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Biochars provide several agricultural and environmental benefits, such as soil health
improvement, better crop growth and yield, carbon sequestration, decreasing
greenhouse gas (GHGs) emissions, and regulation of nutrient dynamics. This
review highlights the role of biochar in transforming the soil’s physiochemical and
biological properties, and their impact on improving seed germination and seedling
growth, altering crop physiological attributes, enhancing crop resistance against
biotic and abiotic stresses, improving crop productivity, curtailing GHGs, and
controlling nutrient leaching losses. However, the type of feedstock used,
pyrolysis temperature, application rate and method, soil type and crop species
largely influence the biochar performance under different environmental
conditions. Application of biochars at low rates help to promote seed
germination and seedling growth. Biochar modified the abiotic and microbial
processes in the rhizosphere and increased nutrient mineralization and enhanced
the nutrient availability for plant uptake. Hence, biochar enhanced the plant
resistance against diseases, reduced the availability of heavy metals and improved
the plant resilience against environmental stressors. By providing a comprehensive
analysis about the variable impacts of biochars on soil physicochemical properties,
plant growth, development and productivity andmitigating environmental problems,
this review is quite valuable for developing an efficient soil and crop specific biochar
with desired functionalities. It could be helpful in improving crop productivity,
ensuring food security and better management of environment. Furthermore, this
review identifies the knowledge gaps and suggests future outlooks for the
commercialization of biochar applications on large-scale.
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1 Introduction

Degradation of soil resulting from extensive agricultural practices
and changing climatic conditions pose serious threats to global food
security (Al-wabel et al., 2015). The exponentially increasing
greenhouse gas (GHGs) emissions due to various anthropogenic
activities are also detrimental to the environment and sustainable
farming systems (Kumar et al., 2018). Additionally, the increasing
world population, which is expected to reach 9.8 billion by 2050, will
also put the world’s agricultural system under enormous pressure
(Ayaz et al., 2021). Hence to feed the burgeoning population, meet the
exacerbating food demand, and mitigation of climate change impacts
need benign and cost effective strategies which can improve soil
health, enhance crop yield and ensure a sustainable farming system
and environment (Singh R. et al., 2022). Endowed with unique
attributes such as larger specific surface area (SSA), abundant
surface functional groups, porous structure, better cation exchange
capacity (CEC), embedded minerals, strong adsorption capacity,
micronutrients, and high environmental stability, biochar has
appeared as a promising material for soil management, soil fertility
improvement, reduction in GHGs and environmental management
(Abhishek et al., 2022).

Biochar is a carbonaceous material generated from the
decomposition of various feedstocks by the pyrolysis process (slow,
intermediate, fast pyrolysis, and gasification) under oxygen-restricted
conditions (Rady et al., 2016). A wide array of positive impacts is
associated with biochar addition, such as increased soil microbial
activities, enhanced soil nutrient uptake by plants (Zornoza et al.,
2016), improved soil nutrient availability (Ding et al., 2016a), and
decreased nutrient leaching (Yin Y. et al., 2021). Furthermore, it
improves soil aeration, porosity, bulk density, infiltration rate,
aggregate stability, water holding capacity, hydraulic conductivity
(Foster et al., 2016), stabilizes heavy metals, and limits their
bioavailability to crops growing in hostile or poor quality soils
(Gasco et al., 2016a). Biochar also promotes microbial abundance
(Zheng et al., 2017) and alleviates heat, drought, and salinity stress
effects on crops. It enhances crop growth and productivity (Murtaza
et al., 2021a), increases biological N fixation in legumes (Osman et al.,
2022), and facilitates carbon sequestration. However, the outcomes
mentioned above largely depend on biochar type, the temperature at
which biochar is prepared, biochar dose, and soil type.

Due to the heterogeneity of biochar and the complexity of the
physio-biochemical characteristics and microbiological processes
underlying its effects, biochar manifests different responses under
different conditions (Downie et al., 2009; Joseph et al., 2021).
Therefore it becomes crucial to elucidate the soil and plant
responses against various biochars prepared under different
conditions with several diverse properties, particularly under
changing climates (Kavitha et al., 2018). It would help to elaborate
the underlying mechanisms that govern plant responses related to
biochar addition and optimization of biochar preparation method,
feedstock type, dose, and method of biochar application for a specific
crop grown in a particular soil type. Such optimization would render
biochar commercialization on a large scale with multiple benefits such
as soil health improvement, yield increase, GHG reduction, and
climate change mitigation. Although a variety of recent reviews
(Kavitha et al., 2018; El-Naggar et al., 2019; Sakhiya et al., 2020;
Bolan et al., 2022; Abhishek et al., 2022; Amalina et al., 2022; Uday
et al., 2022) have presented potential benefits of biochar applications

across different fields. However, synthesis and current knowledge on
biochar-soil-plant interactions is direly needed to elucidate the soil
and plant responses to different biochars by considering the type of
feedstock, pyrolysis temperature, and biochar application and
management practices under different environmental conditions.
By providing a comprehensive analysis about the variable impacts
of biochars on soil physicochemical properties, plant growth,
development and productivity and environmental stress mitigation,
this review is quite valuable for developing a soil and crop specific
biochar with desired functionalities. It could help to improve crop
productivity and sustaining food security under changing climatic
conditions.

2 Biochar as a soil ameliorator

Biochar’s physiochemical properties can directly and indirectly
affect the soil attributes. After biochar’s addition to soil, its
contribution to soil’s physical structure may be significant, as it
influences the soil aeration, water holding capacity (WHC), bulk
density (BD), and distribution of pore size, porosity, and surface
area of soil. Furthermore, several biological and chemical properties of
soil can be altered through biochar addition (Figure 1). All these
impacts of biochar are discussed in the section given below.

2.1 Effects on physical attributes of soil

Several studies described that biochar addition improves the
physical attributes of soil via reducing bulk density, increasing
porosity, and enhancing water retention and aggregation
(Baiamonte et al., 2015; Ding et al., 2016b; Carvalho et al., 2020;
Seitz et al., 2020). Different kinds of biochars, when added in a
sufficient amount into different soils, substantially amend the
various soil physical attributes (Table 1). Soil bulk density (BD) is
an important indicator of soil physical condition because it indicates
the arrangement and packing of soil particles (Singh et al., 2019; Bhat
et al., 2022). Low soil BD enhances soil composition, decreases soil
compaction, and improves WHC and nutrient release (Tang et al.,
2022). Biochar application decreases both the bulk and particle
densities of soils (Munoz et al., 2016). This decrease could be
attributed to the lower BD (.6 g cm−3) and particle density
(1.5–2.0 g cm−3) of biochars as compared to the 1.25 g cm−3 BD
and 2.4–2.8 g cm−3 particle density of soils (Yu et al., 2019).
Biochar BD varies depending upon the type of feedstock and
preparation conditions. For instance, BD of wood biochar is
1.30 g cm−3, woody forest residue biochar is .09 g cm−3, straw
biochar is 1.30 g cm−3, maize cob biochar is .29–.36 g cm−3 and rice
husk biochar is .37 g cm−3 (Sun and Lu, 2014; Obia et al., 2016; Zhang
et al., 2021).

The reduction in soil BD after biochar addition results in an
overall increase in soil porosity (Qin et al., 2016). The increase in soil
porosity is attributed to the biochar porosity (70%–90%) and further
contributed by increased soil aggregation, reduced bulk density,
reduction of soil packing and interaction with mineral soil particles
(Blanco-Canqui, 2017). Biochar application elevates the total porosity
especially the micropores because they help to form porous material
(Yang C. et al., 2021). The micropores enhance the water retention,
whereas macropores improve the drainage (Baiamonte et al., 2019).
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The soil porosity was observed to increase in the range of 5–25 µm
after biochar amendment (Rasa et al., 2018). Increase in soil porosity
can enhance the movement of gases, water, and heat in the soils (Yu
et al., 2019). The type of feedstock used for biochar production
significantly influences the soil porosity pattern (Yang Q. et al.,
2021). Woody biochars contain higher porosity compared to the
biochars prepared from crop residues, which causes difference in
the biomass cell structure, composition, size, and shape (Edeh et al.,
2020). Soil WHC is also affected by the porous structure of the biochar
(Bhat et al., 2022). The high porosity and specific surface area (SSA)
increase the WHC, reduce the soil water permeability resistance, and
change the water flow direction and residence time in soil (Abrol et al.,
2016). The improvement in soil WHC after the addition of biochar is
attributed to the rise in pore space of soil and biochar mixture. This
mixing resulted in increased number of water holding sites due to large
number of pores which increased the WHC of soil amended with
biochar (Yang C. et al., 2021).

2.2 Effects on chemical attributes of soil

Biochar applicationmay change the soil’s chemical attributes, such
as increasing soil organic carbon, CEC, and pH (Abbasi and Anwar,
2015). However, alteration in soil chemical attributes by biochar
application is mainly dependent upon biomass, biochar production
temperature, types of soils, and biochar application rates (Table 2). It is
considered that alkaline biochars (having pH > 7), when added to soil,
elevates the pH of soil (Roberts et al., 2015). The biochar pH is largely
dependent upon the type of feedstock used, and it may vary from
acidic to alkaline. The biochar produced from different agricultural
residues, raised the pH of soil from 4.59 to 4.86, 4.8 to 6.3, and 4.3 to

4.6 (Abhishek et al., 2022). Levesque et al. (2021) observed enhanced
soil pH by 1 unit after application of Acer saccharum-biochar into clay
soil. It was attributed due to the biochar’s high ash content and pH,
great liming factors contributing to enhance pH of soil. He et al. (2021)
applied rice straw biochar to notice the change in the attributes of
acidic paddy soil. They observed that pH buffering capacity and
resistance to paddy soil acidification were efficiently improved with
biochar application. Biochar application after the wet-dry cycle
increased the pH of acidic paddy soil (Hafeez et al., 2021). They
proposed that biochar is a dominant solution to remediate acidic soil.
The basic mechanism is that the weak acid functional groups on the
surface of biochar mainly appear in the form of organic anions under
neutral and alkaline soils. However, under soil acidification, these
organic anions protonated with H+ and converted into neutral
molecules, thus inhibiting the soil acidification and decreasing
pH of soil (Wu et al., 2020).

Mostly studies focus on the effect of biochar application in acidic
soils due to its potential of increasing pH (Novak et al., 2014;
Edenborn et al., 2015), however discussion regarding the effect of
biochar on calcareous soils is very limited (Zhang D. et al., 2015). This
could be attributed to the buffering capacity of the calcareous soils
resisting the alkaline effects of biochar (Usman et al., 2016; Al-Wabel
et al., 2017).

CEC is an indirect measure of soil capacity to retain nutrients and
water (Alkharabsheh et al., 2021). The biochar CEC is determined as
the number of cations adsorbed on the surface of biochar (Zhang et al.,
2021). Feedstock material, pyrolysis temperature, and functional
groups are the key factors that govern the biochar CEC (Murtaza
et al., 2021b). The CEC of biochars reduces with the elevation of
pyrolysis temperature owing to the loss of functional negatively
charged groups and low pyrolysis temperature (300°C–450°C)

FIGURE 1
Effect of biochar application on soil physicochemical and biological properties; Carbon dioxide (CO2), Cation exchange capacity (CEC), Nitrous oxide
(N2O), Methane (CH4), Soil organic carbon (SOC), Specific surface area (SSA), Water holding capacity (WHC).
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(Palansooriya et al., 2019). Sufficient availability of O2-containing
functional groups on the surface of biochar leads to anionic surface
charge, which increases the CEC of soil after biochar application (Lu
et al., 2022). Biochar application significantly increased the CEC by
3%–40% compared to control soil (Laird et al., 2010). Similarly, the
CEC of extensively weathered soil was enhanced from 7 to
11 c mol kg−1 after applying biochar from the tamarind plant (Jien
and Wang, 2013; Wang et al., 2022). Fang et al. (2016) reported that
the CEC of corn straw biochar produced at 450°C was 26.36 c mol kg−1

and decreased to 10.28 c mol kg−1 at 700°C. Munera-Echeverri et al.
(2018) revealed that the CEC was low until the temperature surpassed
420°C due to the nutrient content in the feedstock changed with

temperature. Abhishek et al. (2022) presented that the high CEC
facilitated the heavy metals removal from the polluted soil.

Soil organic matter (SOM) is a crucial factor affecting the soil
health (Battaglia et al., 2021). The biochar amount and stability used as
a soil improvement play a key role in enhancing the SOM
(Alkharabsheh et al., 2021). Adding biochars derived from silver
grass, umbrella tree, rice straw, and crop residues caused an
increase of SOM content by 42%–72% in sandy soils and 32%–48%
in loam soils (El-Naggar et al., 2018). In another investigation (2 years)
Adekiya et al. (2020) found that application of hardwood biochar at
the rate of 30 Mg t ha−1 increased the SOM content by 77, 18, and 9%
compared to control (un-amended soil), 10 and 20 Mg t ha−1 biochar

TABLE 1 Effect of biochar addition on the soil physical attributes.

Biochar
type

Pyrolysis
temperature oC

Treatment Soil water
holding
capacity

Aggregate
stability

Hydraulic
conductivity
(ms−1)

Bulk
density
(g cm−3)

Soil
porosity
%

References

Oak wood 650 Control soil — 1.70 — 1.70 — Mukherjee
et al., 2014

Treated soil — 1.40 — 1.30 —

Hardwood 400 Control soil 1.73 — — .95 — Case et al.
(2012)

Treated soil 1.69 — — .87 —

Birch 400 Control soil 0.49 — — 1.30 50.90 Karhu et al.
(2011)

Treated soil 0.54 — — 1.25 52.80

Agricultural
residue

450 Control soil 0.11 — — 1.65 46 Jones et al.
(2010)

Treated soil 0.16 — — 1.55 48

Oat husk 500 Control soil — — 6.9 × 10−5 1.70 — Lim et al. (2016)

Treated soil — — 8.4 × 10−6 1.05 —

Rice husk 600 Control soil — — 1.7 × 10−7 1.29 49 Pratwi and
Shinogi, (2016)

Treated soil — — 6.4 × 10−7 1.13 56

Peanut hull 500 Control soil — — 8.2 × 10−5 1.33 50 Githinji, 2014

Treated soil — — 03 × 10−5 .36 78

Maize straw 350 Control soil 0.25 2.78 2.8 × 10−5 1.05 13 Herath et al.
(2013)

Treated soil 0.26 2.88 3.7 × 10−5 .95 10

Corn straw 550 Control soil 0.25 2.78 2.8 × 10−5 1.05 13 Herath et al.
(2013)

Treated soil 0.26 3.10 6.7 × 10−5 .94 19

Pine chips 500 Control soil — - 6.9 × 10−5 1.70 — Lim et al. (2016)

Treated soil — - 9.9 × 10−6 1 —

Corn straw 500 Control soil — .30 3.09 × 10−5 1.26 — Igalavithana
et al. (2017)

Treated soil — .37 1.65 × 10−6 1.24 —

Coconut shell 800 Control soil 2.34 — — 1.29 10 Liu et al. (2018)

Treated soil 3.71 — — 2.14 23

Rice hull 450 Control soil 1.86 .21 — — — Wang et al.
(2021a)

Treated soil 1.97 .64 — — —

Reed straw 300 and 500 Control soil — 22.1 — 2.14 29 Liu et al.
(2020b)

Treated soil — 177 — 6.36 39
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TABLE 2 Effect of biochar addition on the soil chemical attributes (% change compared to control).

Biochar
type

Pyrolysis
temperature oC

Biochar
pH

Soil type Soil
pH

Experiment
type

Addition
rate

pH CEC SOC Available
N

Available
P

Available
K

Total
P

Total
K

Total
N

References

Swine manure 400 10.9 Clay loam 6.7 Microcosm
incubation

.5% 4.4 18.7 12.2 — 317 20 24 — 13 Jin et al. (2016)

1.5% 7.4 48.3 15.9 — 577 111 82 — 27

Sewage sludge 500 8.7 Loamy 8.4 Pot 1% .57 - 186 — 563 39 — — 148 Yue et al.
(2017)

5% 2.16 - 577 — 1567 114 — — 709

Swine manure 400 8.7 Silt loam 5.3 Microcosm
incubation

.5% 3.7 - 14.8 — 264 21 20 — 9.60 Jin et al. (2016)

1.5% 11.3 - 17.2 — 798 153 81 — 68

Pine chip 400 7.5 Loamy sand 5.5 Field 11 Mg ha−1 1.6 — — 19.9 — — — — — Gaskin et al.
(2010)

22 Mg ha−1 1.1 — — 17 29 15.4 — — —

Sewage sludge 500 10.9 Loamy 8.4 Pot experiment 10% 3.6 - 1122 — 2150 198 — — 1409 Yue et al.
(2017)

20% 7.6 - 2067 — 2741 358 — — 2582

Wheat straw 450 10.40 Inceptisol 8.5 Field experiment 20 t ha−1 — — 48 — 22.6 - — — — Zhang et al.
(2015a)

40 t ha−1 — — 102 — 45 - — — —

Peanut shell 400 10.12 Loamy sand 5.59 Field 11 Mg ha−1 — — — — 2.4 38.8 — — 88 Gaskin et al.
(2010)

22 Mg ha−1 3.90 — — — 23 76 — — 162

Hardwood 550 8.4 Sand 5.90 Pot experiment 15 g kg−1 — — — — — — — 14.1 8.3 Borchard et al.
(2014)

Conocarpus 400 9.8 Sandy 8.41 Greenhouse 40 g kg−1 — — 248 — — 36.2 — — — Usman et al.
(2016)

80 g kg−1 — — 349 — — 63 — — —

Hardwood 550 8.4 Silt 6.3 Pot 15 g kg−1 — — — — — — - 20.2 6.90 Borchard et al.
(2014)

Apple tree 550 9.82 Acidic 5.50 Pot experiment 80 g 9.40 — — — — — 2.21 — 20.21 Gao et al.
(2017)

Coconut shell 800 10.55 Acidic 5.62 Field study 2.5% and 5% 7.12 44.4 — — — — 4.7 — — Liu et al. (2018)

Hardwood 500, 550 and 600 — Sandy 7.38 Pot study 1% w/w 7.58 — 22.87 — — — — — — Wu et al.
(2019)

Rice hull 450 10.28 Contaminated
soil

8.56 Pot experiment 3% 7.9 3.6 — — 4.61 261.47 — — — Wang et al.
(2021a)

Rice husk — — Sandy 8.3 Pot culture
experiment

3% 8.5 4.17 75.21 — 4.89 231.98 — — — Wang et al.
(2021b)
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addition.

TABLE 3 Effects of biochar addition on soil biological attributes.

Biochar type Pyrolysis
temperature oC

Soil type Biochar application
rate

Target soil
property

Effect of biochar application Experiment type References

Insignis pine 600 Loamy soil 12 Mg ha−1 and 50 Mg ha−1 Soil fauna Decreased feeding activity of soil fauna Field study Marks et al.
(2016)

Corn straw 400 Acidic soil 2, 4% and 8% Enzymatic activity Decreased the acid of soil Laboratory Zhai et al. (2015)

Increased the P activity

Eucalyptus
deglupta

350 Acidic clay loam 30, 60, and 90 g kg−1 Mycorrhizae No changes in the number of spores and root colonization Glass house Rondon et al.
(2007)

Bamboo and
woodchip

700 and 600 Clay loam and
loam

.1, 1, 2, and 5% Enzymatic activity Increased the urase activity Laboratory and pot
experiment

Ouyang et al.
(2014)

Enhanced P activity and accelerate the soil enzymatic action

Corn residue 600 Silt loam 3 Mg ha−1, 12 Mg ha−1and
50 Mg ha−1

Soil fauna No impact on rate of feeding Field study Domene et al.
(2014)

Acacia mangium 400 Acidic 10 L m−2 Mycorrhizae Improved colonization rate and amount of root Field study Yamato et al.
(2006)

Poultry manure 400 Sand 22 Mg ha−1, 45 Mg ha−1and
90 Mg ha−1

Soil fauna Earthworm weight and mortality loss Mesocosm Liesch et al.
(2014)

Rice straw 600 Sand 1% (w/w) Microbial activity Enhanced relative abundance of Proteobacteria and their associated
genera in soil

Field study Zou et al. (2018)

Coconut shell 800 Acidic soil 2.5% and 5% Soil enzymatic and
microbial activity

Fungal, bacteria, actinomyces counts, acid phosphatase, dehydrogenase,
and urease while invertase was not affected

Field study Liu et al. (2018)

Hardwood 500, 550 and 600 Contaminated
soil

1% w/w Microbial community Relative abundance of Proteobacteria, Bacteroidetes, and Actinobacteria
increased, whereas the abundance of Acidobacteria and
Germmatimonadetes decreased

Pot study Wu et al. (2019)
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TABLE 4 Impacts of biochar addition on plant growth, development and crop productivity.

Biochar Application
rate

Culture
system

Crop Effects References

Rose and teak wood 16 t ha−1 Open field Rice Improved the saturated hydraulic conductivity of the top soil and the xylem sap flow. Higher
grain yields with low P availability and improved the response to N and NP chemical
fertilizer treatments

Kochanek et al. (2022)

Peanut hull 0–200 t ha−1 Pots Quinoa Biochar application increased growth, crop production drought tolerance, leaf-N and water
use efficiency. Decreased proline and chlorophyll levels. The large application rate of
200 t ha−1 biochar did not improve plant growth compared to 100 t ha−1

Zhang et al. (2022)

Wheat straw 0–40 t ha−1 Open field Maize Maize yield was increased by 15.8% and 7.3% without N fertilization, and by 8.8% and 12.1% Rondon-Quintana et al.
(2022)

with N fertilization under biochar amendment

at 20 t ha−1 and 40 t ha−1. Application of biochar to calcareous and infertile dry croplands
poor in soil organic carbon will enhance crop productivity and reduce GHGs emissions

Citrus wood 1%–5% (w/w) Pots Tomato and
pepper

No differences between control and treatments in leaf nutrient content. Nor did biochar
affect the field capacity of the soilless mixture

Kader et al. (2022)

olive stone, almond shell, wheat straw, pine wood chips,
and olive-tree pruning

.5%–7.5% (w/w) Greenhouse
(pots)

Sunflower Type and rate of biochar-application rate had significant effects on sunflower seed
germination, improved soil properties and increase crop production

Kimura et al. (2022)

Poultry waste 0%–1% (w/w) Greenhouse
(pots)

Brassica Reducing the metals (Pb and Cd) uptake as well as improving growth promoter. Improve the
soil physical and chemical conditions. Photosynthetic and accessory pigments production is
increased

Awasthi et al. (2020)

Campestris L

Hardwood and woodchips 8 t ha−1 Open field Grape Application of higher amounts of biochar has no effect on plant growth parameters of vine or
vine health. No significant difference between the treatments for grape quality parameters
like tartric, malic, gluconic, volatile and total acids, glycerin

Sangeetha et al. (2022)

glucose to fructose ratio, and ammonium

Coconut shell 0%–15% (w/w) Greenhouse Willow Biomass production increased whereas the plant Cd and Zn contents remained unchanged.
Biochar Application decreased leaching Cd and Zn from the soil

Timmis and Ramos
(2021)

Acacia waste 5 Kg tree−1 Open field Apple Plant water status, photosynthetic capacity, Stomatal conductance (gs) and leaf N, leaf
micro-nutrients were not influenced by biochar treatment. The study has demonstrated that
the positive impacts of biochar on tree responses can potentially be maximized by the
addition of organic fertilizer in the form of compost

Molina et al. (2022)

Green waste 0%–5% (w/w) Greenhouse
(pots)

Wheat Growth and yield of wheat were increased particularly under high salinity level by biochar Kochanek et al. (2022)

Application. Positive effect on Photosynthetic rate, stomatal conductance. Stomatal density

Chlorophyll content index and total leaf nitrogen Content. Leaf Na+ and K+ concentrations
and Na+/K+ ratio were significantly affected by biochar

Softwood and hardwood 0%–15% (w/w) Greenhouse
(pots)

Potato Biochar was capable to ameliorate salinity stress by adsorbing Na+. Plant growth, tuber yield,
and midday leaf water potential were increased whereas ABA concentration in the leaf and
xylem sap was decreased

Akhtar et al. (2015b)

(Continued on following page)
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Application of straw biochar and rapeseed stalk biochar also improved
the SOM content in a red soil (Yang and Lu, 2020).

Amending soils with biochar also improves the soil organic carbon
(SOC) content (Alkharabsheh et al., 2021). However, such increases in
SOC are largely dependent on type of feedstock, pyrolysis temperature
and soil types (Al-Wabel et al., 2017). Generally, biochars prepared at
low pyrolysis temperatures contain a higher labile C compared to
biochars fabricated at high pyrolysis temperature (Lévesque et al.,
2018). Yin et al. (2014) in an incubation study observed a higher
accumulation of SOC with rice-straw biochar prepared at 250°C than
biochar generated at 350°C. This could happen due to the contribution
of partially pyrolyzed portion of the biomass in biochar (produced at
low temperature) to SOC. Furthermore, high temperature treated
biochars carry large content of fixed carbon (aromatic C-C bonds)
making biochar more stable, whereas low temperature biochars
contain more labile substrates (C-H bonds) (Cardinael et al., 2017).
Biochar enhances the SOC either by decomposition via soil microbes
or through preservation of existing natural SOC (Al-webal et al.,
2017). Overall, the effect of biochar addition on soil chemical
properties is solely depend upon the type of feedstock, pyrolysis
temperature, soil types and biochar application rates. Therefore, to
get maximum benefit from biochar amendment, special attention
should be paid to the biochar production conditions.

2.3 Effects on soil biological attributes

Biochar applications not only amend the soil physiochemical
attributes but also alter soil biological attributes (Table 3)
(Manirakiza et al., 2021). Biochar application affects the activity
and community structure of soil microbes due to its large SSA,
pore space, functional groups, surface volatile organic compounds,
minerals and porosity (Gao and Deluca, 2016; Zhu et al., 2017). These
alterations could modify the soil structure, reduce nutrient leaching,
increase the nutrient cycles, form labile carbon compounds for
microbial growth, increase aggregation, enhance nutrient
immobilization and retention, and accelerate the plant growth
mechanism (Murtaza et al., 2021a; Xu et al., 2021). Biochar
particles and pores provide a habitat for the intrusion of
filamentous microbes and fungi (Yin D. et al., 2021). Biochars, rich
in sugars and yeasts, promote the growth of bacteria (Gram-negative)
and fungi (Kocsis et al., 2022). Biochar alkalinity may stimulate the
growth of Gram-negative and Gram-positive bacteria (Zimmermann
et al., 2012; Osman et al., 2022). Sun et al. (2012) observed the bacterial
populations were more dynamic and active in biochar-treated soil
than fungal populations under field conditions; this may be attributed
to the biochar’s higher surface area and biochar carbon (Liu et al.,
2022). Moreover, pyrolysis temperature, biomass type, and carbon
content strongly influence dehydrogenase activity, microbial habitats,
N immobilization and mineralization (Ameloot et al., 2015).

The high SSA and porous nature of biochar serve as favourable
habitats for diverse soil microbes (Ye et al., 2017). The porosity and
SSA of biochar largely depend on feedstock type and pyrolysis
temperature, high temperatures result in higher porosity and SSA
(Palansooriya et al., 2019). The microbes become attached to the
biochar micropores by electrostatic forces, hydrophobic attraction, or
the precipitate formation, thus resist leaching, and increase their
abundance (Abhishek et al., 2022) Moreover, soluble substances
such as water, alcohol, sugars, acids and ketone molecules presentTA
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TABLE 5 Effect of biochar application on seed germination and seedling growth under different soils.

Biochar
type

Pyrolysis
condition oC

Biochar
pH

Application rate Soil type Effect of biochar on seed germination Reason of effect on seed germination References

Rice husk 500 7.9 1, 2% and 5% w/w Karst calcareous
soils

Biochar treatment significantly increased the Robinia
pseudoacacia L. seed germination rate on day 3

Increase in soil capillary water holding capacity and non-
capillary porosity after biochar application suggested an
improvement of soil effective moisture and soil aeration

Bu et al. (2020)

woodchip 500 8.4 2% w/w Karst calcareous
soils

Seed germination rate in biochar-treated soils reached 100%
on day 7, 2 days faster than control treatment

Improved soil capillary water holding capacity, in
conjunction with increased soil available P

Bu et al. (2020)

Castor 550 8.7 1% and 5% w/w Sandy Biochar amendment in castor resulted in faster germination
rates when compared to control soil

May potentially lead to summer drought-escape and
advancement of harvesting time in castor plants

Hilioti et al.
(2017)

Wheat 500 8.9 1% and 2% w/w Saline soil Improved the wheat seed germination under salinity Biochar amendment eliminates the negative impacts of
stress by lowering the activity of superoxide dismutase

Jiang et al.
(2022)

Rice straw 300 - 1% - Rice straw biochar solutions with a high concentration
restrained the germination of rice and tomato seed, found that
high amount of carbonaceous material suppressed plant seed
germination

Increase in soil capillary water holding capacity Zhang et al.
(2019)

Pine chips 350 5.74 1% Coxville Decreased germination and early seedling growth Inhibitory effects of biochar were caused not only by
phenolic compounds on its surface, but also by the blocking
effect on epidermal openings resulting in a reduced transfer
of nutrients and water

Olszyk et al.
(2018)

Woodchips 550 6.89 5 t ha−1 Farming soil Effects on seedling radicle extension growth were more
pronounced (Picea mariana, Pinus resinosa, and Betula
papyrifera)

likely mechanisms involve “priming” effects resulting from
increased pH and potassium availability or sorption of
germination-inhibiting phenolics in the litter layer

Thomas. (2021)

Corn cob 350 7.10 .5, 1, 1.5, 2, 2.5, and 3%
w/w

- Increasing corn-cob application rate have neutral to positive
effects on seed germination and seedling growth of maize,
improved germination rate by 3% than control treatment

High nutrient retention and water holding capacity Ali et al. (2021)

Walnut shells 550 8.25 10, 20, 40, 80, and
120 Mg ha−1

- Significantly higher germination rate and growth indices
observed with the 40 and 80 Mg ha−1 biochar rates,
respectively. Biochar application generally increased seed
germination at rates ≤40 Mg ha−1 and seedling growth indices
at rates ≤80 Mg ha−1

Biochar application to soil increases some soil properties
such as pH, water holding capacity (WHC), soil organic
carbon (SOC), and contributes to soil nutrient retention

Uslu et al.
(2020)

Raintree - - 15 t ha−1 Agricultural soil Germination percentage of paddy increased in case of
Raintree biochar was above the control level but the difference
was not significant

A significant effect of treatments was found on soil
potassium, phosphorus and nitrogen

Shamim et al.
(2018)

Corncob 450 7.1 10 and 20 t ha−1 Agricultural soil Under water stress seed vigor and Soybean germination
percentage decreased significantly compared to control

This could be due to the disruption of various metabolic and
physiological processes in the cell such as disruption in ion
uptake

Hafeez et al.
(2017)

Moss 400 8.6 1.17% - Positive effect of biochar on Betula platyphylla seedling
growth was observed. Biochar addition significantly increased
seedling height

biochar increased the soil water holding capacity, reduced
the water loss rate

Xinghui et al.
(2020)

Green waste 350 - 3, 5% and 10% Agricultural soil Recorded highest germination percentage (94%) of Vigna
mungo

Biochar increased water availability surrounding the seed,
resulting in more favourable seedling environments

Parvin et al.
(2022)
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in micropores and mesopores of biochar alter the microbial
composition and abundance in soils (Adnan et al., 2020). An
increment in the microbial activity and population of filamentous
fungi, Bacillus species and Pseudomonas species have been observed
with biochar addition in pepper cultivated soils. An application of
maize stalk biochar at the rate of 50, 100, and 200 Mg ha−1 resulted in a
6.6%–31.2% higher fungal abundance compared to un-amended soil
(Yao et al., 2017). In another study, Karimi et al. (2020) reported 20%–
124% increase in soil microbial biomass in a calcareous soil
supplemented with corn residue biochar at 1% and 2% (w/w)
compared to control. Domene et al. (2014) found that the
microbial abundance could enhance from 366 µgCg−1 (control soil)
to 730 µgCg−1 (biochar treated soil). Also, microbial abundance was
increased by (5%–50%) with the increase in biochar application rate
(from 0%–14%) for various incubation times. Jin et al. (2016) found
that litter-derived biochar enhanced the activity of
phosphomonoesterase and decreased the activity level of acid
phosphomonoesterase in silt loam and clay loam soils, respectively.
An elevation in N and P retention in soil was noted due to change in
microbial community structure and increased microbial activity in
response of biochar application (Palansooriya et al., 2020). Biochar
also found to play a crucial role in biological N fixation in legume
crops by regulating different mechanisms including, increasing nodule
formation, immobilizing N, enhancing P supply and altering the soil
pH (Mia et al., 2014; Semida et al., 2015; Partey et al., 2016; Semida
et al., 2019). Most probably, changes in resources (C and nutrients),
physico-chemical factors, water availability or access to habitat may
accelerate the competition among soil microbial communities which
causes an alteration in community structure and composition (Semida
et al., 2019).

Despite having the positive role of soil microbes in the soil, various
soil pathogens can negatively impact the crop growth in the form of

diseases (Bass et al., 2019). Biochar showed substantial potential to
rectify the problems created by the soil pathogens. Jaiswal et al. (2018)
reported that biochar can deactivate and immobilize the enzymes
involved in cell wall deterioration and detoxified the metabolites
produced by Fusarium oxysporum f. sp. radicis lycopersici and,
protected the crop plants against soil pathogens. In another
investigation, Gao et al. (2019) reported that the soil of tomato
plants infected with Ralstonia solanacearum bacteria was improved
with wheat straw biochar and severity of bacterial wilt was reduced
with increase in total C, N, C:N ratio, K, P, pH and electrical
conductivity. Biochars can potentially inhibit pathogenicity in
plants by improving resistance, enhancing nutrient content, and
detoxifying and adsorbing harmful chemicals in the polluted soils
(Schmidt et al., 2021; Tan et al., 2022).

Biochar’s effects on enzymatic activity in soils depend on the
nature of the substrate-enzyme interfaces in the presence of biochar,
which are linked with biochar surface area and porosity (Bailey et al.,
2011). Biochar with higher porosity and surface area would most likely
decrease the extracellular enzymatic activity, given that the functional
groups on the biochar would tend to bind the enzymes and substrates
and therefore interfere with substrate diffusion on the active sites of
the enzyme (Osman et al., 2022). Biochar treatment has both positive
and negative effects on soil enzymatic activity. These impacts depend
on biochar application rate and soil type (Table 3). Soil enzymes
indicate the soil quality because they are directly related to soil
microbial activity and biogeochemical cycling of nutrients
(Palansooriya et al., 2019). For instance, increase in dehydrogenase
activity was observed in different soils amended with different types of
biochars (Bhaduri et al., 2016; Irfan et al., 2019). Such increase in
dehydrogenase activity could be attributed to the labile organic matter
and a high content of volatile matter of biochars (Gasco et al., 2016b).
An increase in the activity of extracellular enzymes (β-glucosidase,

FIGURE 2
Biochar induced modifications in soil properties and its impact on plant growth and development; Copper (Cu), Iron (Fe), Magnesium (Mg), Manganese
(Mn), Phosphorus (P), Potassium (K), Ammonium (NH4), Zinc (Zn).
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a-glucosidase, β-xylosidase, and β-D-cellobiosidase) involved in soil
sulfur (S) and C cycling was noted in a fluvo-aquic soil amended with
biochar (Wang et al., 2015). In another study, elevation in
dehydrogenase enzyme activity was observed in a red soil treated
with .5% (w/w) bamboo and oak-wood biochar (Demisie et al., 2014).
In the same study, β-glucosidase activity was increased in soil
supplemented with only bamboo biochar at .5% and 1%. However,
increase in urease activity was noted with oak wood biochar (.5% and
2%) and bamboo biochar (.5%) (Demisie et al., 2014; Palansooriya
et al., 2020). Several studies (Ameloot et al., 2014; Paz-Ferreiro and Fu,
2016; Singh, 2016) also revealed that biochar manifest differential
effects on enzyme activities across different types of soils. A manure-
derived biochar decreased the activity of acid-phosphomonoesterase

in clay-loam soil whereas activity level of alkaline-
phosphomonoesterase was increased in silt-loam soils (Jin et al.,
2016). Recently, a global meta-analysis (Pokharel et al., 2020) on
biochar application and soil enzyme activities demonstrated an
increase in the activities of extracellular enzymes including,
phosphatase (25%), urease (23%) and dehydrogenase (20%). On
the other hand a decrease of −13%, −7%, and −6% in phenol
oxidase, β-glucosidase, and acid phosphatase, respectively was also
observed. It is obvious that soils blended with biochar showed
augmented proliferation of soil microbes benefitting the soil in
several ways. However, more studies are needed to explore the long
term effects of biochars on soil microbes and unveil the ecological roles
of biochars.

TABLE 6 Effect of biochar application on soil and plant physiological attributes.

Feedstock Pyrolysis
temperature oC

Application
rate

Soil; plant Effects on the soil–plant system References

Poultry manure 300–350 0–100 t ha−1 Sandy loam;
Soybean

Drought tolerance; increased plant height (3.3%–4.03%),
relative water content (4.35%–4.92%), chlorophyll content
(7.25%–17%), proline accumulation (22.58%–38.7%)

Mannan et al.
(2017)

Cotton residues 350–450 0–4 t ha−1 Sandy loam;
Corn

Improved relative water content (~25%), photosynthetic
pigments (20%–60%), antioxidant activity (15%–59%);
increased root length (~50%), root dry weight (>100%), shoot
length (~25%), shoot dry weight (>50%)

Sattar et al. (2019)

Rice straw 450–550 0%–5% Sandy loam;
Wheat

Augmented plant growth (35%–52%), chlorophyll content
(58%–63%), gas exchange (40%–85%); decreased metal
concentrations (37%–42%), oxidative stress (14%–36%)

Abbas et al. (2018)

Hardwood and
coniferous wood

750 0%–2.5% Sandy loam;
Reed

Increased plant weight (42%–70%), stomatal conductance (from
.04 to .17 mol H2O

Abideen et al.
(2020)

m−2.s−1), transpiration rate (from 2.92 to 2.99 mmol
H2O.m−2.s−1), and water use efficiency (~5%); increased soil
pH (from 7.7 to 8.2), WHC (from 21% to 38%)

Rice husk 700 0–20 t ha−1 Clay; Corn Enhanced chlorophyll content (20%–35%), relative water
content (~25%), plant height (~10%), cob length (~25%), grain
yield (>100%); decreased flowering time (~8 days reduced),
proline content (>50%)

Mannan and
Shashi (2020)

Wheat straw 500 0–37.18 g kg−1 Clayey loam;
Wheat

Improved spike length (6.52%), thousand-grain weight (6.42%),
grains per spike (3.07%), biological (9.43%) and economic yield
(13.92%); increase water use efficiency (~20%), chlorophyll
content (75%–100%)

Haider et al. (2020)

Woodchips 550–600 0%–3% Sandy soil;
Corn

Increased plant growth (6.5%–7.9%), water use efficiency
(~20%); Improved WHC (soil moisture enhanced from 2.2%
to 6.2%)

Kumar et al.
(2022)

Lantana camara 450 0%–3% Sandy loam;
Okra

Increased leaf area (~50%), plant height Whitman et al.
(2019)

(~20%), photosynthetic rate (~30–80%)

WUE (>300%); increased soil pH (from

7.28–9.06), EC (from 3.03 to 13.01), moisture (from 1.21% to
18%), OM (from

.5%–1.9%)

Olive tree prunings 450 2% Vertisol;
Wheat

Increased fine root proliferation, plant biomass (5%–50%);
decreased soil compaction (9%); increased soil moisture (40%),
EC (~50%), carbon content (~50%), nitrogen content (~50%)

Tomczyk et al.
(2020)

Peanut hulls 500 0%–100% Loamy sand;
Tomato

Decreased bulk density (from 1.325 to .363 g cm−3), particle
density (from 2.65 to 1.60 g cm−3); increased porosity (from
.500 to .773 cm3 cm−3); increased leaf quality (plant wilting rate
rose from 4.67 to 9.50 with higher values denoting minimum
wilting)

Mack et al. (2021)
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TABLE 7 Effect of biochar addition on crop yield.

Biochar
type

Pyrolysis
condition oC

Biochar
pH

Application rate
of biochar

Soil type Soil
pH

Effect of crop yield Reason of effect on yield References

Acacia bark 400 7.01 25 and 50 t ha−1 Silt loam 8.2 First year maize yield increased by 20% after
biochar application and 2nd year increased
by 12

Biochar application retained soil N and P Arif et al. (2016)

Swine manure 600 10.40 2% w/w Sandy 8.3 Positive effects on crop yield Enhanced the NPK uptake by plants Subedi et al. (2016)

Corncob 350 8.02 2 and 6 t ha−1 Sandy 5.9 Increased the groundnut and corn yield Biochar addition enhanced the level of P and K in corn
stover

Martisen et al.
(2014)

Bio solid 600 7.50 20 t ha−1 Fine sand 5.80 Decreased the corn growth Biochar addition exhibited no impact on N uptake Gonzaga et al.
(2017)

Poultry litter 300 8.1 10 g kg−1 clay loam 7.80 Significantly lettuce growth and biomass as well
as yield

Significantly enhanced the level of NPK of lettuce leaves
and decreased the Cu, Mn, Zn and Fe level

Gunes et al. (2014)

Poultry manure 300 8.7 5 g kg−1 Clay loam 7.8 Increased the bean and corn growth and yield Increased the level of Mn, Cu, Zn, Fe, Ca, and NPK in
maize and bean plant

Inal et al. (2015)

Kunai grass 500 10.20 10 t ha−1 Loam 5.5 No impact on the yield of cabbage Not effect on N uptake Baiga and Rao,
(2017)

Wood biochar 900 9.3 7 t ha−1 Sandy loam 6 Within 3 years, no impact on wheat yield Mg, P, and K contents in wheat gain enhanced Sanger et al. (2017)

Rice husk 350 9.1 15 t ha−1 Clay 5.18 Not exhibited positive impact on the maize yield No impact on N uptake by corn plant Nguyen et al.
(2016)

Rice straw 550 10.20 4.5 t ha−1 Sandy loam 6.1 Increased the yield of grain by 8%–10% than
control

Biochar addition significantly increased the uptake of
nutrients by grain than control

Liu et al. (2016)

Wood biochar 350 9.10 20 t ha−1 Sandy 6.3 No impact on growth and yield of potato,
strawberry and barely

Biochar addition had slight effect tissue level of Mg, Ca,
K, P, and N irrespective of crop. Biochar decreased tissue
Mn and increased Mo in strawberry

Jay et al. (2015)

Bamboo 600 9.80 4.5 t ha−1 Clay loam 6.16 Did not greatly enhance the rice grain yield Improved the content of K of rice grains Liu et al. (2016)

Sawdust 300 5.2 20 t ha−1 Sandy 8.80 Increased soybean grain yield Significantly impact on soil available P Mete et al. (2015)

Poultry manure 550 8.9 10 t ha−1 Fine textured 4.3 Enhanced the maize yield than control Improved the nutrients uptake Van Zwieten et al.
(2010)

Apple tree
branches

550 9.82 80 g Mine soil 5.50 Efficiently stimulates plant growth, increases the
uptake of heavy metals by roots

Generates a barrier effect that decreases the transfer of
heavy metals from roots to shoots

Guo et al. (2021)

Rice husk — — 1%–3% Contaminated soil 6.53 Enhanced plant growth Biochar application significantly improved soil
properties and enhanced soil enzyme activity

Wang et al. (2021b)

Wheat straw 600 7.45 .5, 1% and 1.5% Metal-
contaminated soil

5.11 Improved the growth of rice plant as well as
yield

Increased the photosynthetic pigment and gas exchange
properties of rice plants

Irshad et al. (2020)

Rice straw 450 8.2 — Salt stressed soil — Increased the soybean plant growth, root
architecture characteristics and biomass yield

Improve the nutrient acquisition, chlorophyll content,
soluble protein and sugarcontent, also reduced the
elevated levels of Na+, glycinebetaine, proline, hydrogen
peroxide in plants under salt stress

Mehmood et al.
(2020)

Corn straw 500 10.02 — Typic
haplocalcide

7.7 Increased plant growth, plant height, shoot dry
weight, root dry weight, chlorophyll content and
leaf area

Improve the redox capacity of soil, improve the activities
of soil urease, catalase, alkaline phosphatase and soil
retained more water

Khajavi-Shojaei
et al. (2020)
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3 Effect of biochar addition on soil
nutrients

How biochar addition affects soil nutrient status has been
reviewed extensively in different types of soils under various
environmental factors (Schmidt et al., 2021). Biochar affects
nutrients cycling in soils through retention and sorption, increasing
or decreasing their bioavailability by reducing or increasing leaching
and emissions (Tisserant and Cherubini, 2019). The transformation of
nutrients in biochar-treated soils varies depending on biochar types,
carbonization conditions, and soil types (Al-Wabel et al., 2017).
Lehmann et al. (2002) advocated two primary methods for
stimulating the rates of nutrient retention and decreasing nutrient
leachability; (a) biochar addition enhances the adsorption sites, which
accelerate the nutrient retention rate, and (b) biochar may perform as
a slow releasing nutrient material. The N availability is the most
substantial and key nutrient for the plant growth and it is greatly
exposed to denitrification, leaching and volatilization (Abhishek et al.,
2022). Biochar regulates the soil N through its surface chemistry, by
affecting soil pH and influencing the soil microbial communities (Mia
et al., 2017; Padhye, 2017). Mandal et al. (2018) reported that the
retention of N is influenced by biochar owing to enrichment of O2-
enrich functional groups (hydroxyl, aromatic ring carbonyl and
aliphatic ether). Many researchers (Cayuela et al., 2014; Mandal
et al., 2018; Borchard et al., 2019) highlighted that the maize
biochar addition can accelerate the N content in soil through
enhancing the net N mineralization, which increases nitrification
process, affects denitrification and reduces the NH3 volatilization,
and enhances the NH3 and NH4

+ adsorption in soil. Marks et al.
(2016) reported that adding pinewood-biochar decreased the N
mineralization in the form of nitrate ions to amounts equal to
ammonium. Likewise, Yao et al. (2017) applied the biochar to
loamy sand, where available N contents reduced or remained
unaffected due to the adsorption of ammonium, resulting in
reduced available N. Furthermore, Jones et al. (2012), investigated
the long-term effects of biochar addition on soil N mineralization in
mull soils and observed that biochar addition had no substantial
impact on nitrate ions, ammonium, and the total N amounts in
the soil.

Additionally, biochar produced under different pyrolysis
conditions showed variable soil N immobilization and
mineralization results. For example, 43% N was immobilized in the
soils after biochar addition, which was produced at a higher
temperature. In contrast, applying biochar obtained at a low
temperature resulted in 7% N mineralization (Bruun et al., 2012).
Furthermore, the application rate of biochar also substantially
impacted the mineralization of N by decreasing the concentrations
of nitrate ions and ammonium in the soil (Bruun et al., 2012).
Applying biochar produced at 400°C and 600°C accelerated the
uptake of ammonium in the soil, substantially decreasing the soil
inorganic N (Bruun et al., 2012). Butnan et al. (2017) compared the
biochar applicability produced at 350°C and 500°C. The gross
mineralization, labile N fraction and recalcitrant fraction and got
enthused after the biochar (350°C) improvement in the soil than
biochar produced at 550°C. Additionally, with biochar application, the
N-cycle hastened and hence enhanced the gross mineralization of N,
nitrification and NH4

+ consumption rate by 185%–221%, 10%–69%
and 333%–508%, respectively. This was possibly occurred because
biochar application increased the soil aeration/porosity, enhanced and
stimulated the growth of heterotrophic/aerobic microbial community
(Yi et al., 2020). Additionally, nitrates content in soil doubled the
concentration of ammonium following the biochar addition, possibly
due to the negatively charged surface of biochar and high
mineralization of N (Shenbagavalli and Mahimairaja, 2012). Jones
et al. (2012) reported that wood-derived biochar did not substantially
impact N mineralization or nitrification when applied to agricultural
soil. Transformation of inorganic N with higher rates resulting from
biochar addition could be explicated through (1) increased soil organic
mineralization and net N, (2) denitrification enhanced because of the
stimulation of denitrifying bacterial communities, (3) nitrification
increased accelerated via a large number of ammonia oxidizers
(Jones et al., 2012).

The availability of phosphorous in the soil to plants is affected by
the application of biochar, which is regulated by the CEC or anion
exchange capacity that leads to phosphorous incorporation (Si et al.,
2018). Abhishek et al. (2022) revealed that phosphate complexes form
at high pH with Mg2+ and Ca2+ and at low pH with Al3+ and Fe3+. The
biochar inhibits the development of phosphate precipitates, and

FIGURE 3
Improvement in plant resilience against biotic and abiotic stresses through biochar application.
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hereafter, the phosphorous availability rises in the plants. Xu et al.
(2016) carried out a field study on maize in Indonesia. They exhibited
that biochar adding to soil increases the available phosphorous, which
elevates the maize yield afterward. They found the biochar application
increase the phosphorous for the plants even in less available soil
phosphorous conditions. Li and Chan, 2022) reported that sharp
decline of P content in clay soil after biochar addition; it was due
to the chemical adsorption of P the surfaces clay-mineral and
temporary immobilization of P via soil microbes. Kelly et al.
(2015) noticed a significant enhancement in P content of clay soil
after hardwood-derived biochar application with the rate of 5, 10,
15 g kg−1. An increase of 54% P extractability (~20 mgkg−1) was
achieved in the clay-soil amended with biochars, whereas this
increase was 42% (11 mgkg−1) in the control. Wang et al. (2015)
conducted a pot experiment to examine the effect of biochar addition
(0, 5, 10, and 25 g kg−1 soil) on the soil K dynamics in two types of soil
(alfisol and Entisol). Both soil K increased in response to biochar
addition, with the impacts more prominent in the Alfisol.

Biochar can improve the availability of soil P by changing the
soil microbial communities, as it can provide the suitable growth
conditions in the form of porous habitat and C supply for soil
microbes (Dai et al., 2021). Zhou et al. (2020) reported an increase
in soil P availability and activity of related enzymes by improving
the growth of P-solubilizing bacteria (flavobacterium,
pseudomonas and thiobacillus) in forest soil with rice-husk
biochar application. These alteration could be credited to
increased WHC and soil pH (Liu et al., 2017). Biochar
enhanced the plant available P in soils by 45% and microbial
biomass P by 48% (Gao et al., 2019). The manure and crop residue
derived biochars exhibited higher P content than other feedstocks

(Gul and Whalen, 2016). Biochar P is less mobile than the P from
agricultural residues and it may act as a slow-release P fertilizer.
Biochar can be a P-recycling route from agricultural residues. The
results of a meta-analysis revealed that biochar amendment
significantly improved the P availability in soils for 5 years.
Several other investigations (Gao et al., 2019; Glaser and Lehr,
2019; Dai et al., 2021; Schmidt et al., 2021) described that manure
and crop residues derived biochars increase availability of P,
biochars prepared at high pyrolysis temperature release less P
and P availability is reduced in alkaline soils (pH > 7.5) due to the
liming effect of biochar. The biochar addition also affects other
essential macronutrients such as Ca, Mg, Na, P, and K. For
instance, Sigua et al. (2015) reported that biochars of poultry
litter and pinewood 50:50 blend considerably improved the soil
amounts of Ca, Mg, Na, P and K by 307%, 687%, 2,315%, 669%,
830% respectively, compared to control. Meta-analyses have
revealed that biochar addition commonly increases P
availability, especially when applied to neutral or acidic soils,
and for biochar produced from low C:N feedstocks and at low
temperatures (Gao et al., 2019; Glaser and Lehr, 2019). However,
biochars prepared from Ca-rich and K-poor feedstocks (e.g.,
sewage sludge) reduce the P availability because pyrolysis can
convert plant-available organic P into inorganic P that is less
available in the short term (Rose et al., 2019; Buss et al., 2020).
Gunes et al. (2014) demonstrated that the availability of K, P, and
N was elevated in alkaline soil with biochar application, with no
substantial impact on the macronutrient availability to the plants.
Understanding the effects of biochar amendment on soil chemical
properties is essential to determine appropriate application
regimes under given field conditions. Additionally, a

FIGURE 4
Mechanism of greenhouse gas (GHG) reduction and soil carbon (C) sequestration through biochar application; Carbon dioxide (CO2), Methane (CH4),
Nitrous oxide (N2O).
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TABLE 8 Effect of biochar addition on carbon sequestration and GHGs emission.

Experimental conditions impacts

Experiment type Biochar type Application
rate (t/ha−1)

Soil type Duration CO2 NH3 N2O CH4 References

Pot Sawdust 2%–60% Corn field 100 days Reduced Reduced Reduced Decreased 20% Spokas and Reicosky.
(2009)

Field Wood 60 Wheat soil 420 days No difference — Reduced by
59%–88%

No difference Castaldi et al. (2011)

Pot Maize stalk 24 Paddy ultisol 116 days — Reduced — Reduced by 61% Feng et al. (2012)

Field Wood 30 Wheat soil 420 days No difference — Reduced by
26%–76%

No difference Castaldi et al. (2011)

Field Wheat straw 40 Paddy soil 150 days — — Reduced
21%–28%

Enhanced
by 41%

Zhang et al. (2010a)

Field Wheat straw 40 Paddy soil 450 days — — Reduced by
40%–51%

Enhanced
by 34%

Zhang et al. (2010b)

Pot Maize stalk 24 Paddy inceptisol 116 days — Reduced by 13% — Reduced by 63% Feng et al. (2012)

Field Bamboo 2–6 Wheat soil 100 days Reduced by
5.5%–72%

Reduced by 74% Reduced by 81% Decreased
by 72%

Zhang et al. (2020b)

Field Wheat straw 2–18 Paddy soil 120 days - Decreased by 65% Reduced
by 97.3%

Reduced
by 92.8%

Awasthi et al. (2017)

Field Wood 27 Paddy ultisol 140 days Reduced by 22% Reduced by 35.3% Reduced
by 35.3%

Reduced
by 83.6%

Chowdhury et al. (2014)

Field experiment Chipped forest residue 5, 10, 20, and 30 Boreal arable 2 years Decreased more
than 50%

Reduced No effect
noticed

Significantly
reduced

Kalu et al. (2022)

Field Agricultural waste — — 30 days Increased the
emission more
than other
GHGs

Decreased by 30% Reduced by 57% Enhanced the
emission

Li et al. (2022)

Field Rice hull 30 Inceptisol 3years emissions
by 33%

Increased emission significantly No effect Enhanced the
emission by 31%

Gross et al. (2022)

Field experiment Corn straw 40 Anthrosol 234 days Increased the
emission

Decreased by 17% Reduced Enhanced the
emission

Jiang et al. (2021)

Laboratory experiment Wheat straw 1% and 2% Red soil 180 days Increased
emission by
5.8%–9.9%

No effect Emission
increased by
22.8%–27.5%

Reduced
emission by
19.8%–28.2%

Liu et al. (2021)
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comprehensive comparison of different feedstocks produced at
different pyrolysis temperatures is needed to identify and optimize
the feedstock effects on nutrient release dynamics and
biogeochemical cycling of nutrients in soils treated with biochars.

It can be visualized from the above discussion that biochar
application significantly influences soil BD, aeration, porosity,
WHC, CEC, pH, nutrient balances, and other parameters of soil
quality due to its physicochemical properties and intrinsic structure
(Singh et al., 2021; Murtaza et al., 2022a). Higher carbon and mineral
content in the biochar are beneficial for improvement of soil health,
fertility, and crop growth and yields (Table 4). The application of
biochar also increases the microbial biomass, WUE, and NUE when
added as soil amendment (Yu et al., 2019). All these modifications
induced by biochar in soil physiochemical and biological properties
offer great benefits to the agri-systems (Bhat et al., 2022). For instance,
biochar enhances the amount of water available to plants, which could
help in reducing irrigation frequency and it has great significance in
water limited semi-arid regions (Alkharabsheh et al., 2021). Biochar
particles with high porosity and large SSA contributed to increased
plant available water. Taskin et al. (2019) investigated the effects of
poultry manure biochar on chickpea (Cicer arietinum L.), maize (Zea
mays L.), soybean (Glycine max L.) and bean (Vigna radiata L.) crops
and observed positive effects on growth and other growth related
parameters, mainly due to improvement in soil water holding capacity
induced by biochar. Tomato height, weight, number of flowers, and
fruit yield were also improved after 7.5 t ha−1 rice husk application
(Adebajo et al., 2022), and similar results were obtained in faba bean
varieties with higher grain yield, fruit protein content, and plant height
due to the increased of soil available K and N after biochar addition
(Essa et al., 2021). Increased rape shoot biomass (from 2.31 to 4.23 g)
and grain yield after rice biochar application was the result of an
improvement of soil chemical conditions (soil pH and cation exchange
capacity) and nutrient availability (total C and N), together with
changes in the associated microbiota (Shahab et al., 2018; Farid
et al., 2022). The application of up to 10% (v/v) of wheat straw
biochar increased P uptake in barley plants in controlled conditions
and in maize plants grown in rhizoboxes (application rate of
15 g kg−1), with an increased shoot biomass and N use efficiency
due to a fine root proliferation and an increase in the amount of N
and P in soil (Tartaglia et al., 2020). wheat straw biochar application
(5–40 t ha−1) promoted the growth and yield of lentil by increasing the
organic C content and improving other physicochemical
characteristics of the soil, and it was also able to increase maize
yield by 23.7% by promoting N uptake (Allohverdi et al., 2021). There
are several reports that highlight no or negative effects of biochar
application alone or in combination with organic and inorganic
fertilizers in soil plant systems. For instance, Rivelli and Libutti,
(2022). Applied biochar and other organic amendments
(vermicompost from cattle manure and three composts,
respectively, from olive pomace, cattle anaerobic digestate with
wheat straw, and cattle anaerobic digestate with crop residues and
wheat straw), to the soil at two rates (to provide 140 and 280 kg N ha−1,
respectively), but biochar did not affect the growth or the qualitative
traits of Swiss chard. In another study, Singh et al. (2020) explored the
effect of different combinations of chemical fertilizers, rice-husk ash
biochar and farm yard manure on agronomic and eco-physiological
responses of wheat crop. Sole application of farmyard manure and
chemical fertilizer showed better (5%–26% higher) crop eco-
physiological responses, whereas sole biochar and biochar plus

farmyard manure application manifested poor responses (2%–15%
lower) compared to the control. These results revealed that combined
application of rice husk ash biochar and farmyard manure limit the
crop growth. These were the few examples indicating that how
changes in soil physiochemical and biological properties caused by
biochar affect crop growth and productivity. A detailed impact of such
changes on different plant development phases under different
environmental conditions is described in the following section.

4 Interpreting the biochar-soil- plant
nexus

4.1 Promote seed germination and early
seedling growth

The effects of biochar application on seed germination
(Table 5) consisted of inhibition to activation. A high
application rate of biochar can have destructive impacts, while
a low application rate of biochar can be stimulatory. This section
will explain the mechanisms affecting the germination and
seedling growth described in the literature.

Seed germination starts with water absorption and ends when the
radicle appears from the seed coat. The four main aspects regulating
the effect of biochar treatment on seed germination are 1) release of
phytotoxins, 2) salts released from biochar in soil solution, 3)
alteration in porosity and WHC of soil, and 4) release of karrikins
(germination-regulator hormone) (Joseph et al., 2021). Biochar type,
pyrolysis condition, and dose have diverse effects on germination rate
and speed. The specific sensitivity of different plant seeds to toxins,
water availability, hormones, and salinity may cause variable results
(Hasannuzzaman and Fujita, 2022). For instance, in a pot experiment,
wood-derived biochar at 80 Mg t ha−1 suppressed the tomatoes’
germination. At the same time, sewage sludge, wheat husk, and
paper residue-derived biochar added with the same dose had no
impact on lettuce, cucumber, cress, tomatoes, and lentil seed
germination (Gasco et al., 2016a). Other investigations that used a
range of manure and woody biochars at a rate of
10 Mg t ha−1–40 Mg t ha−1 observed nil or positive impacts on
germination (Van Zwieten et al., 2010; Khan et al., 2014; Mete
et al., 2015; Gasco et al., 2016b; Das et al., 2020).

Uslu et al. (2020) reported the negative effects (inhibition of seed
germination) in different fodder crops at high biochar application rate
(120 Mg t ha−1) in a laboratory experiment. Aqueous extracts of
various biochars have accelerated seed germination and seedling
growth (Zheng et al., 2017). Seed growth and development of early
seedlings can be affected due to biochar impacts on soil physical
attributes. For example, by enhancing soil aeration and decreasing soil
bulk density, biochar can provide oxygen for germination and to
improve seedling development through seeding emergence (Obia
et al., 2018). Biochar’s chemical impacts on water and soil solution
can affect the seed and early seedling growth. For instance, by
increasing pH, the alkaline biochars enhance the heavy metals and
Al toxicity that can decrease root development in acidic-soils (Shetty
et al., 2020). A high dose of biochar with high concentration of soluble
salts could suppress seed growth and development by osmotic stress
(Sun et al., 2017; Shetty et al., 2020). Kochanek et al. (2016) reported
that the biochars comprising organic molecule karrikins, can promote
seed growth and seedling development.
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French and Iyer-Pascuzzi, (2018) demonstrated that the
gibberellin pathway accelerates germination and seedling
development through wood-derived biochar in tomato genotypes.
Polyphenols and phenols released from biochar can efficiently
break the seed dormancy, improve germination, and accelerate the
seedling development mechanisms (Reynolds et al., 2018). Biochar
comprises organic contaminants, PAHs, and heavy metals generated
during the partial combustion process that can suppress germination
and seedling development due to a high application rate (Gasco et al.,
2016a; Gasco et al., 2016b; Das et al., 2020). Nevertheless, lower
application rates, and low concentration of free radicals could be
favourable as reactive oxygen can interact with various hormones of
plants that stimulate the germination process (Gomes and Garacia,
2013).

It can be summarized from above discussion that mostly biochars
and biochar based formulations are helpful in promoting seed
germination and growth of seedlings when applied at moderate
rates. However, application of biochars at relatively higher rates
e.g., more than 40–50 Mg ha−1 could restrict seed germination and
early growth due to the release of phytotoxic organic compounds and
soluble salts. Furthermore, the mechanisms responsible for positive
effects of biochar include water-soluble organic compounds that
accelerate the seed germination and growth, chemical reactions
that dismiss the inhibitory effects of phytotoxic compounds and
heavy metals. The aforementioned effects largely depend upon the
temperature, biochars prepared at low temperatures contain higher
amounts of organic molecules and promote seed germination and
seedling growth at low application rates. Therefore, the
abovementioned factors should be considered prior to the
application of biochar in the crop fields to get optimum benefits.

4.2 Biochar as a plant growth regulator

Biochar application either decreases or increases plant growth
(Deenik et al., 2010). According to previous literature, the changes in
plant growth (increase or decrease) depend on soil, biochar type, and
biochar preparation temperatures (Figure 2). For example, Kwapinski
et al. (2010) reported inhibition of corn growth through soil treatment
with biochar derived from silver grass prepared at 400 °C. However,
growth was promoted by biochar obtained at 600°C. Moreover, soil
treatment with biochar at an application rate of 68 t ha−1 significantly
enhanced the growth of cowpea, wheat, and rice (Vaccari et al., 2011;
Zheng et al., 2017). In comparison, applying 10% animal manure-
derived biochar reduced the sunflower plant height, number of leaves,
achenes, and stem diameter (Furtado et al., 2016). Corn-derived
biochar pyrolyzed at 400°C added at 20 t ha−1 did not considerably
increase the growth of Glycine maxon loam soil (Hafeez et al., 2022).
Changes in soil properties have often resulted with biochar addition,
leading to increased plant growth (Solaiman et al., 2010). Solaiman
et al. (2012) reported that the application rates and biochar type
considerably impacted the growth of clover, mug beans, and wheat in
the laboratory experiment. In a glasshouse experiment, the growth of
radish, soybean, and wheat was enhanced with papermill derived
biochar at the application rate of 10 t ha−1 (Van Zwieten et al., 2010).
Furthermore, biochar addition to hostile sandy-soil increased the
growth of corn by increasing photosynthesis rate, plant-soil water
relations, decreased bulk density, and enhanced moisture retention
(Haider et al., 2015). Thus, biochar addition may control the poor

germination and plant growth induced by poor soil attributes (Furtado
et al., 2016).

Artiola et al. (2012) reported that pine-derived biochar applied at
2% in a pot study with a sandy-loam and alkaline soil had poorly
affected lettuce growth in 2% biochar-treated soil. Moreover, rice plant
growth, dry mass weight, and tiller number significantly increased in
various varieties grown in treated soil with rice straw biochar at the
rate of 15 kg ha−1. While the wheat growth was positively affected by
5% biochar application (Akhtar S. S. et al., 2015). Plant dry and fresh
weights of pepper and tomato except romaine were increased by
application of poultry manure-based biochar-to loam soil at the rate of
400 kg ha−1 (Vaccari et al., 2015). Burke et al. (2012) reported that the
growth of cotton was promoted by hardwood-derived biochar when
applied at the rate of 5–10 t ha−1. The growth and yield of
Chenopodium quinoa and lettuce were enhanced by 300% in a
hostile loam-sandy soil treated with 2% biochar (Trupiano et al.,
2017).

Luigi et al. (2022) showed that biochar seems to promote the
development of the tomato seedlings, especially at concentrations
ranging from 1% to 20% (w/w with peat) without showing any
antimicrobial effects on the beneficial soil bacteria at the tomato
rhizosphere level and even improving their growth, because the
application of biochar enhanced the soil pH as well as the
retention of both the soil water and nutrients (Yang et al., 2022).
Biochar ameliorated substrate characteristics (available N increase of
17% and total C increase 13%), resulting in a promotion effect on plant
root, shoot, and leaf morphology, the biochar-treated plants had a
greater number of leaves (38 and 68 at the vegetative and fruit stages,
respectively) than the untreated plants (32 and 49, respectively). The
biochar also increased leaf area with a rise of 26% and 36% compared
with the values measured in the untreated plants. Moreover, the
amendment increased twofold root length, root surface area, and
root, stem, and leaf biomasses in comparison with untreated plants
(Simiele et al., 2022), could have a promoting effect on plant growth as
an indirect consequence of its positive effect on growth medium
parameters such as water holding capacity and pH enhancement,
increased nutrient availability (Malik et al., 2022). Xi et al. (2020)
reported that the 2% (w/w) rice biochar application increased soil
available N and K, resulting in taller lettuce plants, with longer roots,
stronger leaves and stems, as well as greater leaf area. The growth
improvement may be related to the impact of biochar on the
physicochemical characteristics of the soils. Similarly, Huang et al.
(2019) proposed that rice straw biochar contributed to the increase of
total soil N content, making it more available to Phragmites communis
and promoting its growth. But rice biochar can also stimulate C and N
cycling by changing the microbial community. For example, increased
rape shoot biomass (from 2.31 to 4.23 g) after rice biochar application
was the result of an improvement of soil chemical conditions (soil
pH and cation exchange capacity) and nutrient availability (total C
and N), together with changes in the associated microbiota (Gomez
et al., 2022).

Biochar-extracted liquor [1%–5% (w/w) in water] also promoted
plant height and root growth in rice seedlings. The mechanism of
action proposed was based on the overexpression of the ABP1 gene
and the accumulation of its protein product. Accordingly, molecular
modeling showed a molecule on the biochar surface that was able to
interact with the ABP1 protein (Gelova et al., 2021). Liu Z. et al. (2021)
found that application of 1% rice straw biochar, enhanced the N use
efficiency of rice plants and resulted in increased shoot and root
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biomass (26%–29%), which were attributed to the enhancement of soil
microbial biomass after biochar treatment. The application of wheat
straw biochar (5–40 t ha−1) promoted the growth of Lens culinaris L.
by increasing the organic C content and improving other
physicochemical properties of the soil (Khorram et al., 2018).
Taken together, biochar application positively augmented the
growth and development of plants by increasing the availability of
nutrients, water, SOC and improving the soil biological activities.

4.3 Impacts on plant physiological aspects

Various physiological aspects do or do not respond to biochar
addition (Table 6) due to factors such as biochar and soil type (Asai
et al., 2009; Singh et al., 2020). For example, soil treatment with
biochar decreased the content of leaf chlorophyll in rice plants grown
in poor-quality soil (Asai et al., 2009). Younis et al. (2015) conducted a
pot experiment. They observed that transpiration (42%) and
photosynthetic rates (45%), protein content (20%), anthocyanin
(60%), lycopene (30%), carotenoids (29%), chlorophyll (40%), and
stomatal CO2 level (22%) were improved. The concentration of amino
acids and sugars were decreased with the increasing application rate of
cotton biochar from 3%–5%. Increased P uptake, availability, and corn
growth after biochar application were also observed (Mau and Utami,
2014). Compared with the control, an increase in chlorophyll contents,
rate of photosynthesis, and stomatal conductance of the jute plant
were found after biochar was mixed into the soil at the rate of 3 kg m−2

(Seehausen et al., 2017).
Haider et al. (2015) described that adding biochar in hostile sandy

soils increased plant growth via increasing photosynthesis rate and
plant-soil water relation under drought and well-watered conditions.
In corn and wheat grown on loamy soil, biochar positively influenced
physiological parameters. Where biochar application at the rate of 5%
positively impacted xylem Na+ and K+, stomatal conductance, and
photosynthesis rate more than the control. However, biochar
application did not affect the photochemical ability of the
photosystem-II (Akhtar S. S. et al., 2015; Seehausen et al., 2017).
Various physiological parameters such as leaf nutrient level, leaf gas
exchange, water status, and nutrient recovery of apple plants were
positively affected via biochar addition (Eyles et al., 2015). Stomatal
conductance, photosynthetic ability, vapor pressure and transpiration
rate, and N and P leaf concentration significantly increased compared
to control under biochar treatment (Eyles et al., 2015; Hafeez et al.,
2017).

A significant rise in P, Mg, K, and N contents in tomato plants was
found after biochar addition at the rate of 14 t ha−1 (Vaccari et al.,
2015). Moreover, water use efficacy, transpiration and assimilation
rate, and leaf water potential were positively influenced in lettuce
grown in biochar treated soil (Trupiano et al., 2017). Akhtar S. S. et al.
(2015) observed that biochar increased soil sorbing Na+ content and
enhanced xylem K+ content, and decreasing N uptake, thereby
elevating the potato yield (Akhtar S. S. et al., 2015). The biochar
application significantly enhanced biomass and photosynthetic
pigments development in plants. The treatments also increased
membrane stability index by 45.12% and enhanced water using
efficiency by 218.22%, respectively. The increase in antioxidant
activities was 76.03%, 29.02%, and 123.27% in superoxide
dismutase, peroxidase, and catalase, respectively (Tanveer et al.,
2022). It was due to the application of biochar decreases the Pb

and As toxicity and enhanced the production of the photosynthetic
pigment in Salix viminalis L. They enhanced the production of
chlorophyll, biomass and, gas exchange attributes in plants
(Visconti et al., 2020) and antioxidants was increased by biochar
because of the biochar reduces oxidative stress by the synthesis of
ascorbate peroxidase, glutathione reductase, superoxide dismutase,
and catalase (Kaya et al., 2020). EL Naggar et al. (2021) used of rice
straw biochar (15 t ha−1) and found the enhancement in
photosynthetic pigments.

These results were associated with the maintenance of the integrity
of cell membranes and the reduction of the oxidative damage of leaf
tissues by enhancing catalase (CAT), peroxidase (POX), superoxide
dismutase (SOD), and glutathione reductase (GR) activities (Gomez
et al., 2022). Biochar significantly increased net photosynthetic rate,
transpiration rate, stomatal conductance, and water use efficiency
during the plant growth period, relative to control and shown that
biochar has great potential in improving chlorophyll fluorescence
(Wang S. J. et al., 2021). That’s probably because biochar has the effect
of increasing the chlorophyll content of leaves (Feng et al., 2021),
which can ensure the synthesis of various enzymes and electron
transporters in the process of carbon assimilation, thereby
improving the function of leaf photosynthesis (Hou et al., 2021).

4.4 Effects on crop yield/productivity

Biochar application effects on crop productivity are variable due to
feedstock composition, pyrolysis conditions, soil properties, and crop
and experimental conditions. Various studies show that biochar
addition has beneficial impacts on the productivity of different
crops (Table 7). For instance, the yield of corn was enhanced by
40% after the addition of salwood-derived biochar (Yamato et al.,
2006), 114% by corncob and wood biochar (Cornelissen et al., 2013),
and 98% by the treatment of biochar-derived from manure (Uzoma
et al., 2011). Compared to controls, the lantana and pine needles-
derived biochars enhanced the grain yield of Triticum aestivum by
6%–24%. This is attributed to more efficient enzymatic activities and P
and N uptake via grains (Bhattacharjya et al., 2015). Biochar addition
at the rate of 40 t ha−1 in sandy loam soil increased rapeseed yield by
36% and potato yield by 53% (Liu S. et al., 2020).

Biochar application also enhances the crop productivity grown in
alkaline soil, depending on the pH of applied biochar (Zhang H. et al.,
2015). For instance, biochar application to alkaline soil (8.38 pH) at
the rate of 20 t ha−1 and 40 t ha−1 enhanced the yield of maize by 18%
(Vaccari et al., 2015). Major et al. (2010) presented that the maize yield
was significantly increased after wood-derived biochar application (at
the rate of 20 t ha−1) to alkaline soil (9.2 pH). The positive impacts of
biochar application on alkaline soil depend on the type of biochar.
Biochars produced at slow pyrolysis have low pH due to a large
amount of aliphatic and volatile compounds (Spokas and Reicosky,
2009). Also, biochar addition has a negative or no impact on crop
productivity in alkaline soils. For example, Hansen et al. (2016)
conducted a pot study for biochar application at the rate of 1% in
sandy loam soil (pH 9.8). Biochar addition exhibited no impact on the
growth and yield of the barley crop. In a field experiment, adding wood
biochar prepared at fast pyrolysis showed no effects on the corn yield
in alkaline nature soil under water stress conditions (Foster et al.,
2016). Marks et al. (2014) described that the poplar and pine wood-
derived biochar by fast pyrolysis and gasification significantly
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inhibited the yield of ryegrass and lettuce at the 19 t ha−1 addition rate
in calcareous soil (pH 8.9). Generally, biochar effects on crop yield are
more prominent in acidic soils, well-weathered and low fertile soils
dominated by sesquioxides and kaolinite (Sohi et al., 2010; Xu et al.,
2013).

In acidic soils, the positive effects of biochar addition on crop
productivity are attributed to increasing soil CEC because of biochar’s
large surface area and porous structure. It amends the physical
attributes of soil by increasing the soil WHC and decreasing the
soil bulk density. Additionally, it enhances nutrient use efficiency and
supply of essential nutrients, controls nutrient loss, accelerates
microbial activity and their functions, stabilizes phototoxic
elements in soil, and reduces the impact of biochar, such as
increasing pH (Singh H. et al., 2022). Biochar addition increased
the nodulation, biological nitrogen fixation, and yield of various
legume species, including soybean, alfalfa, and red clover (Lai et al.,
2022). Mete et al. (2015) reported an increase in biological N fixation
of bean with the biochar application at the rate of 78 and 100 t ha−1

Mia et al. (2014) observed that biochar addition increased the total
biomass, nodule number, and biological N fixation. Possible processes
driving the impacts of biochar addition on biological N fixation in
legumes such as 1) higher pH of soil improve the Mo availability, an
essential nutrient needed in biological N fixation mechanism, 2)
Higher concentration of available N immobilization which is
associated to biological N fixation enhancement, 3) Strong impact
of biochar on nodule production via efficient use of Nod and
flavonoids feature, 4) Biochar addition accelerates the
concentration of available P to phosphorus-deficient soils (Chen K.
et al., 2022; Chen X. et al., 2022).

Various studies have reported that biochar addition had negative
or no effects on the productivity of crops. For example, biochar
application at the rate of 15 g kg−1 to silty and sandy soils did not
enhance the corn yield (Borchard et al., 2014). Nelissen et al. (2015)
found no effect of biochar application on the barley crop yield in sandy
soil. Lai et al. (2013) observed that the Walnut hull-derived biochar
produced at fast pyrolysis did not affect the yield of lettuce, Swiss chard
rice, and bell pepper, despite the available K and pH of the soil being
considerably higher. Kloss et al. (2014) conducted a greenhouse
experiment and observed a decrease in mustard and barely yield
after adding the vineyard pruning, wheat straw, and woodchips-
derived biochars in chernozem, cambisol, and planosol soils but
the yield of red clover remained unaffected. Furthermore, maize-
derived biochar application at various rates to fertile soils did not
impact the corn yield under field and pot experiments (Guerena et al.,
2013).

Simiele et al. (2022) reported that the biochar-treated plants
showed a higher number of flowers and fruits, although the mean
fruit biomass and morphology remained unchanged. Additionally,
higher values of Trans-and cis-lycopene, total soluble solids, and
titratable acidity were found in the biochar-treated plants when
compared with the untreated ones (Simiele et al., 2022). The
promotion of fruit quantity and quality could be attributable to the
high total P content in the biochar-treated substrate and the high total
N concentration in roots of the biochar-treated plants observed at high
level. Indeed, according to other reports, there might be a relationship
between the phosphorous and nitrogen contents in both growing
substrates and plant tissues and the promotion of fruit production by
improving the vegetative and reproductive properties of tomato plants
(Hameeda et al., 2019), also attributed to the increased values of

lycopene, titratable acidity, and total soluble solids when biochar was
used as a soil amendment (Guo et al., 2021). The continuous
application of 20 t ha−1 of rice biochar to a rice field resulted in
plant growth promotion and an increase of 14%–26% in soil N
uptake, 7%–11% in internal N use efficiency, and a 6% in grain
yield (Gomez et al., 2022). Bai et al. (2019) showed an enhanced
yield (up to 35%) in different rice-wheat rotated soils, probably due to
the release of plant macronutrients and micronutrients contained in
the rice biochar. Nan et al. (2020) reported a clear improvement in soil
bacterial cooperative relationships after treatment with rice biochar in
a 4-year field trial. The complexity of the rhizosphere bacterial
community was enhanced, most probably due to an increase in
total soil C content, alongside with an increased total N content
and soil available K and magnesium (Mg), which increased rice yield
up to 14.5%. Yin D. et al. (2021) observed an increased rice yield (38%–
41%) after the application of N-enriched rice straw and waste wood
biochar, due to increased levels of soil C and N contents, as well as iron
(Fe) availability. In addition, the application of biochar from wheat
straw (20 t ha−1) in rice fields increased yield by 17%, as a consequence
of a higher N and P supply, together with an improvement of more
than 10% in the N use efficiency (Liu et al., 2021). Overall,
improvement in soil physical, chemical and biological properties
due to the biochar application caused an increase in crop yield or
productivity. However, further studies should focus on optimization of
biochar preparation conditions based on soil type, crop species and
experimental settings. This could facilitate accuracy of biochar in
terms of biochar type, preparation conditions and methods,
application time, application rate, and recovery processes and it
may help in promoting the application of biochar across diverse
environmental conditions at large scale.

4.5 Effect of biochar addition on heavy metals
uptake by plants

In plants, absorption of metals occur through the root cortical cells
via competitive absorption of essential elements and adopted by
symplastic and apoplastic pathways (Tangahu et al., 2011; Haider
et al., 2021). Generally, mass flow is responsible for the transport of
contaminants to the surface of the roots (Tran and Popova, 2013).
These metals may be absorbed via apical portion of the root or the
entire surface depending on the nature of the metal. Furthermore,
metal uptake also relies on root development and capacity (Begum
et al., 2019; Haider et al., 2021). Many investigations have revealed that
biochar application is greatly helpful in reducing the absorption of soil
contaminants (trace metals) in plants (Palansooriya et al., 2020; Joseph
et al., 2021; Murtaza et al., 2022b; Haider et al., 2022). Chen et al.
(2018) observed the incorporation of biochar into soils, resulting in an
average reduction in plant tissue concentrations of Zn, Cu, Pb, and Cd
by 17%, 25%, 39%, and 38%, respectively. Various studies indicated a
substantial reduction in heavy metals bioavailability after using
biochar at higher rates, such as 10 Mg ha−1 (Wang L. et al., 2020).
Biochar surface with oxygenated-functional groups can stimulate the
immobilization of heavy metals through different mechanisms
(physisorption, electron shuttling, reduction, anion attraction,
cation attraction, precipitation, and ion exchange) (Xu et al., 2019).
Liming effects of biochar increase the pH of acidic soil, enhancing
negatively charged exchange sites on the clay particles and raising
cationic metals (Joseph et al., 2021).
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Lei et al. (2019) presented that the biochars derived from manure
contain higher Ca content than plant-based biochars and, therefore,
can immobilize the Cu2+ and Cd2+ via ion exchange. Stable residues
generated in the biochars with higher P can immobilize the lead (Pb)
by the β-Pb9(PO4)6 formation. In contrast, higher calcite and alkalinity
in biochar promote the insoluble Pb3(CO3)2(OH) 2 formation (Li
et al., 2016). Biochar surface particles containing C-coated minerals
are mainly efficient in reducing heavy metals’ bioavailability (Kumar
et al., 2020). Willow-derived biochar at high temperatures facilitate
adsorption of heavy metals from sewage sludge via physisorption and
chemisorption mechanisms (Bogusz et al., 2019). Khan et al. (2013)
reported that various feedstocks that carry high heavy metal contents
could decrease the bioavailability of the heavy metals in some soils. For
instance, biochar derived from sewage sludge reduced the
bioaccumulation of Pb, Ni, Cu, Co, Cr, and As but enhanced Zn
and Cd in acidic soil. Biochar can improve the anionic metalloid
mobility by reducing the positively charged sites, which reduces the
arsenic binding sites with increased soil pH (Vithanage et al., 2017).

Nkoh et al. (2022) reported that the effect of biochar application to
polluted soils is the reduction of pollutant uptake by plants, with some
exceptions for Fe and Mn. The reductions were estimated at 22.8%
(Mn), 33.0% (Ni), 18.3% (Zn), 3.03% (Pb), 41.5% (As), 56.0% (Cr),
25.8% (Cu), and 26.2% (Cd). The underlying mechanisms for this
reduction in the bioavailability of heavy metals in soils are diverse with
charged metals being fixed via ion exchange, physical entrapment on
biochar’s surfaces and changes in soil chemistry (Li et al., 2022).
Amending heavy metal polluted soils with biochar reduced the overall
daily intake of heavy metals (12.5%), hazard quotient (30.0%), and
cancer risk (30.6%). However, these effects can be quite diverse
depending on biochar properties, soil properties and the chemistry
of concerned heavy metals (Nkoh et al., 2022). For maize plants grown
on Pb-polluted soil, biochar treatment reduced the bioavailability of
Pb (II) by 71% and the exchangeable Pb(II) by 99%. Compared to the
un-amended soil, biochar treatment significantly decreased the
associated Pb (II) toxicity to the maize plant (Zhu et al., 2020).
Lebrun et al. (2020) examined the growth of Salix viminalis in
arsenic and Pb (II)-contaminated soils amended with biochar, iron
grit, and compost. They found that biochar-treated soil provided a
favourable growing environment for the plant by considerably
reducing the toxicity and bioavailability of the contaminants. Also,
the phytotoxicity of Cd (II) to rice plants was significantly decreased
when biochar was added to polluted soil (Yue et al., 2019). Natasha
et al. (2022) observed that biochar application to soils has the potential
to decrease the uptake of Zn, Pb, Cu, Cd, Ni and As, by 22%, 28%,38%,
40%, 44% and 48%, respectively in plants. In this study, with more data
points, they estimated a 26.2% (Cd), 25.8% (Cu), 56% (Cr), 41.5%
(As), 3.03% (Pb), 18.3% (Zn), 33.0% (Ni), and 22.8% (Mn) reduction
rate of heavy metals uptake by plants when grown on biochar
amended soils.

Biochars containing large surface area, sufficient pore volume and
abundant functional groups play crucial role in heavy metal sorption
(Ahmad et al., 2018). However, electrostatic interaction and sorption
precipitation between heavy metals and biochars are the main
mechanisms of heavy metal sorption governed by biochar (Lian
and Xing, 2017). Additionally, surface coprecipitation, metal ligand
complexation and ion exchange also contribute to the metal sorption
on biochars (Ding et al., 2016a). Furthermore, the sorption affinity and
capacity of heavy metals largely depend upon surface functional
groups rather than pore volume and surface area (Yu et al., 2019).

Oxidation of bichar induces carboxlic functional groups on biochar
surface which elevated the adsorption capacity of Al3+, as oxygen
enriched functional groups acted as coordinated sites for the Al3+. Cd
adsorption on biochar was mainly regulated by the ion exchange (Lian
and Xing, 2017; Haider et al., 2022). The sorption of Pb3+ on biochar
surface was attributed to: 1) interaction of heavy metal with surface
functional groups; 2) exchanges of heavy metal with cations (Ca2+,
Mg2+) of biochar (Yu et al., 2019). Generally, biochars prepared at
middle and low temperatures exhibit the highest adsorption capacity
for metal cations (Xiao et al., 2018).

Biochar application appeared as a promising approach for
mitigation of heavy metal contamination in plants, which may lead
to a higher agricultural productivity and protecting plant community.
However, biochar remediation efficiency is largely dependent upon the
biochar type, plant species, biogeochemical properties of soil, and
specific trace metal. Therefore, future strategies need a comprehensive
analysis on determining the optimal methods of biochar production,
type of biochar, plant species, popularization, and improving emphasis
on suitability, adsorption potential, and sustainability of biochar as an
optimum remediation tool against heavy metals while safeguarding
the food quality.

5 Role of biochar in resistance to biotic
and abiotic stresses in plants

Recently, the beneficial effects of biochar (Figure 3) in reducing
plant diseases, including mildew in crops, wheat rust, and other
pathosystems and factors, have been examined by various authors
(Frenkel et al., 2017; Tian et al., 2021; Wu et al., 2022). More recently,
13 photosystems have analyzed the biochar impacts on plant diseases,
and Bonanomi et al. (2015) summarized and reviewed that data. They
presented that 85% of these investigations showed positive effects of
biochar addition in reducing the severity of plant diseases, around 3%
exhibited that addition induced the disease, and about 12% had a
neutral impact. During this study, they did not consider that plant
resistance/susceptibility to diseases depended on the applied dose of
biochar. Frenkel et al. (2017) reviewed the 15 pathogens (such as
nematodes, oomycetes, and fungi) data and compared the impacts of
different treatments of biochar with control on disease severity and
reduction. Biochar application at a high rate did not affect the plant
diseases in 60% of the pathogens and 70% of photosystems than
control (Jaiswal et al., 2014). In tomato, the use of wheat straw biochar
reduced the disease incidence of bacterial wilt caused by Ralstonia
solanacearum by up to 75%. This was due to an increase in the
diversity and activity of rhizosphere microorganisms, together with
alterations of the rhizosphere organic acid and amino acid
composition. In addition, this increased microbial rhizosphere
activity led to an increased supply of N and P to the plants,
resulting in an increased plant biomass and length (Tian et al.,
2021). Application of rice hull or rice husk biochar has reported
interesting results to enhance the biomass of tomato plants and reduce
Meloidogyne incognita infection by triggering defense-related genes
such as PR-1b and JERF3 (Arshad et al., 2021). Rice biochar has also
been helpful in alleviating the effects of the replanting disease (mainly
caused by the accumulation of soil-borne pathogens (Wu et al., 2022).
In this respect, an application of 80 g k−1 of rice husk biochar resulted
in higher root length, surface area, and volume of apple tree seedlings,
reducing the negative effect of the apple replant disease, and actively
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suppressing Fusarium solani infection (Wang Y. et al., 2019; Wang Y.
Y. et al., 2019). In a similar way, the combination of rice hull biochar
and plant growth-promoting rhizobacteria led to increased leaf area
and biomass of Radix pseudostellariae, stimulated soil beneficial
organisms, and suppressed pathogens through the increased
production of soil metabolites, thus alleviating the effects of the
replanting disease (Wu et al., 2022). Under biotic stress, the use of
maize biochar can also improve crop responses. In pepper, the
application of biochar from maize stalk reduced the incidence of
Phytophthora blight (caused by Phytophthora capsica) by up to 50%,
due to an increase in the abundance and diversity of biocontrol fungi
within the genus Aspergillus, Chaetomium and Trichoderma. In
addition, this biochar also improved soil qualities related to plant
growth and development by increasing soil organic matter and N, P,
and K content (Wang G. et al., 2020). Moreover, many studies on
biochar exhibited that a relatively low application rate of biochar
controlled the disease’s severity, but higher application rates did not
show positive impacts on eradicating plant diseases (Jaiswal et al.,
2015). In recent decades, many studies have reported that biochar
addition increases crop yield under normal circumstances and
enhances productivity under adverse conditions, including heavy
metals, drought, and salinity (Joseph et al., 2021). For example,
biochar slightly elevated the permanent wilting point, retaining a
greater amount of water at field capacity than water contained at the
permanent wilting point (i.e., increased plant-available water) (Hafeez
et al., 2017). Thus, enhancement in WHC of the biochar-treated soils
can be applied as an agent for increasing plant-available water (Hafeez
et al., 2017). In field and pot experiments conducted on sandy clay and
sandy loam soils, biochars applied at the rates of 20 t ha−1 enhanced
the wheat and soybean germination, seedling growth, and grain yield
by reducing the water stress (Hafeez et al., 2017). Haider et al. (2015)
presented that adding biochar in hostile sandy soils enhanced plant
growth via increasing plant-soil water relations under drought and
well-watered conditions. Tammeorg et al. (2014) found that biochar
application improved the grain yield under water stress conditions.
Adding biochars at high rates can control the adverse impacts of salt
stress on the growth and development of plants (Akhtar S. S. et al.,
2015). For example, applying 50 t ha−1 of biochar can mitigate the
mortality rate induced by salt in Jute and extend the survival rate of P.
vulgaris. Moreover, adding biochar at the rate of 5% increased crop
yield in salt-induced soils, possibly by transforming the salt stress via
Na+ adsorption and enhancing K+ content in the xylem, thereby
improving potato yield (Akhtar S. S. et al., 2015). The dual
application of maize stalk and rice husk biochar significantly
enhanced the growth, physiology, productivity, grain quality, and
osmotic stress tolerance of rice plants, as well as nutrient uptake
and soil properties, probably due to the activation of the enzymatic
antioxidant machinery, for example improved activity of antioxidant
enzymes including POX, APX, and CAT (Hafeez et al., 2021). Under
abiotic stress situations, wheat straw biochar promotes tolerance of
different crops. In this respect, an increased nutrient supply to plants
can improve their tolerance against abiotic stresses, e.g., in tomato
plants, wheat biochar amendment increased vegetative growth, yield,
and quality parameters under saline irrigation, due to the adsorption
of Na + ions and the release of Mg+2, Ca+2, and K+ (Zhu et al., 2020).
Similarly, the application of wheat straw biochar in soybean plants
subjected to salinity and drought increased the N content in the soil,
favouring plant growth (Zhang H. et al., 2020). Another mechanism
through which wheat straw biochar can increase plant tolerance to

drought is the improvement of soil hydrophysical properties (soil
water content, bulk density, and water holding capacity) reported in
tobacco plants (Liu et al., 2021). Under abiotic stresses, such as
drought and salinity, the application of biochar from maize has
reported significant increases in plant tolerance. In quinoa plants,
maize cob biochar increased the plant antioxidant machinery;
reducing the accumulation of reactive oxygen species (ROS) and
increasing nutrient uptake under drought and salinity stress
(Nehela et al., 2021). However, in licorice plants grown with maize
biochar in growth chambers, the increase of plant tolerance under salt
stress was a consequence of an increased soil microbial enzymatic
activity and nutrient supply to the plant (Egamberdieva et al., 2021).
Biochar has also been shown to enhance salinity tolerance, alleviate
drought stress, and mitigate the toxicity induced to plants by inorganic
and organic soil pollutants. Drought stress alleviation in biochar-
amended soils occurs through enhanced water holding capacity thanks
to large surface area-to-volume ratio of biochar (Chew et al., 2022).
Similarly, decrease in osmotic stress thanks to improved soil water
content in addition to reduced Na+ uptake due to Na+’s transient
binding on sorption sites on biochar alleviate soil salinity stress for
plants in biochar-amended soils (Chew et al., 2022). Kumar et al.
(2022) reported a decrease in thermal diffusivity (.6%–21.5%) and
thermal conductivity (.3%–32.2%) in sandy loams after biochar
addition. Further, there was a decrease in bulk density (24.7%–

34.6%) and thermal diffusivity (10.4%–50.8%) of soil, and an
improvement in moisture content after biochar addition. These
changes decrease soil thermal conductivity (24.7%–59.8%), which
ultimately moderates soil temperatures and influences plant growth
and biochemical processes in soil. Xiong et al. (2020) re-affirmed that
thermal properties are directly correlated with soil moisture and
inversely related with soil bulk density and the addition of biochar
reduces soil’s thermal properties. Further, soil depth, moisture
content, and biochar application rates affect soil temperature and
volumetric heat capacity.

Biochar modifies the abiotic and microbial processes in the
rhizosphere and increases nutrient mineralization and enhances the
nutrient availability for plant uptake. Organic matter turnover
increases in the soil due to accelerated microbial activity which
improves nutrient availability. Hence, biochar enhanced the plant
resistance against diseases, reduced the availability of heavymetals and
improved the plant resilience against environmental stressors.
However, future studies should consider the preparation and
formulation of novel treatment methods to prepare modified
biochars with improved physicochemical properties enabling a
better amelioration of adverse impacts of biotic and abiotic stresses
in plants.

6 Application of biochar for soil carbon
sequestration/greenhouse gases
emission (GHGs)

Applying biochar to various types of soils not only increases the
soil fertility but also plays a key role in carbon sequestration/GHGs
reduction (Figure 4). Dissolved organic carbon or soil carbon as
presented in Table 8, represents carbon sequestration by biochar
addition, thus increasing the storage of C in the soil and reducing
GHGs emissions (Tang et al., 2022). Carbon sequestration to artificial
or natural removal of atmospheric CO2 and its storage in a stable solid
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form (Song et al., 2022). Naturally, atmospheric CO2 can be directly
absorbed through plants by photosynthesis process. Part of the
absorbed CO2 is released back into the atmosphere through
respiration, and the rest is sequestered first as plant biomass and
then as soil organic carbon during the decomposition process of the
plant biomass (Zhou et al., 2022). Further decomposition of soil
organic carbon discharges the C as CO2 into the atmosphere
within a short duration. Thus, the entire mechanism is carbon
neutral (Kalu et al., 2022). Biochar is stable and its great content of
aromatic C that is harder to decompose than plant biomass is the basis
of the C sequestration paybacks of biochar. The pyrolysis of plant
biomass breaks the natural C cycle and realizes carbon sequestration
through biochar storage in the soil (Cara et al., 2022). It is assessed that
around six GtC/yr of carbon biomass is accessible for biochar creation
worldwide if 10% of net primary production is utilized, from which
3 GtC/yr of biochar can be created (Pan et al., 2022).

Carbonizing agricultural biomass residue (mainly livestock manure
and crop straw) and storing the resulting biochar in soils through
agricultural soil management have the benefit of solid waste recycling
and show pronounced potential for sequestration of C (Nair and
Mukherjee, 2022). Rendering to a calculation technique based on a life
cycle assessment, 610Mt/yr of livestock manure and 585Mt/yr of crop
straw are created in China, and converting them into soil biochar can
sequester 172 and 264MtCO2 e/yr, respectively (Deolikar and Patil, 2022).
Yang C. et al. (2021) assessed the C sequestration potential of several crop
waste-derived biochars via life cycle assessment at the state level and
noticed that the annual C sequestration potential in China could reach
around 500 MtCO2e/yr. These findings proved the high C sequestration
capability of crop wastes-derived biochars.

Layek et al. (2022) applied biochar derived from corn residue to a
maize field under drip irrigation with mulching condition, and study
findings exhibited that the sequestration of C enhanced by 16% in the
upper 15-cm soil and CH4 emission reduced by 132% after 30 t/ha of
biochar addition. Moreover, the biochar treatment enhanced the yield of
corn by 7.4% over 2 years. This example suggests that proper application of
biochar could contribute to agricultural soil management and climate
change mitigation simultaneously. An assessment of the biochar life cycle
manifests that reduction in GHGs emissions is mainly associated with
changes in feedstock production, biochar production, and storage and
stabilization of C in biochar, reduction in emissions of N2O from the
agriculture sector (Osman et al., 2022). Generally, biochar treatment
decreased the total GHGs (Castaldi et al., 2011). Nevertheless, biochar
application impact on various GHGs such as N2O, CH4, and CO2 varies
significantly. Biochar treatments usually decrease CO2 production by
enhancing carbon stabilization (Castaldi et al., 2011). Non-etheless, no
significant impact was observed in the case of soil CO2 respiration during
the field study (Hamamoto et al., 2022). The differences created from
techniques applied for CO2 calculation, CO2 that originated from the
biochar was subtracted from the biochar-soil combination to ascertain the
biochar effect on the soil respiration (Zhao et al., 2022). Biochar’s impact
on methane emission varied significantly. Feng et al. (2012) reported that
the paddy methane emissions substantially reduced after biochar
treatments, possibly not due to the suppression of methanogenic
growth. It might have resulted from the variable proportion of
methanogenic to methanotrophic richness. Methane fluxes did not
differ considerably in response to different treatments (Castaldi et al.,
2011).

In some cases, total methane emission was found to be
increased with biochar addition. It could have happened due to

the inhibitory effect of biochar chemicals on the methanotroph’s
activity (Zhang A. et al., 2010). In contrast, a net reduction up to
50% in CH4 emission was observed in saturated peat soils after
biochar application, which was attributed to the increased activity
of methanotrophs in the oxic rhizosphere (Cong et al., 2018;
Nguyen et al., 2020). Under well-drained conditions, the CH4

consumption was decreased by ash-rich biochars, probably due to
an increased electrical conductivity in the soil solution thus
hindring the methanotroph activity (Pascual et al., 2020).
Moreover, sorbed hydrocarbon elements of biochar could
decompose and emerge as a competitive source of substrates,
stimulating CH4 emissions by reducing CH4 oxidation activity
(Jandl et al., 2013). Biochar applications have been reported to
decrease N2O emissions in laboratory experiments (Case et al.,
2012; Lehmann et al., 2021).

In biochar amended field, fluxes of soil N2O ranged from 26%–
79% as compared to nitrous oxide fluxes observed in control (Castaldi
et al., 2011). The fixed N increased from 50% without biochar addition
to 70% with biochar addition at the rate of 90 g kg−1, and N2O fluxes
reduced (Rondon et al., 2007). On the contrary, high N-enriched
biochars have promoted the emission of N2O (Zhang H. et al., 2010).
These results exhibited the efficiency of biochar addition to influence
the proportions of N-cycling in the soil via improving ammonia
adsorption and nitrification rates and enhancing ammonia storage
through increasing the soil CEC (Dawar et al., 2021), hence changing
the efficacy of N input into soil system (Osman et al., 2022). Biochar
manufactured from woody feedstocks and agricultural waste
substantially impacts the NH3, N2O, and CH4 emission mitigation.
These emissions can be decreased significantly by applying biochar at
the rate of 10% w/w. Biochar pyrolyzed at higher temperatures
strongly impacts the mitigation of N2O and CH4 emissions.
However, biochar produced at low temperatures is more efficient
in decreasing NH3 emissions (Yin X. et al., 2021).

Biochar application provided combined benefits of carbon
sequestration and GHG emission reduction which are the key to
achieving carbon neutrality goals. However, efficacy of biochars in
enhancing C sequestration and reducing GHGs could be improved by
preparing specific biochars based on the scientific results demonstrated by
different studies. Therefore, attention should be paid to the development of
special biochars to getmaximumbenefit from this commodity tomake our
environment more sustainable.

7 Biochar application for agricultural
sustainability

Biochar is a potentially strong candidate for improving
agricultural sustainability by increasing soil health, crop yields and
decreasing the use of chemical fertilizers. Various applications of
biochar utilization and future research directions are described below.

1. Biochar may comprise toxic elements, including heavy metals,
dioxin, and PAHs. It cannot be eliminated once it is added to
soils. The toxicity of biochar must be measured before biochar
application as a soil conditioner to decrease long-term hazards to
crops and soil.

2. Biochar incorporation into alkaline soils is not as productive as in
addition to acidic nature soils regarding crop yield. Usually, slow
pyrolyzed biochars have low pH values and, therefore can be
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efficient for amending high pH soil (alkaline soil). Biochars can be
added in combination with humic acid and acidic chemical fertilizers.
Future investigation should focus on functional biochar addition to
alkaline calcareous and sandy soils of arid areas; feedstock selection,
preparation temperatures are vital when designing the functional
biochars.

3. Biochar’s recommended addition rates to enhance the advantages
under specific circumstances are not well-defined yet. Generally,
utilizing large amounts of biochar is not conceivable for small-scale
farmers. Therefore cost-benefit investigation regarding the use of
biochar must be implemented across various cropping systems.
Applying biochar in pots while growing nursery plants can be a
cost-efficient method for small-scale farmers to follow biochar
technology.

4. The impacts of biochar addition on beneficial microbes under field
experiments remain largely unclear. However, the co-application of
bacteria and biochar can stimulate plant growth and development
and increase nutrient use efficiency.

5. The laboratory scale research should be synchronised with field
studies. Difference in weather, soil qualities and environmental
conditions may render discrepancy between laboratory and
field studies. Therefore, long-term and broad scale field
investigations are needed to explore the impact of biochar
on different soil properties.

6. The long term studies are needed on processes that affect the capture
and release of heavy metals in the long term to plan an optimum
scheduling of biochar re-application.

7. Studying the effects of biochar properties on microbial nutrient
cycling and root membrane potential will facilitate the
development of optimal formulations to increase nutrient
uptake efficiency.

8. Biochar based carbon trading market could be establish to
recognize the GHG reduction and carbon sequestration
benefits. The farmers willing to use biochar should be
facilitated with incentives.

9. In view of high costs of biochar, more research on biochar
modifications (using pre-or post-treatments) are crucial to
maximize the advantage of “low dose with high efficiency”.

8 Conclusion

Biochars are broadly diverse and can have several impacts on soil
attributes, crops growth and production. The feedstock and the
pyrolysis conditions largely influence the properties of biochar and
its effects on agricultural ecosystems. Biochar formulations applied at
an optimal rate can significantly increase yields under site-specific soil
constraints, nutrient, and water-limited conditions. Low temperatures
pyrolyzed biochars may improve the availability of nutrients and crop
productivity in both types of soils (alkaline and acidic). In contrast,
biochars derived at high temperatures may increase soil carbon

sequestration for the long-term. The average yield increases of
10%–40% were observed with biochar addition. Biochar reduces
the availability of heavy metals, enhances plant resistance potential
to various diseases, and increases resilience to different environmental
stressors (biotic, abiotic drought, and salt). Biochar accelerates
microbial activity, which can enhance the mineralization of
nutrients and promote the nutrient uptake mechanism by plants.
Biochar selection, its application rates, and compatibility with
cropping systems should be considered before biochar addition.
Sequestering large amounts of carbon biochar reduces GHGs
emissions. A clear understanding of variable effects of biochar on
soil and plant systems could facilitate biochar preparation for specific
applications through proper feedstock selection by adjusting process
conditions and pre- or post-production treatment of biochar that
govern the pH, nutrient availability, and adsorption capacity.
Guidelines regarding the selection and production of biochar to
meet specific soil and environmental constraints should be developed.
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