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Introduction: With the worsening global climate problem, carbon peak and
carbon neutrality have become crucial objects to realize sustainable
development. Regarded as the engine of economic development in the new
era, it is worth exploring whether digitalization could contribute to carbon goals.
Meanwhile, carbon reduction should not be advocated at the cost of economic
recession and contains the risk of reversal when the economy renews in growth.

Material and Methods: This paper evaluates carbon efficiency using the total
factor non-radial directional distance function, which reflects the economic
performance and environmental performance of 246 China’s prefecture-level
cities during 2011–2019. Fixed effect and mediation effect models are used to
explore the non-linear relationship and transmission channels between digital
development and carbon efficiency.

Results: It is found that: 1) digital development would hinder carbon efficiency first
and then promote it after reaching a certain level; 2) digital development could
indirectly affect carbon efficiency through industrial agglomeration, industrial
structure upgrading, and industrial electricity productivity in non-linear ways. 3)
Heterogeneity exists in the relationship between digital development and carbon
efficiency due to different regions and development types.

Discussion: Due to digital development itself having high carbon-negative
externalities at the initial stage, its impact on carbon efficiency is complex and
non-liner even when decomposing through multiple channels. A well-structured
development strategy is needed during the digitalization process in order to
prompt carbon efficiency.
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1 Introduction

Global warming, caused by the emission of massive amounts of
greenhouse gas such as carbon dioxide, is a huge challenge for
human beings. It has brought a series of problems including
accelerated melting of global glaciers, rising sea levels, and
polarization of droughts and floods. Responding to the
increasingly serious global climate problem through the
promotion of low-carbon development has become a consensus
within all sectors (Zhang and Feng, 2021). As the world largest
manufacturing and export country, China also emits the most
carbon dioxide, more than that of all developed countries taken
together (Li Z. Z. et al., 2021; Liu et al., 2022). To fulfill its
responsibility as a major power in the fight against climate
change, China has committed to peak its carbon emission
around 2030 and reduce its carbon intensity by more than 60%
compared to 2005 (Liu et al., 2017; Zhao et al., 2018). A shift is also
taking place in China’s economic development strategy from the
pursuit of high growth rates to the pursuit of high growth quality (Li
and Liu, 2022). This is not to say that China is slowing the pace of
economic development to meet its environmental protection goals.
In fact, there is no contradiction between environmental protection
and economic growth, nor between carbon reduction and economic
growth, as achieving long-term sustainable development requires
more efficient production processes that can break environmental
constraints (Chen Z. et al., 2018; Liu and Zhang, 2022). Digital
technologies and industries have made major contributions along
the path to achieving these goals. In this new era, they are seen as
essential infrastructures for the new generation, as their impact

permeates every corner of modern life. According to the White
Paper on China’s Digital Economy (2021), the total scale of the
digital-related economy has reached around one-third of the total
GDP in China. It is changing the conduction of all economic
activities fundamentally under the background of rising
technologies such as artificial intelligence and robotics (Ma et al.,
2022). The rapid development of the digital economy presents
opportunities to improve lifestyles, production, and governance,
thus providing the ground of the growth for new businesses,
industries, and the methods to achieve low-carbon development.
This has attracted many scholars to explore the following questions:
1) how exactly does digital development affect carbon emissions? 2)
Can digital development reach a proper balance of economic growth
and environmental protection? 3) Is digital development
contributing to carbon efficiency? 4) What are the internal
mechanisms by which digital development affects carbon
efficiency? In the current situation where the traditional
economic growth model has shown weakness, and environmental
problems are becoming more and more severe, it is of great practical
and theoretical significance to clarify these questions.

Existing studies have mainly focused on exploring the nexus
between digital development and the amount of carbon emissions
at the provincial level in China. The absence of measuring economic
performance and economic efficiency may lead to some distorted
results. For example, Wang et al. (2022a) stated that digital economy
could mitigate carbon emission by promoting production efficiency.
Xu et al. (2022) emphasized the impact of digitalization on reducing
carbon emission through better resources allocation. At the same
time, Dong et al. (2022) and Tchamyou et al. (2019) found that digital
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development could significantly increase economic growth and
financial development by boosting economic scale and production,
which can consequently contribute to more energy consumption and
increased carbon emissions. Wang and Wang (2022) also called for
caution against the current negative externalities of the digital
economy itself with high carbon emissions. As can be seen, these
opposing arguments overlap and contradict each other, as the
transmission channels supported in both arguments, such as
production efficiency and economic growth, also tend to reinforce
each other. To avoid contradictions, it makes more sense to discuss
the impact from digital development by placing economic
performance and environmental performance in the same
framework. Guan et al. (2018), who found that China experienced
a structural decline in CO2 emission between 2013 and 2016,
suggested the importance of identifying which factors contribute to
higher carbon efficiency; this is because if the decline in carbon
emission is the result of a decline in economic activity and
development, then when the economy grows again, pollution may
increase again. However, few studies have considered carbon
efficiency, especially at the prefectural city level. Zhang W. et al.
(2022) tried to explore the nexus between the digital economy and
carbon emission performance, but the performance measurements
were more focused on the environmental aspect, and the impact
mechanism needs further study.

This paper uses the total factor non-radial directional distance
function (TFNDDF) proposed by Zhang et al. (2014) to evaluate the
carbon emission efficiency as the unified efficiency accounting
method for evaluating the economic and environmental
performance of 246 Chinese prefecture-level cities. Mediation
effect models are built using the efficiency index to explore the
possible impact mechanisms from digital development to carbon
efficiency. Three paths, namely, industrial agglomeration (INSA),
industrial structure upgrading (INSU), and industrial electricity
productivity (IEP) are explored and tested in this paper. The
focus is on the industrial sector because more than 80% of CO2

emissions are contributed by the industrial sector, with 39% of those
emissions coming from electricity generation (Shan et al., 2017).

Many studies have benchmarked carbon emission efficiency
based on production efficiency. Widely used measurements include
the total factor efficiency that takes capital, labor, and energy as the
input factors. The stochastic frontier method (SFA) and data
envelopment method (DEA) are the most popular parametric and
non-parametric methods. While SFA is often criticized due to
difficulties in calculation and the reflection of multi-output, DEA
is also questioned because it requires the same proportional and radial
change on input and output factors (Zhang et al., 2014;Wang andDu,
2019; Luo et al., 2022). To reflect real-world carbon efficiency, scholars
have proposed improved approaches to deal with undesirable output
and flexible changes, such as the super efficiency DEA model (Tang
et al., 2014), the SBM-undesirable output (Sun et al., 2016; Deng and
Zhang, 2021; Zhang, 2022), and the global supper efficiency EBM
model (Zhang W. et al., 2022). However, few have paid attention on
the use of the non-radial directional distance function (NDDF).
Compared to the DEA model, NDDF allows factors to change in
several different directions and with different proportions during the
measurement (Zhou et al., 2012). This enables NDDF to measure the
carbon efficiency in terms of increasing GDP output while reducing
carbon dioxide emissions and also avoid the problem of

overestimating the efficiency when there are slacks. In addition,
using the total factor NDDF model proposed by Zhang et al.
(2014) makes it possible for this paper to evaluate carbon
efficiency containing both environmental and economic
performance factors by setting different weights for all factors
involved. This contributes to more accurate and realistic
measurement for the unified efficiency used in this paper.

When selecting input factor data, scholars have mainly used the
perpetual inventory method to calculate capital input. However,
because several key variables such as depreciation rate are not yet
agreed on, and this method is mainly used at the province level in
previous studies, the results may vary greatly when replicating the
same process to estimate capital input at prefecture-level cities (Sun
et al., 2016). This paper selects the annual fixed investments, which
could be directly referred from the Statistical Yearbook, as the capital
input and deflates it by the annual price index available at the
province level using 2011 as the baseline year.

The major contributions of this paper are as follows: 1) this paper
explores the impact of digital development in a more comprehensive
way by considering carbon efficiency as a dependent variable. By
doing so, more weight is given to economic performance than in
previous studies. This avoids compensating for samples that achieve
emission reduction at the cost of economic decline. The results of the
analysis can better reveal the effectiveness of digital economy on
carbon reduction from a sustainable growth perspective. 2) With
reference to the total factor NDDF method, a unified production
efficiency for prefecture-level municipalities is constructed, allowing
researchers to set different weight vectors and directional vectors
based on different policy goals. As the method is mainly used to
evaluate the performance of a single industry such as power
generation, there is little practice in using the method to evaluate
the overall efficiency of society. 3) This paper not only focuses on the
non-linear relationship and curvilinear effects between digital
development and carbon efficiency but also on the transmission
channels and conducts a multi-dimensional analysis of the
industrial sector. 4) A feasible and robust method is explored and
used to test the validation of non-linear mediation effect model. The
findings can further clarify the impact of the digital development on
carbon emission efficiency and provide suggestions and theoretical
basis for structural policy design, enhance flexibility in policy
implementation, and refine the standards and scope in the context
of a quality development economy.

The rest of this paper is organized as follows: Section 2
presents the literature review and research hypotheses. Section
3 introduces measurement models and empirical models. Section
4 shows the empirical results and discussions. Section 5
concludes the paper and demonstrates specific policy
recommendations.

2 Literature review and research
hypothesis

2.1 The nexus between digital development
and carbon efficiency

The debate on whether digital development exerts a positive or
negative impact on carbon emissions continues. Wang et al. (2022b)
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investigated the effect of digital economy and its sub-indicators on
carbon emissions and found a significant negative correlation when
scale effects, structural effects, and technology effects were taken into
account. Zhang et al. (2022) and Lin and Zhou (2021) pointed out
the emerging improvements in the effectiveness of energy systems
brought about by digital technologies, such as accurate
measurement and real-time detection of power supply and
demand, and more efficient information transmission and
analysis. They emphasized that the positive effects that the digital
economy posed on energy structure and utilization could further
exert a mitigation effect on carbon emissions. Yang et al. (2021a)
discussed the effectiveness that internet development contributes to
haze governance based on provincial panel data in China from
2006 to 2017. They found that by improving environmental
monitoring, intellectual management, and the availability of
wider public participation in supervision, the development of
internet technology could effectively curb the worsening of haze
pollution in China. Wu et al. (2021) constructed a comprehensive
internet development index and explored its impact on green total
factor energy efficiency (GTFEE) that considered a series of
industrial and domestic waste as undesirable output. The result
showed that GTFEE has a significant positive space spillover effect,
and internet development could directly and indirectly improve
GTFEE. Deng and Zhang (2021) examined digital finance to
demonstrate its significant reduction in carbon intensity and
improvement in carbon efficiency and supplemented that the
breadth of coverage, depth of use, and increased digitization of
digital finance improve carbon emission performance. Other
scholars have explored the mediation role of green innovation
and technology progress and found that digitalization could
provide more advanced tools for R&D, allocate resources more
effectively, and shorten the process of practical application of
technology (Wang et al., 2022b; Guo et al., 2022; Ma et al.,
2022). Researchers have also demonstrated that improving and
maintaining digitalization can consume massive amount of
electricity and increase emissions (Malmdin and Lundén, 2018;
Avom et al., 2020). Evidence presented by Lee and Brahmasrene
(2014), Salahuddin and Alam (2015), and Asongu (2018) suggested
that the adoption of ICT and the construction of digital facilities
require large scale of resources input and may cause more pollution.
Ding et al. (2022) and Dong et al. (2022) also found that low level of
digital development is not beneficial for energy efficiency
improvement and can result in more carbon emissions.

As can be seen from the aforementioned research, the carbon
mitigation impact of the digital economy are mainly based on a
certain level of scale and development, but a large number of
resources and energy must be invested to reach such a scale and
development level. Along the path of building a mature digital
society, moving to a digital economy could bring only limited
improvement to environmental performance, especially in places
where digitalization is still at an initial stage (Danish et al., 2018;
Ding et al., 2022; Yin et al., 2022). Therefore, the development of the
digital economy will first have a negative impact due to its high cost
and emissions with low output. Then, it will gradually turn positive
due to efficiency gains from scale and structural effects. To consider
the question from a non-linear perspective, Li andWang (2022) and
Miao et al. (2022) advocated an inverted U-shape relationship
between digital development and carbon emissions. Danish et al.

(2019) also demonstrated that the influence of ICT industry on
environmental quality depends on the country’s development level.
Based on the aforementioned literature and analysis, the following
hypothesis is proposed:

Hypothesis 1: Digital development has a U-shaped non-linear
relationship on carbon efficiency, exerting a negative effect in the
initial stage and turning positive as the scale and effectiveness
increases.

2.2 Mediating effect through industrial
agglomeration

In recent years, the Chinese government has emphasized the
development strategy of industrial agglomeration to achieve high-
quality economic growth. Although its impact on economic
performance has been well explored, its impact on environmental
performance remains contradictory (Chen Z. et al., 2018). Criticizers
mainly claim that industrial agglomeration leads to serious
environmental pollution due to the increasing enterprise scale
and use of fossil energy (Virkanen, 1998; Verhoef and Nijkamp,
2002; Duc et al., 2007). In contrast, Chen and Hu (2008) indicted
that industrial agglomeration can improve the technology progress
of a region, thus promoting its environmental performance. Zeng
and Zhao (2009) proved that the accumulation of industry could
help to relieve the problem of “Pollution Paradise.” From an
environmental efficiency perspective, Chen Z. et al. (2018)
demonstrated that INSA could reduce carbon intensity through a
scale economy and technology spillover. Li and Liu (2022) found an
inverted U-shaped relationship between INSA and carbon emissions
and a positive mediating effect through technological progress.

Many economic theories and practices prove that factors of
production inevitably tend to concentrate in particular regions with
higher marginal output, as rational people always tend to maximize
expected returns. To make such decisions, people need to access
enough information. The more complete the information, the faster
the decision is made. Therefore, the level and the speed of the
agglomeration are largely affected by the level of information
efficiency and symmetry in a fair market. The efficient market
hypothesis presented by Fama (1970) proposed a framework for
how information affects the efficiency and timeliness of decisions. In
this new era, digital technologies improve information efficiency to
an unprecedented high level. As a result, the development of the
digital economy is thought to have a positive effect on industrial
agglomeration. However, when considered from a longer-term basis,
the distinction may not be as clear. While agglomeration can lead to
higher marginal returns, it is limited by the local resources such as
land, electricity supply, and environmental tolerance. The process of
agglomeration cannot last forever. Just like the process of
manufacturing outflows from developed countries in recent years,
within China, production lines and factories will transfer to other
locations where resources are cheaper. In those regions with higher
levels of digital development, where high-value-added industries are
densely distributed, many companies and industries are squeezed
out due to unaffordable costs (Fang et al., 2020; Li X. et al., 2021;
Wang et al., 2022c). Therefore, digital development in places where
the digitalization level is already high may accelerate the process of
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company and industry outflow, thus decreasing the degree of
industrial agglomeration. This leads to the following hypothesis:

Hypothesis 2: Digital development will promote industrial
agglomeration in the early stage and then turn to reduce the
agglomeration level, with a non-linear impact on carbon
efficiency through INSA.

2.3 Mediating effect through industrial
structure upgrading

When exploring the impact of the digital economy on the
environment, the upgrading of industrial structure is a frequently
discussed intermediary channel. First, the development of the digital
economy brings about more efficient information communications,
R&D activities, and technology spillovers (Ren et al., 2021). This not
only helps traditional companies to optimize the production
process, operating patterns and business models (Zhou et al.,
2022) but also encourages the emergence of new industries by
expanding new markets and demands (Xue et al., 2022). Second,
as discussed in the introduction, most of the carbon emission comes
from industrial production activities. By providing an unbounded
virtual environment, digital development significantly reduces the
cost of searching for and integrating information and resources (Ren
et al., 2021). More resources will flow to technology-intensive
industries with higher marginal returns and lower environmental
pollution. In this process, human capital and technological factors
rather than natural resources will contribute to more output.
However, breaking down the information barriers will increase
the level of specialization and division of labor, thus limiting the
structural change in single-industry cities. At the same time,
resources will transfer from less developed to more developed
regions. Consequently, regional differences are widened, and the
lack of penetration of digital technology in underdeveloped regions
may hinder the process of INSU due to the outflow of resources
(Duan and Shao, 2020). This gives rise to the following hypothesis:

Hypothesis 3: A higher level of INSU would result in higher
carbon efficiency. However, INSU is hindered at the low level of
digital development and turns to positive growth with an increasing
level of digital development.

2.4 Mediating effect through industrial
electricity productivity

Under this topic, many scholars have discussed the mediating
role of energy intensity or energy productivity. However, few studies
have explored the impact in terms of the efficiency of electricity
usage. In recent years, electricity generation has accounted for
around one-third of total CO2 emissions globally (IEA, 2019). At
the same time, the growth of the digital economy is considered to be
highly power-hungry and is predicted to account for half of global
electricity consumption by 2030 (Andrae and Edler, 2015). The
construction of digital facilities such as data centers, base stations,
and network equipment will significantly increase the consumption
of resources and energy (Zhang L. et al., 2022). After reaching a

certain scale, the technology spillover effect and innovation progress
from digitalization can help to accelerate the growth of productivity.
The emerging digital technologies will improve automation,
connectivity, and flexibility in production (Mawson and Hughes,
2019; Borowski, 2021; Zhang L. et al., 2022), thus increasing the
output per unit of electricity consumption. The integration brought
about by standardized digitalization will help to realize intelligent
management and real-time monitoring during the production
process and energy supply and demand (Plageras et al., 2018;
Zekic-Susac et al., 2021; Zhang L. et al., 2022). This organic
interconnection of production, transmission, storage, and
consumption makes up a smart energy system that can help to
mitigate the positive effect on carbon emission brought by energy
misallocation and also promote the development of clean energy,
thus realizing higher production with less carbon emissions (Yang
et al., 2021b). Collard et al. (2005) also found in France that while
ICT capital tends to increase the intensity of electricity use in the
service sector, the intensity decreases with the spread of
communication equipment. The aforementioned analysis leads to
the following final hypothesis:

Hypothesis 4: Digital development initially reduces IEP, but after
a certain scale is reached, productivity will increase. Industrial
electricity productivity brings a positive mediating effect to
carbon efficiency.

3 Data and methods

3.1 Variables and data

3.1.1 Explained variable: Carbon efficiency (ce)
Based on the total factor non-radial directional distance

functions proposed by Zhang et al. (2014), the carbon efficiency
was evaluated by incorporating inefficiencies for all the input and
output factors. By unifying the economic and environmental
efficiency, ce could better reveal the condition of China’s “high-
quality development” strategy in prefecture-level cities. Three
factors, including labor (L), capital (K), and energy
consumption (E), were selected as the input (Zhang W. et al.,
2022; Xu et al., 2022). Labor was calculated by summing employees
from the private and public sectors. Capital was measured by the
deflated annual fixed investments. Energy consumption was
obtained by converting various energies into standard coal
equivalents. Real GDP (G) was considered the desirable output,
and carbon dioxide emission (C) was selected as the undesirable
output. All city-level data, except for CO2, were obtained from the
China City Statistical Yearbook, the local Statistical Yearbook, and
the China Energy Statistical Yearbook. Carbon emissions were
referred from CEADs (2021). By referring to Zhang et al. (2014),
the production technology formulation for multiple outputs is
presented as follows:

T � K, L, E, G, C( ): K, L, E( ) can produce G,C( ){ }, (1)
where T is expected to satisfy two assumptions: The weak-
disposability assumption in which CO2 reduction takes a
proportional decline on GDP as a price, and the null-jointness
assumption implying that CO2 emission is unavoidable, and the
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only way to eliminate CO2 emission is to stop all economic
activities (Faere et al., 1989). The assumptions are expressed as
follows:

i) If (K, L, E, G, C) ∈ T and 0≤ θ ≤ 1, then (K, L, E, G, C) ∈ T,

ii) If (K, L, E, G, C) ∈ T andC � 0, thenG � 0.

After identifying the production technology, the total factor
NDDF can be defined as (Zhou et al., 2012):

�DT K, L, E, G, C; g( ) � sup {wTβ: K, L, E, G, C( ) + g × diag β( )( ) ∈ T,

(2)
where diag represents diagonal matrices, wT �
(wK,wL, wE, wG, wC)T refers to the normalized weight vector for
the input and output factors, g � (−gK,−gL,−gE, gG,−gC) denotes
the explicit directional vector, and β � (βK, βL, βE, βG, βC)T ≥ 0
represents a vector of scaling factors that indicate the level of
individual inefficiencies for each factor. By giving different
weights to g, the efficiency can be calculated for different
purposes. Then, the total factor NDDF can be computed by the
following model (Zhang et al., 2014):

�DT K, L, E, G, C; g( ) � maxwKβK + wLβL + wEβE + wGβG + wCβC ,

s.t.∑N

n�1λn Kn ≤K − βKgK,

∑N

n�1λn Ln ≤L − βLgL,
∑N

n�1λn En ≤E − βEgE,
∑N

n�1λn Gn ≥G + βGgG,
∑N

n�1λn Cn � C − βCgC,
zn ≥ 0, n � 1, 2, . . . , N,
βK, βL, βE, βG, βC ≥ 0.

(3)

Here, λ � (λ1, λ2, λ3, . . . , λn)T is the weight vector of the number of
decision-making units (DMU) to construct the efficient frontier and
βg refers to the distance between the efficient frontier and each
DMU regarding each input/output factor (K, L, E, G, C). Therefore,
for any �DT(K, L, E, G, C; g) � 0, then the DMU lies on an efficient
frontier in the direction of g, taking slack into consideration. In this
paper, the directional vector g is set to (−K,−L,−E, G,−C), and the
normalized weight vector w is set to (1/9, 1/9, 1/9, 1/3 and 1/3).
Referring to Zhang et al.’s (2014) unified efficiency index calculation
method, this paper denotes β*K, β

*
L, β

*
E, β

*
G, β

*
C as the optimal solution

of Eq. 3, which can calculate the carbon emission performance (ce)
with unified economic performance and environmental
performance as follows:

ce � 1/4 1 − β*K( ) + 1 − β*L( ) + 1 − β*E( ) + 1 − β*C( )[ ]
1 + β*G

� 1 − 1/4 β*K + β*L + β*E + β*C( )
1 + β*G

. (4)

3.1.2 Explanatory variables: Digital development
(pdigd/edigd)

The core explanatory variable is digital development. By
considering the data availability and consistency, this paper

adopts indicators from five aspects: Telecom business volume per
capita the average the number of internet broadband access users per
100 people in prefecture-level cities, the proportion of employees in
the computer services and software industry in urban units, the
number of mobile phone users per 100 people, and the digital
inclusive financial index. To determine the weights, principal
component analysis was adopted to construct pdigd following
the process of Luo et al. (2022), and the entropy weight method
was used to construct edigd with reference to Miao et al. (2022) for
the robustness test. Both explanatory variables were then
transformed into logarithms to avoid uncertain effects from
orders of magnitude.

3.1.3 Mediating variables
To avoid the influence of the real estate sector, both employees

and added value from the real estate sector were removed from the
calculation of iep and insa. Considering the data availability and
consistency, the number of employees was used in the entropy
method for constructing insa and icta.

Industrial agglomeration (insa): This paper referred to the
location entropy method used by Li and Liu (2022)to calculate
industrial agglomeration. It is defined as the share of industrial
employees of the total number of employees in the city divided by
the share of industrial employees of the total number of
employees in China. Industrial agglomeration at the city level
is expressed as

insai � inspopi/indpopi

∑iinspopi/∑iindpopi
,

where i = 1, 2, . . . , N refers to the prefecture city index and inspopi,
indpopi denote the city’s industrial employees and total employees,
respectively.

Industrial structure upgrading (insu): Scholars have
demonstrated that the impact of INSU on both economic
development and carbon emissions is significant (Zhang W.
et al., 2022). The industrial structure upgrading index is
estimated as the ratio of the added value of the tertiary sector to
the value added of the secondary sector:

insit � φit

τit
,

where φit and τit represent the output value of the tertiary industry
and secondary industry in city i at time t, respectively.

Industrial electricity productivity (iep): Industrial electricity
productivity focuses on the efficiency of utilizing electricity
during the production process. It is measured as a simple ratio of
regional industrial outputs divided by the electricity used in
industrial production.

3.1.4 Control variables
Economic growth (eg): Economic growth is defined as the

annual variation of regional GDP. This indicator has a direct
impact on carbon efficiency as the energy is a crucial driving
factor of economic development, and the consumption of fossil
fuel energy will inevitably increase carbon emissions
(Acheampong, 2018). The higher the economic growth, the
more GDP is generated compared to the previous year, which
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will contribute to carbon efficiency if the input and undesirable
output remain fixed.

Financial development (fin): Financial development is
measured by the ratio of total deposits and loans of financial
institutions to GDP at the end of the year. Financial development
has a significant effect on carbon emission through better
allocating resources and promotion of investment and
construction (Tchamyou et al., 2019).

Population density (pop): Population density is adopted as the
logarithm of residences per square kilometer. Researchers have
revealed that the contribution of the household sector to CO2

emissions cannot be underestimated, and the population density
is an appropriate measure for this sector (Xu et al., 2014).

Environment regulation (er): According to Chen Z. M. et al.
(2018), environmental regulation is calculated by the frequency
and proportion of environment-related terms in government
work reports at the prefecture city level. Government
interventions on carbon efficiency can be multi-path, and it is
difficult to capture the full picture by considering only a few
indicators. Therefore, by choosing the frequency of relevant
terms in government reports, it is possible to show how much
importance local governments attach to environmental
regulation, regardless of the tools they may utilize.

Government spending (gover): Government spending is the
logarithm of the expenditure within the local government’s
general budget. It is a supplement of er and reflects the efforts
made by local governments in areas such as environmental
protection and economic development (Chen Z. M. et al., 2018).

The aforementioned data were mainly obtained from the China
City Statistical Yearbook (2011–2019), the China Energy Statistical
Yearbook (2011–2019), the Statistical Yearbooks of various
provinces and prefecture cities (2011–2019), and the Carbon
Emission Accounts and Datasets. The variables are described in
detail in Table 1. In total, 1831 observations were collected. As
shown in Table 1, relevant variables are all transformed into
logarithmic form, and, thus, their standard deviations are
relatively low. P5 and P95 represent the 5% and 95% quantiles,
respectively.

3.2 Methods and models

3.2.1 Two-way fixed effect model
Considering the individual differences and time effects present

in the panel data of carbon efficiency, a two-way fixed effects model
is constructed to control for individual and time effects (Zhang W.
et al., 2022). The basic model is represented as

ceit � α0 + α1pdigdit + α2spdigdit + α3Hit + μi + δt + εit, (5)
where ceit is the level of carbon efficiency in city i at time t, pdigdit
represents the digital development in city i at time t, spdigdit is the
square term of pdigdit, Hit denotes a vector of a series of control
variables, μi and δt represent the individual fixed effects of city i that
do not change through time and the time-fixed effects, respectively,
and εit is a random perturbation term.

3.2.2 Mediation effect model
To test the transition channel of digital development on carbon

efficiency, the following model is constructed using the classical
stepwise approach (Wen et al., 2014):

insu � d0 + d1pdigd + d2spdigd + ϵ3, (6)
ce � e0 + e1pdigd + e2spdigd + e3insu + ϵ4, (7)
insa � f0 + f1pdigd + f2spdigd + ϵ5, (8)

ce � g0 + g1pdigd + g2spdigd + g3insa + g4sinsa + ϵ6, (9)
iep � h0 + h1pdigd + h2spdigd + ϵ7, (10)

ce � j0 + j1pdigd + j2spdigd + j3iep + ϵ8. (11)
Eq. 6 tests the significance of the non-linear relationship

between digital development and industrial upgrading, and the
coefficient e3 will reveal the significance of the mediating effect
through industrial upgrading. In Eq. 8, the non-linear channel of
industrial agglomeration as a mediating effect of digital development
is tested, and the coefficient g4 in Eq. 9 indicates the non-linear
impact industrial agglomeration brought to carbon efficiency. Eq. 10
checks the non-linear relationship between digital development and
industrial electricity productivity, and Eq. 11 tests the goodness of
iep as a intermediary variable.

TABLE 1 Descriptive statistics.

Variable Definition Observation Mean Std. dev. P5 Median P95

ce Carbon emission efficiency 1,831 0.812 0.0650 0.726 0.805 0.942

lncp Carbon productivity 1,831 4.181 0.788 2.800 4.225 5.427

pdigd Digital development index 1,831 0.877 0.0947 0.739 0.864 1.054

edigd Digital development index (entropy method) 1,831 0.546 0.0664 0.464 0.530 0.672

insu Industrial structure index 1,831 0.935 0.503 0.420 0.825 1.787

insa Industrial agglomeration level 1,831 1.011 0.400 0.464 0.953 1.732

eg Economic growth rate 1,831 0.0902 0.0418 0.0390 0.0860 0.145

fin Financial development level 1,831 0.980 0.595 0.413 0.804 2.145

pop Population density 1,831 0.589 0.0844 0.426 0.603 0.692

er Environmental regulation 1,831 3.294 0.456 2.556 3.340 3.905

gover Government spending 1,831 1.494 0.0794 1.379 1.486 1.634
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TABLE 2 Baseline regression and endogenous test results.

Variable (1)
Baseline regression

(2) (3)
Lagged test

(4)
First-stage

(5)
Second-stage

ce ce ce pdigd ce

pdigd −0.733*** (−3.07) −0.780*** (−3.18) −1.505** (−2.26)

spdigd 0.397*** (3.08) 0.436*** (3.29) 0.769** (2.14)

L.pdigd −0.674** (−2.48)

L.spdigd 0.391***(2.64)

IV 0.275*** (4.43)

eg −0.016 (−0.69) −0.007 (−0.35) −0.030 (−1.64)

fin 0.013** (2.28) 0.011** (2.37) 0.011*** (3.81)

pop −0.537* (−1.87) −0.751** (−2.23) −0.532** (−2.41)

er −0.007*** (−2.97) −0.008*** (−2.81) −0.006*** (−3.36)

gover −0.464*** (−2.83) −0.315* (−1.79) −0.304*** (−4.55)

cons 1.178*** (10.57) 2.193*** (7.67) 2.037*** (6.73) 0.618*** (11.54) 1.892*** (5.54)

Observations 1,831 1,831 1,506 1,506 1,506

R2 0.454 0.493 0.401 0.277 0.486

p-value of Kleibergen–Paap rk LM statistic 0.009

Kleibergen–Paap rk Wald F statistic 33.674

Number of cities 246 246 242 242 242

CV No Yes Yes No Yes

City FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Rho 0.841 0.791 0.852 0.877 0.832

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. L.pdigd and L.spdigd are the lagged terms. IV is the instrumental variable. CV is the control

variable. The figures in parentheses are t-statistics.
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4 Results and discussion

4.1 Baseline estimation result

The results of basic model and the endogenous treatment are
presented in Table 2. The results show that digital development
has a U-shape relationship with the local carbon efficiency of
Chinese prefecture-level cities, first showing a negative impact
and then turning positive after a certain point. This relationship
is significant at the 99% confidence level, regardless of the
presence of the control variables. The outcome is consistent
with Hypothesis 1 and the finding of Li and Wang (2022),
which pointed to an inverted U-shape relationship between
digital economy and carbon emissions. The outcome is unlike
the findings of Wang et al. (2022a), where digital economy
directly and indirectly reduces carbon emission in a linear
way. This is because economic performance and carbon
emission performance are equally weighted when conducting
the evaluation of carbon efficiency in this paper. The positive
influence of digital development on the environment is
diminished by any setbacks in the economic sector. The
construction costs and energy consumption in the early stages
of development and the carbon emissions generated by digital
development are more significant than the effects of digital
development in improving environmental conditions (Miao,

et al., 2022). After reaching a certain level of scale and
development, the increasing efficiency of digital development
will amplify its positive impact in promoting production
upgrading, providing more accurate and timely information
on energy generation and usage, and empowering enterprises’
emission control and social governance on pollution. Therefore,
after crossing the inflection point (0.89 of pdigd in this study),
digital development presents a positive acceleration effect on
carbon efficiency.

Among the control variables, the effect on carbon efficiency is
evident for all variables except economic growth. Similar to the
aforementioned reason, although economic growth is supposed to
negatively affect the environment by emitting more emissions, it is
also highly correlated with economic performance, making its
impact on carbon efficiency unclear. Financial development
shows a significant positive effect on carbon efficiency. This is
because a higher level of financial development can not only
boost economic development through better resources allocation
but also indirectly eliminate outdated production capacity that
generates more emissions than average through financing prices
and financial markets (Hussain et al., 2022). Population density
shows a negative relationship with carbon efficiency. The reason for
this is that higher density comes with higher urbanization and
household clustering, which is shown to increase local carbon
emissions (Hussain et al., 2022; Chen Z. M. et al., 2018). In

TABLE 3 Robustness test results.

Variable (1) (2) (3) (4) (5)

25% quantile 50% quantile 75% quantile Replace dependent variable Replace independent variable

ce.25 ce.50 ce.75 lncp ce

pdigd −1.284*** (−10.50) −1.513*** (−10.92) −2.333*** (−11.78) −4.542** (−2.08)

spdigd 0.742*** (11.09) 0.847*** (11.16) 1.283*** (11.83) 2.875** (2.37)

edigd −0.328** (−2.11)

sedigd 0.258** (2.00)

cons 2.171*** (35.40) 2.358*** (33.91) 2.905*** (29.23) −0.101 (−0.05) 1.885*** (7.08)

Observations 1,831 1,831 1,831 1,831 1,831

R2 0.425 0.416 0.404 0.403 0.490

CV Yes Yes Yes Yes Yes

Number of cities 246 246 246 246 246

City FE Yes Yes

Year FE Yes Yes

Rho 0.923 0.766

4) Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, and CV is the control variable. The figures in parentheses are t-statistics.
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contrast, higher population density does not necessarily lead to
better local economic conditions. Both environmental regulation
and government spending have been tested to have a significant
negative impact on carbon efficiency. This can be explained in that
the focus of environment protection in China between 2011 and
2019 was mainly on hazardous emissions such as SO2. At the same
time, production restrictions and penalties tend to reduce the
profitability of the relevant industries. According to Zhang and
Wei (2014), environmental regulation tools available to
governments are usually accompanied by economic cost. This
result is also consistent with the finding of Wang and Du (2019),
which suggests that the economic cost of environmental regulations
and policies outweighs their effectiveness on CO2 emissions
reduction between 2011 and 2019.

4.2 Endogenous treatment

The issue of endogeneity cannot be ignored when exploring
the mechanisms of influence between factors with ambiguous
causality. As presented in Zhang et al. (2022)’s paper, digital
development and carbon efficiency might have reverse causality
in that cities with a higher level of carbon efficiency and
information transparency would also take the lead in
developing the digital economy. In addition, the complexity of
the impact mechanism also increases the risk of omitted variables
or unobservable factors in the model. The lagged variable and
instrumental variable methods are adopted to deal with the
endogeneity issue. Column (3) shows that this model passes
the lagged variable test, and the relationship remains
significant after substituting the digital development index

with the lagged one. As for the instrumental method, a “Bartik
instrument” is built as the product of the previous year’s digital
development pdigdit−1 and the national digital development
growth rate at that year (Bartik, 2006). The mechanism
behind this is that pdigdit−1 is highly correlated with pdigdit,
while the nationalwide growth rate is hardly influenced by the
level of carbon efficiency in a particular city. The estimated
results of the two-stage least squares regression are shown in
Columns (4) and (5). The first stage result in Column (4) shows
that the coefficient of the instrumental variable (IV) is
significantly different from zero, and there is a strong
correlation between the IV and the independent variable
pdigd, thus rejecting the hypothesis of the weak instrumental
variable. The second stage result in Column (5) demonstrates
that the relationship remains steady after considering the
endogeneity. The p-value of the Kleibergen–Paap rk Lagrange
multiplier statistic is 0.009, indicating that the IV used is not
under-identified. The Kleibergen–Paap rk Wald F statistic is
much larger than 10, further proving that the instrument
variable is not weak.

4.3 Robustness test

(1) Quantile regression results. After replacing the estimation
method with quantile regression, different settings of 25%,
50%, and 75% were tested. Columns (1)–(3) of Table 3 show
that the coefficients of digital development and its square term are
significant in three scenarios. The t statistics are all larger than 10,
indicating a stronger significance than the baseline mode. This
result proves the robustness of Hypothesis 1 in this study.

TABLE 4 Heterogeneity test results.

Variable East Northeast Central West Resource Non-resource

(1) (2) (3) (4) (5) (6)

ce ce ce ce ce ce

pdigd −1.776** (−4.23)* −1.615 (−1.18) 0.158 (0.37) −1.073** (−2.22) 0.351 (0.86) −1.270*** (−3.82)

spdigd 0.955*** (4.44) 1.034 (1.24) −0.037 (-0.15) 0.544** (2.09) −0.253 (−1.04) 0.712*** (4.26)

cons 2.194*** (8.85) 2.193* (2.04) 1.431** (2.41) 1.913*** (3.95) 2.452*** (6.05) 2.243*** (6.29)

Observations 589 172 631 439 661 1,170

R2 0.711 0.440 0.554 0.505 0.381 0.606

Number of cities 77 26 80 63 91 156

CV Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Rho 0.830 0.942 0.871 0.780 0.981 0.762

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, and CV is the control variable. The figures in parentheses are t-statistics.
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(2) Substitution of the explained variable. By referring to
Murshed et al. (2022), carbon productivity (cp) refers to
the volume of GDP generated from each unit of CO2

emitted. As an indicator that considers both
environmental sustainability and economic sustainability,
carbon productivity is an appropriate robust alternative to
carbon efficiency discussed in this paper. Considering the
order of magnitude, the logarithm term is used in the
regression. Column (4) of Table 3 shows that after
replacing the explained variable, there is still a significant
U-shaped relationship between digital development and
carbon performance at the 95% confidence level. The
decrease in significance is mainly caused by fewer factors
being taken into account when calculating carbon
productivity. The carbon efficiency index in the original
model also considers the efficiency of input factors such as
labor, capital, and energy consumption.

(3) Substitution of the explanatory variable. In this step, epdigd is
used as the alternative to pdigd. The same components were

considered in evaluating the digital development through this
new variable, but the weights were calculated using an entropy
method that tends to emphasize the factor with the widest
variance. Therefore, the proportion of ICT employees was given
the largest weight in the evaluation local digital development,
different from the telecom volume per person by the principal
component method. Despite the differences, Column (5) of
Table 3 indicates the same result after replacing the explanatory
variables, further proving the robustness of Hypothesis 1 in this
study.

4.4 Heterogeneity test

Considering that digital development in China displayed a
great disparity among different regions during the period of
2011–2019, a heterogeneity test was conducted based on
regional differences. The findings of the test are shown in
Columns (1)–(4) of Table 4. As a leading region in economic

TABLE 5 Mediation effect test results.

Variable M = insa M = insu M = iep

(1)
ce

(2)
insa

(3)
ce

(4)
insu

(5)
ce

(6)
iep

(7)
ce

pdigd −0.780*** (−3.18) 2.807** (2.14) −0.666*** (−2.81) −2.805** (−2.00) −0.710*** (−2.88) −11.730*** (−2.83) −0.317 (−1.55)

spdigd 0.436*** (3.29) −1.756*** (-2.33) 0.369*** (2.89) 1.627** (2.01) 0.395*** (2.94) 6.860*** (3.01) 0.165 (1.47)

insa −0.093*** (−4.53)

sinsa 0.034*** (4.53)

insu 0.025*** (2.90)

iep 0.040*** (10.39)

cons 2.193*** (7.67) −3.090*** (−2.15) 2.187*** (7.67) 3.711** (2.31) 2.100*** (7.28) 11.935*** (3.01) 1.721*** (6.66)

Observations 1,831 1,831 1,831 1,831 1,831 1,831 1,831

R2 0.493 0.034 0.507 0.638 0.505 0.469 0.677

Number of cities 246 246 246 246 246 246 246

CV Yes Yes Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

Rho 0.791 0.943 0.780 0.893 0.781 0.783 0.797

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively, and CV is the control variable. The figures in parentheses are t-statistics.
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development, technology progress, and human capital resources,
the eastern region shows the most significant relationship
between digitalization and carbon efficiency. More than half of
the sample cities in this region have a pdigd higher than 0.92,
which is the inflection point presented in the baseline model. This
number is around one-third in the western region, leading to a
lower significance level and a higher inflection point. Most of the
sample cities in the northeast and central regions have not yet
reached the turning point, and therefore, the relationship
between digital development and carbon efficiency remains
ambiguous.

In addition to regional heterogeneity, digitalization may
also present different effects on carbon efficiency depending
on the type of development. This paper refers to the list
published by the State Council of China in 2013 and divides
sample cities into resources-based and non-resources-based
cities. The results are shown in Columns (5) and (6). The
relationship for non-resource-based cities is found to be
significant at the 99% confidence level, with an inflection

point of 0.89. This indicates that in cities with low resource
dependency, digitalization can achieve its contribution to
carbon efficiency earlier. On the other hand, resources-based
cities are dependent on a single or several industries for
economic growth, and these industries are usually
accompanied by high levels of pollution. The industrial
structure of these places is relatively simple and hard to
change, even with the help of digital technologies. As a
result, digital development in resources-based cities is still at
a lower level, and its impact on economic and environmental
performance is limited.

4.5 Mediating effect test

To fulfill the gap and build on existing research to further
clarify the mechanisms of how digital development affects carbon
efficiency, this paper uses a mediating effect model to test this
empirically. The stepwise causal method proposed by Baron and

TABLE 6 Bootstrap test results.

Variable Baseline regression M = insa M = insu M = iep

(1) (2) (3) (4)

ce ce ce ce

pdigd −0.780*** (−3.68) −0.468** (−2.28) −0.710*** (−3.54) −0.317* (−1.86)

spdigd 0.436*** (3.77) 0.244** (2.18) 0.395*** (3.60) 0.165* (1.76)

insa −0.092*** (−5.56)

sinsa 0.034*** (5.31)

insu 0.025*** (4.26)

iep 0.040*** (18.25)

cons 2.193*** (10.58) 2.153*** (10.49) 2.100*** (10.24) 1.721*** (8.96)

Observations 1,831 1,831 1,831 1,831

R2 0.493 0.511 0.505 0.677

Number of cities 246 246 246 246

CV Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Rho 0.791 0.821 0.781 0.797

Notes: ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively. The sample size of bootstrapping is 5,000. sinsa is the square term of insa. CV is the control

variable. The figures in parentheses are t-statistics.
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Kenny (1986) was used to test and present the intermediary
effects, as shown in Table 5. The coefficients were then double-
tested for robustness using the bootstrap method with reference
to the study by Wen et al. (2014). Lastly, each path of the
mediating effect was explored using the bootstrapping
coefficient product test, further improving the robustness of
the model.

4.5.1 Industrial agglomeration
Columns (2) and (3) examine the transmission channel

through industrial agglomeration. As can be seen, digital
development is found to have an inverted U-shape
relationship with INSA. In the early stage of digital
development, an increased level of information flow helps
drive resource flows to higher value-added areas due to
positive economic of scale. This process speeds industrial
agglomeration and further widens the gap between regions
(Duan and Shao, 2020). However, as digital development and
industrial agglomeration increase, the marginal effect of moving
from DD to INSA will diminish and slow the rate of INSA in
developed areas. This is because the marginal benefit of incoming
resources such as labor and capital decline while the cost of land,
electricity, and other local resources increases sharply. Column
(3) reveals a partial mediating effect between INSA and carbon
efficiency and finds that the relationship between them is
U-shaped. This is consistent with Hypothesis 3, the finding by
Li and Liu (2022), and the research of Chen et al. (2022). Initially,
most of China’s industries were processing, resembling, and
resources extraction, were still on the path of transformation
from labor-intensive to capital-intensive, and were characterized
as low added value, high pollution, and high energy
consumption. The industrial agglomeration at this stage was
non-environmentally efficient (Li and Liu, 2022). Although the
economic growth rate was quite high, it came at the cost of the
environment. After the agglomeration reaches a certain level, the
spillover effect of the knowledge alongside the transition to
technology-intensive helps to increase the added value and
reduce the emissions, thus improving carbon efficiency (Chen
et al., 2022).

4.5.2 Industrial structure upgrading
Columns (4) and (5) show the non-linear relationship

between digital development and INSU and the positive linear
impact of INSU on carbon efficiency, respectively. A one-unit
change in INSU will lead to a 0.025 increase in the local carbon
efficiency index. Digital development would accelerate INSU

when pdigd exceeds 0.86. Around half of the samples in this
study benefitted from it. The results are consistent with
Hypothesis 3; Yan et al. (2021) and Jiang et al. (2022) found a
non-linear marginal increase effect from digital development to
INSU. The reasons are as follows: digital-related industries
themselves are inherently characterized by rapid growth and
high income so the output of the tertiary sector also grows
faster in samples with higher levels of digital development
than in those with lower levels because the index of INSU is
calculated using the ratio of the tertiary output divided by the
secondary industry output. This index tends to grow faster with
higher digital development; moreover, the deeper division of
production due to the pattern of resource flows may hinder the
industrial structure change in regions relying on secondary
industries (Duan and Shao, 2020).

4.5.3 Industrial electricity productivity
The transmission channel through IEP is explored in Columns

(6) and (7). A U-shaped relationship is found between digital
development and IEP, with a linear positive effect on carbon
efficiency. The development of digital facilities is highly expensive
and consumes large amounts of energy. More than 10% of global
electricity is channeled to the ICT sectors (Walsh, 2013). This is the
reason that digital development exerts a negative impact on IEP in
the early stage. When the digital economy develops to a certain
point, increased information efficiency and technological advances
make companies more productive, and each unit of electricity
consumed will produce more output than before (Li and Wang,
2022). Compared to other channels, the increase in IEP is more
closely connected with the performance in carbon emissions. The
direct impact of digital development on carbon emissions is found to
be insignificant in this equation. In previous studies, researchers
have typically defined this as the full mediator, meaning that the
original factor is the only channel that theoretically influences the
explanatory variable; however, this practice was shown to be
inadequate because a series of other mediators were also found
to be significant. Preacher and Hayes (2008) called to end the
practice of judging a full or partial mediator based on the
coefficient significance of original factors in the mediation
regression. The reasons are as follows: a strong multicollinearity
problem may exist in the third step of the stepwise test method, thus
lowering the significance of the direct effect; data quality and sample
size play crucial roles in testing the direct effect, and the coefficient
may transfer from insignificant to significant with the increase of
sample size (see Column (4) in Table 5). To solve this problem and
further test the robustness of the mediating effect, this paper refers to

TABLE 7 Coefficient products of bootstrap results.

Hypothesis Coefficient Bias Bootstrap
S.E.

p-value Percentile 95% conf.
interval

Bias-corrected 95% conf.
interval

H2: pdigd → insa → ce
(f2*g4)

0.019 0.000 0.004 0.000 [0.0124, 0.0271] [0.0124, 0.0271]

H3: pdigd → insu → ce
(d2*e3)

0.075 −0.003 0.033 0.023 [0.0097, 0.1374] [0.0183, 0.1555]

H4: pdigd → iep → ce (h2*j3) 0.271 −0.005 0.080 0.001 [0.1233, 0.4373] [0.1236, 0.4543]

Note: The sample size of bootstrapping is 5,000.
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the bootstrap method suggested by Preacher and Hayes (2004), Wen
et al. (2014), and Lin and Feng (2022). In the next section, equations
containing the original factor and mediators are tested again using
the bootstrapping method, and then confidence intervals of
coefficient products are tested.

4.5.4 Bootstrapping test results
Table 6 gives the results of the double test of the mediating

equations by bootstrapping using a sample size of 5,000. In all four
paths, the coefficients remain significant at the 99% confidence level.
The only differences are a decrease in standard errors and an
increase in the t-value, which indicates that the level of
confidence increases as the sample size increases.

Table 7 shows the results of bootstrap tests for coefficient
products involving square terms. Hayes (2009) demonstrated
the practice and credibility of testing the robustness of the
mediation model by checking whether the confidence interval
of the coefficient of indirect effect contains zero or not. Lin and
Feng (2022) further extended this method in a mediation model
that contains non-linear terms. As shown in Table 6, the square
term of digital development was used in the models for INSA,
INSU, and IEP to capture the non-linear relationship between
them, while the primary term of digital development was used in
the model of ICTA due to their linear relationship. The primary
term of ICTA, INSU, and IEP was used in the model as its
mediating effects were found to be linear, while the square term
of INSA was adopted due to the U-shaped relationship with
carbon efficiency. The results show that all mediating effects are
significant at the 95% confidence level. The zero point is not
included in the 95% confidence interval for the percentile and
bias correction. All four paths pass the bootstrapping test, and
the robustness of the mediation model is further proved.

5 Conclusion and policy implication

Using a series of quantitative methods and panel data from
246 prefecture-level cities in China from 2011 to 2019, this paper
explores the impact of digital development in the view of sustainable
development and provides structural policy recommendations for the
cooperation between digitalization strategy and the goal of a carbon
generalized system of preferences and carbon neutrality. First, to
derive a carbon efficiency that takes into account both economic and
environmental performance, a total factor NDDFmethod was used to
calculate the unifying efficiency. Second, this paper constructs an
index to measure the level of digital development in each city using
five digitization-related indicators easily collected from prefecture city
yearbooks as inputs for the principle component approach. Third,
fixed effect regression and intermediary effect models are built to
investigate the influence of China’s digital development on carbon
efficiency and transmission channels.

The following conclusions can be drawn: 1) the impact of
digital development on carbon efficiency is U-shaped. When the
level of digitalization is low, carbon efficiency is negatively
correlated with digital development. Once a certain level is
exceeded, carbon efficiency will be boosted by digitalization.
2) Digital development has an inverted U-shaped relationship
with INSA. In the early stage, the accumulation of resources-

based and heavily polluted sectors worsens the local environment
conditions, while after the transition to technology-intensive
industries, local carbon efficiency can benefit from technology
spillover and scale effects. 3) Digitalization may hinder the
development of INSU at the beginning but will have an
accelerating positive impact after a certain level is reached.
Through INSU, the tertiary sector will contribute more output
than before, conducive to the increase of carbon efficiency by
bringing higher productivity and lower emissions. 5) A U-shaped
relationship has also been identified between digital development
and IEP. While early-stage digital development may result in
significant increases in electricity consumption due to extensive
facility construction and production of digital equipment, a high
level of digitalization has a significant technology spillover effect
that allows other industries to explore more efficient production
processes, thus improving the overall IEP.

Some policy suggestions are proposed based on the
conclusions.

First, policymakers should pay attention to the fact that the
current digital economy itself has high carbon-negative
externalities. In the fourth industrial revolution driven by
digitalization, proper regulations and evaluations should be
proposed to avoid excessive heating that wastes resources and
energy. For example, it is reasonable to decide what size digital
facilities to build based on the size of the population and the
needs of the industry.

Second, local government could encourage the agglomeration of
ICT while being cautious about the agglomeration of other industrial
sectors. Because of to the connection between the economic
development and the performance measurement for local officials,
some local governments in China may compete with each other by
adopting ill-considered policies to attract businesses and develop
digital facilities. The mismatch between subsidies and concessions
for businesses and the requirement for sustainable and high-quality
development may have a negative impact on carbon efficiency.
Policies could be established to 1) retain and support highly
efficient agglomerations that are beneficial to industrial scale,
production upgrades and energy productivity; 2) build a unified
sewage system in local industrial parks to share the cost and
improve the management efficiency; and 3) introduce
comprehensive guidelines and standards to evaluate whether an
enterprise matches sustainable development before offering subsidies.

Third, while allowing the free flow of resources and market
liberalization, attention should be paid to regional differentiation
and the division of production, and the risk of excessive regional
disparities leading to an accelerated deterioration of environmental
conditions in some regions needs to be noted. The central government
can set goals for cities with a high level of digital development, guide
and assist less developed cities to become digital, and subsidize
emerging digital companies that empower the construction and
production process in underdeveloped areas. While this may affect
overall efficiency in the short term, narrowing the development gap
between regions will provide additional impetus in the long term.

This paper preliminarily explores the impact of digital
development on carbon emission efficiency and the
intermediary channels. It has some limitations, and more
research remains to be carried out. First, much of the digital-
related data have only begun to be recorded in recent years,
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especially at the prefecture level. There are other, more effective
methods for assessing the digital development of prefecture-
level cities, such as the “Digitalization Evolution Index”
published by H3C and the “Digital Transformation Index” by
Tencent. However, these datasets only cover data from the last
3 years. A more comprehensive digital development index may
be available in the near future and could be used to explore the
relationship between digitalization and carbon emission
efficiency more deeply. Second, although this paper adopts a
rather rigorous verification method to test the robustness of the
intermediary relationship in the paper, these relationships are
likely to be much more complex in practice. It may still be too
simple to explore these relationships in a one-way manner. This
is a direction worth exploring further. Third, as shown in this
paper and many other studies, there is a significant regional
heterogeneity existing in the impact of digital development of
carbon emission efficiency. Due to differences in the level of
economic development, regional locations, historical reasons,
industrial structures, and natural recourses distributions, each
province and even city may differ in terms of the impact of
digitalization on the local carbon emission efficiency. More in-
depth research should be carried out to explore how regions
with more successful digital transformation can contribute to
the development of the less developed regions.
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