AUTHOR=Vörösmarty Charles J. , Melillo Jerry M. , Wuebbles Donald J. , Jain Atul K. , Ando Amy W. , Chen Mengye , Tuler Seth , Smith Richard , Kicklighter David , Corsi Fabio , Fekete Balazs , Miara Ariel , Bokhari Hussain H. , Chang Joseph , Lin Tzu-Shun , Maxfield Nico , Sanyal Swarnali , Zhang Jiaqi , Vignoles Daniel TITLE=The C-FEWS framework: Supporting studies of climate-induced extremes on food, energy, and water systems at the regional scale JOURNAL=Frontiers in Environmental Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2023.1069613 DOI=10.3389/fenvs.2023.1069613 ISSN=2296-665X ABSTRACT=
Climate change continues to challenge food, energy, and water systems (FEWS) across the globe and will figure prominently in shaping future decisions on how best to manage this nexus. In turn, traditionally engineered and natural infrastructures jointly support and hence determine FEWS performance, their vulnerabilities, and their resilience in light of extreme climate events. We present here a research framework to advance the modeling, data integration, and assessment capabilities that support hypothesis-driven research on FEWS dynamics cast at the macro-regional scale. The framework was developed to support studies on climate-induced extremes on food, energy, and water systems (C-FEWS) and designed to identify and evaluate response options to extreme climate events in the context of managing traditionally engineered (TEI) and nature-based infrastructures (NBI). This paper presents our strategy for a first stage of research using the framework to analyze contemporary FEWS and their sensitivity to climate drivers shaped by historical conditions (1980–2019). We offer a description of the computational framework, working definitions of the climate extremes analyzed, and example configurations of numerical experiments aimed at evaluating the importance of individual and combined driving variables. Single and multiple factor experiments involving the historical time series enable two categories of outputs to be analyzed: the first involving biogeophysical entities (e.g., crop production, carbon sequestered, nutrient and thermal pollution loads) and the second reflecting a portfolio of services provided by the region’s TEI and NBI, evaluated in economic terms. The framework is exercised in a series of companion papers in this special issue that focus on the Northeast and Midwest regions of the United States. Use of the C-FEWS framework to simulate historical conditions facilitates research to better identify existing FEWS linkages and how they function. The framework also enables a next stage of analysis to be pursued using future scenario pathways that will vary land use, technology deployments, regulatory objectives, and climate trends and extremes. It also supports a stakeholder engagement effort to co-design scenarios of interest beyond the research domain.