɛ represents the random error. The
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random error value reveals the deviation of Y values predicted from
their actual values. Prior studies (Granian et al., 2015; Karbalaei
Ramezanali et al., 2020) have suggested the measured variable p for
each sample, when a dataset contains n samples. Therefore, Eq. 2 can
be represented as follows:

Yi � â0 + â1xi1 + â2xi2 + . . . + âpxip + εi, i � 1, 2, . . . , n (3)
also, its matrix form is calculated as follows:

Y[ ] � X[ ] A[ ] + ε[ ] (4)

Y[ ] �
Y1

Y2

..

.

Yn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; A[ ] �

â0
â1
..
.

ân

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; X[ ] �

1 x11 x12 / x1p

1 x21 x22 / x2p

..

. ..
. ..

. ..
. ..

.

1 xn1 xn2 / xnp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦; ε[ ] �

ε1
ε2
..
.

εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Regression coefficients are estimated by applying the least squares
method expressed as follows:

A[ ] � Ʃ[ ]−1 G[ ] � X[ ]′ X[ ]( )−1 X[ ]′ Y[ ] (6)
where [G] is the covariance matrix between the independent variable
and samples, [Ʃ]-1 is the inverse of the variance–covariance matrix of
the samples, and [A] is the coefficient matrix. For accepting the
function fitted in regression analysis, the following three criterions
should be prepared: 1) the variance and mean of the random error (ε)
should be equal to the constant value and zero, respectively; 2)
variance analysis should be performed until the function fitted into
the data is significant (significance level α = 0.05, can be considered);
and 3) calculating the determination coefficient (R2) using the
following equation:

R2 � ∑n
i�1 Ŷi − �Yi( )2

∑n
i�1 Yi − �Yi( )2 � 1 − ∑n

i�1 Yi − Ŷi( )2
∑n

i�1 Yi − �Yi( )2 (7)

where Ŷi, �Yi, and Yi are considered the estimated value of the ith
dependent variable, mean of the dependent variable, and the ith
dependent variable, respectively. While predicted values for the
dependent variable (Ŷi) are close to their actual values (Yi), it
means that the regression model has been properly fitted and the
determination coefficient (R2) is close to 1. Under the same condition,
models have a higher priority while including a lower degree of
complexity. The determination coefficient may be an appropriate
parameter for considering multivariate regression models with the
same number of independent variables, but it is not suitable for the
comparison of models with various numbers of independent variables
(Granian et al., 2015). Accordingly, the adjusted determination
coefficient (R2adj) should be calculated as follows:

R2
adj � 1 − n − 1

n − t
1 − R2( ) (8)

where n and t are the number of samples and variables, respectively.

3.2 Convolutional neural network

A convolutional neural network (CNN) (Figure 2) regularly
includes a convolutional layer, pooling layers, and fully connected
layers that is recognized as a feedforward neural network (LeCun et al.,
2015). The CNNwas first executed for anomaly recognition and image
classification in remote sensing data. A significant section of the CNN

FIGURE 1
Simplified geological map (1:100,000) of the region of interest (Takht-e Soleyman).
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is the convolutional layer, which extracts high-level features of big
datasets by using a convolutional procedure. Several advantages of a
convolutional layer are as follows: 1) applying the weight sharing
procedure for reducing parameters of a model and 2) maintaining
invariance of an object location. The common two-dimensional
convolution formula has been expressed by the following equation:

G*(X,Y) � ∑m

i�1∑n

j�1f(i‘ j) · G x − i + c‘y − j + c( ) (9)

where f (x, y) plays the role of a filter for the convolving matrix G with
n × m dimensions, resulting in the central result G*(x, y) around the
central coordinate c. Convolutional layers are learned through some
filters such as f which are generally followed by the application of the
operation of a down-sampling in m and n for condensing spatial
information. These forcing functions commonly aid in learning
complicated representations in next convolutional layers
progressively (Figure 2A). Pooling layers generally interfere along
convolutional layers in a CNN for decreasing dimensions of network
parameters and output features. Pooling layers are similar to
convolutional layers because of considering neighboring features
and can maintain translation invariant. The most applicable
pooling operations are generally average pooling and max pooling.
For example, a max pooling layer can reduce an 8 × 8 feature tensor to
a 4 × 4 feature tensor through employing a window with 2 ×
2 dimensions and a two-stride size (Figure 2B). The last layers of
the CNN are commonly the fully connected layers, which are applied
for classification and feature union (Figure 2C) (Krizhevsky et al.,
2017). In fact, flattening output features into a column vector and
subsequently converting them into a specific division for classification
are the most significant duty of a fully connected layer (Guo et al.,
2016).

3.3 Deep learning algorithm

Deep learning algorithms are a subset of machine learning
algorithms which are employed to minimize the contrastive
divergence of deep networks (comprising more processing layers)
by applying an iterative training procedure. These algorithms
generally encode training samples and rebuild them when they
are consecutively represented to the network. Accordingly,
interlayer connection weights are being continuously moderated.
In machine learning algorithms, suitable iterations can only create a
well-trained model for converging into a general solution. For
machine learning algorithms, a necessary number of iterations are
only revealed using the trial-and-error procedure, while deep
learning algorithms can present a number of suitable iterations
with the least value of loss through loss function, which has been
embedded in their structures. The requirement data for deep
learning algorithms were typically divided into training, testing,
and validation data. Training data are applied for the descending
gradient procedure on the objective function. In the training
procedure, the model result is tested through testing data (unseen
data). Validation data are ultimately applied to evaluate network
performance.

3.4 Data preparation

A total of 868 stream sediment samples were collected from the
region of interest. The collected samples were analyzed to consider
38 elements by the induced coupled plasma method. For each
20 measurements, the duplicated sub-samples were analyzed for
considering the precision of the analyzing procedure. The

FIGURE 2
Common CNN framework.
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analyzing error was less than ±10%. The stream sediment data are
generally compositional data that are concerned with the problem of
data closure. Accordingly, moderating outlier values were calculated
by applying the robust Mahalanobis distance procedure. Then, stream
sediment data were preprocessed by applying the isometric log-ratio
transformation for removing the data closure problem and
transforming into the range of [0, 1] (Wang et al., 2014).

4 Results and discussion

The CDL framework generally requires training, validation, and
testing data. Hence, the 868 collected samples were prevalently divided
as follows: 80% training data (608 samples), 10% validation data
(87 samples), and 20% test data (173 samples). The CDL
parameters (such as learning rate and minimum batch size) and
the number of network layers were regulated through the trial-and-
error procedure for extracting high-level features of multivariate
geochemical data. The speed of back propagation as the
performance of the training procedure is generally determined by
the learning rate factor. Empirical studies displayed that for
conducting the best training, the learning rate factor should be
0.01. We architected a CDL network employing the convolutional
layer for clustering geochemical indicator elements with the learning
rate of 0.01, learning rate drop factor of 0.7, learning rate drop period
of 50, validation frequency of 50, maximum epoch of 30, and
minimum batch size of 16. Also, we employed a kernel window
with 2 × 2 dimensions and a one-stride size for the convolutional
layer. Prior studies established an essential role of indicator elements
such Pb, Zn, Ag, As, Cd, and Sb in the detection of primary and
secondary dispersion halos of the MVT deposit (Wang et al., 2017; Li
et al., 2018; Williams et al., 2020). As the first step of regimentation, we
choose Pb and Ag elements as pioneers of the first and second groups,
respectively. Based on Pearson’s correlation coefficients (Table 1), Pb
presented a high correlation to the Zn element, while Ag exhibited a
great correlation to Cd, As, and Sb. In this research, a forward strategy
of multivariate regression was applied for clustering geochemical
indicator elements by training a CDL network. Figure 3A clears the
difference between actual values of Pb (as a dependent variable) and its
predicted values through Zn values (as an independent variable) for
the seventh training of the network. It is clear that the dependent
variable (Pb) has been properly predicted via the correlated
independent variable (Zn). The great adjusted determination
coefficient (R2adj) of this process (up to 0.9) establishes this claim
(Table 2). Furthermore, the seventh testing procedure was
concurrently performed to consider the aforementioned difference
in the test data, which have been assumed as unseen data (Figure 3B).
The R2adj of the testing data is also exhibited in Table 2. In fact, the
seventh training of the dataset has reached the best training
performance with the least training loss which has decreased to 0.1
(Figure 4). Furthermore, the root mean square error (RMSE), which is
commonly employed to evaluate predicted values of the dependent
variable, has been presented as a diagram in Figure 4. This parameter
clears that the estimation of Pb values through Zn values is an ideal
condition (less than 0.2). So the first group that is regimented can play
an essential role in detecting mineralization zones. The regimentation
of the second group assumes the Cd element as its second member.

The predicted values of Ag via Cd values display minor errors in their
actual values (Figure 5A). Although, the R2adj calculated for training
data (equal to 0.869) and testing data (equal to 0.852) highlights these
minor errors (Table 2). In fact, the fifth training (Figure 5A) and
testing (Figure 5B) of the network have achieved these results and have
great conformity together. Also, the loss and RMSE values of the fifth
training were depicted in Figure 6. Accordingly, it can be observed that
the loss value has decreased up to 0.1 again and the RMSE is less than
0.2. The regimentation procedure is continued by selecting the As
element as the third member of the second group. Figure 7A
establishes that selecting As next as an independent variable for
aiming the estimation of Ag values can smooth the prediction
procedure because the achieved R2adj is more than the back stage.
The forward strategy of multivariate regression claims that if adding
an element into a group is associated with an impressive increment of
the R2adj, the selected element will be a steady member, otherwise it
should be eliminated (Granian et al., 2015). Therefore, the As element
is the third permanent member of the second group because the R2adj
calculated [training (0.889) and testing (0.878)] for this stage has
impressive differences in the coefficients of the back stage (0.869 and
0.852). Also, choosing As as the third element of this group can be
evaluated considering the test data condition (Figure 7B). Running the
network for the fourth time created this progress, whose results have
been presented in Figure 8. The loss value has similarly decreased
close to 0.1 with the RMSE up to 0.2. Finally, the Sb element is
imported as the fourth element into the second group. In addition to
the proper estimation of Ag values via Sb values in training data
(Figure 9A), testing data have achieved acceptable results
(Figure 9B). Hence, Table 2 clearly shows impressive progress of
the R2adj for both training (0.934) and testing data (0.926) again.
This is a pleasant consequence, which maintains the Sb element in
the second group. Furthermore, the loss value (up to 0.05) and the
RMSE value (up to 0.15) (Figure 10) of the third training of the
network can remunerate the regimentation procedure of the second

TABLE 1 Pearson’s correlation coefficients between significant geochemical
indicator elements.

Element Pearson’s correlation coefficient

Zn Cd As Sb

Pb 0.874

Ag 0.723 0.805 0.887

TABLE 2 Calculated R2adj of training and testing data for both groups of indicator
elements in all stages.

Group R2adj

Training data Testing data

Pb–Zn 0.897 0.882

Ag–Cd 0.869 0.852

Ag–Cd–As 0.889 0.878

Ag–Cd–As–Sb 0.934 0.926
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FIGURE 4
Plot of the seventh training of the dataset applying the CDL network for calculating the loss value and RMSE parameter from the first group of
geochemical indicator elements (Pb–Zn).

FIGURE 3
Plot of the running CDL network for clustering the first group of geochemical indicator elements (Pb–Zn); (A) training data and (B) testing data.
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FIGURE 5
Plot of the running CDL network for the first stage of clustering the second group of geochemical indicator elements (Ag–Cd); (A) training data and (B)
testing data.

FIGURE 6
Plot of the fifth training of the dataset applying the CDL network for calculating the loss value and RMSE parameter from the second group of
geochemical indicator elements (Ag–Cd).
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FIGURE 7
Plot of the running CDL network for the second stage of clustering the second group of geochemical indicator elements (Ag–Cd–As); (A) training data
and (B) testing data.

FIGURE 8
Plot of the fourth training of the dataset applying the CDL network for calculating the loss value and RMSE parameter from the second stage
regimentation of the second group (Ag–Cd–As).
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FIGURE 9
Plot of the running CDL network for the third stage of clustering the second group of geochemical indicator elements (Ag–Cd–As–Sb); (A) training data
and (B) testing data.

FIGURE 10
Plot of the third training of the dataset applying the CDL network for calculating the loss value and RMSE parameter from the third stage regimentation of
the second group (Ag–Cd–As–Sb).
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group and terminate the clustering process. In fact, loss and RMSE
values have sufficiently decreased and can validate the regimentation
procedure.

5 Conclusion

In this research, a hybrid procedure was created for multivariate
regression, and a CDL algorithm was employed for clustering
geochemical indicator elements of the MVT Pb–Zn deposit in the
Takht-e Soleyman region, which is situated in West Azerbaijan
Province, Iran. This hybrid network was architected to divide big
geochemical data into training, validation, and testing samples
randomly, and the utility and performance degree of the CDL were
established using them. The results of this research exhibited that the
CDL network with a multivariate regression layer can discriminate
significant geochemical indicator elements related to a region of
interest in appropriate clusters, while knowledge and experiments
are incorporated into the network. The forward strategy of
multivariate regression was performed for regimenting based on
comparing the calculated R2adj after adding an indicator element
into the group and before adding it. A CDL framework was
constructed with optimum model parameters which regimented
geochemical indicator elements into two groups: Pb and Zn as the
first group and Ag, Cd, As, and Sb as the second group. For each stage
of the training network, the R2adj of testing data was computed to
evaluate the performance of the trained network, showing that all of
them were in the acceptable range (more than 0.8). Furthermore, the
loss function results of all acceptable trainings reached the least value
expected (up to 0.1). Also, the RMSE value as a parameter for the
validation of predicted values by the regression process can validate
the training results by reaching the least value. Fortunately, the
achieved RMSE values were in the appropriate range which display
that predicted values of dependent variables (Pb as a pioneer of the
first group and Ag as a pioneer of the second group) through their
independent variables are so close to their actual values. Also, the great
R2adj calculated (more than 90%) for the last stage of regimentation
confirms impressive accuracy and performance of the CDL algorithm
for clustering geochemical indicator elements of the study area. In fact,
this study proposes a new approach for an unsupervised deep learning
algorithm which includes the multivariate regression procedure for
clustering or other targeting in other fields of geoscience.
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