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The household is an important locus of decision-making regarding food, energy, and
water (FEW) consumption. Changes in household FEW consumption behaviors can
lead to significant reductions in environmental impacts, but it can be difficult for
consumers to compare the relative impacts of their consumption quantitatively, or to
recognize the indirect impacts of their household consumption patterns. We
describe two novel tools designed to address this problem: A hybrid life cycle
assessment (LCA) framework to translate household consumption of food,
energy, and water into key environmental impacts including greenhouse gas
emissions, energy use, and water use; and a novel software application called
HomeTracker that implements the framework by collecting household FEW data
and providing environmental impact feedback to households. We explore the
question: How can a life cycle assessment-based software application facilitate
collection and translation of household consumption data to meaningful
environmental impact metrics? A case study in Lake County, Illinois is presented
to illustrate use of the HomeTracker application. Output data describing
environmental impacts attributable to household FEW consumption in the study
area are shown in order to illustrate key features and trends observed in the case
study population. The framework and its associated output data can be used to
support experimental research at the household scale, allowing for examination of
what users purchase and consume over an extended period of time as well as
increased understanding of household behavior trends and environmental impacts,
and as future work.
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1 Introduction

The interdependencies of food, energy, and water (FEW) resources, known collectively as
the FEWnexus, require careful planning andmanagement of each resource to avoid unintended
consequences in the other sectors. Pressure on these resources is rising due to global population
growth, increases in per capita consumption, changes in dietary preferences to include more
animal products, and a changing climate (Flammini et al., 2014; Scanlon et al., 2017). Globally,
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household consumption accounts for more than 70% of total
greenhouse gas (GHG) emissions (Hertwich and Peters 2009;
Wilson et al., 2013) and approximately 80% of total freshwater use
(Ivanova et al., 2016). In the United States, over 80% of GHG
emissions have been attributed to consumption at the household
level (Jones and Kammen 2011). Thus, there is an opportunity to
reduce water use and greenhouse gas impacts globally and
domestically through changes in household consumption behavior,
and an understanding of current behavior trends, motivations, and
barriers to change can help identify effective interventions.

Everyday household consumption of food, energy, and water has
both direct and indirect resource use and environmental impacts that
need to be accounted for. For example, the average water footprint of
an individual person’s diet varies between approximately 158,500 and
475,000 gallons (600 and 1,800 m3) per year, depending on what type
of food is consumed (Hoekstra and Chapagain 2008; D’Odorico et al.,
2018). This water footprint includes both “green water” (rainwater
used by crops) and “blue water” (water withdrawals for irrigation)
(Falkenmark and Rockström 2006). The average GHG emissions from
a person’s diet is estimated at 4.7 kg CO2 eq. per day (Heller et al.,
2018). Similarly, electricity generation requires significant volumes of
freshwater use and emits greenhouse gasses into the atmosphere. Over
40% of United States energy is consumed for household and
commercial purposes (Chini et al., 2016). While the industry
average water use for electricity generation has been cited as
25 gallons per kWh, the water use intensity of electricity generation
varies by orders of magnitude depending on fuel mix, prime mover of
generation, cooling technology, and emissions controls (Sovacool and
Sovacool 2009; Grubert and Sanders 2018).

Multiple studies have investigated the environmental impacts,
including GHG emissions and water use, of dietary choices and
maintaining a healthy diet (e.g., Heller and Keoleian 2015; Tom
et al., 2016; Hallström et al., 2017). Agricultural activities have
negative impacts on the environment through emission of GHGs
(Chandio et al., 2020; Chandio et al., 2021; Alavijeh et al., 2022),
intensive use of fertilizers and pesticides (e.g., Kross et al., 2022),
withdrawal and consumption of freshwater resources (D’Odorico
et al., 2018), land use change (e.g., Hunter et al., 2017), and
degradation of biodiversity (Yang et al., 2018). The agricultural
sector accounts for approximately 70% of global water withdrawals
(Marston et al., 2018). In addition, the environmental impact of food
consumption at the household level has been quantified and related to
sociodemographic characteristics such as race, income, and education
level (Boehm et al., 2018). Other studies have related food
consumption, and in particular the obesity epidemic, with energy
use and environmental degradation (Koengkan and Fuinhas 2021;
Koengkan and Fuinhas, 2022). Kanyama et al. (2021) assessed the
GHG emission impacts of shifting expenditures on food and holidays,
along with furnishings.

Several studies have quantified the environmental impacts of
household consumption at global, national, or regional levels. For
example, Ivanova et al. (2016) used the EXIOBASE
2.2 multiregional input-output (MRIO) database (Wood et al.,
2013) to analyze global supply chains and trace the origin of
products consumed by households, quantifying the impacts of
consumption in terms of global GHG emissions and total land,
material, and water use. Steen-Olsen et al. (2016) combined use of
the EXIOBASE 2 MRIO database with a national consumer
expenditure survey to assess the GHG footprint of Norwegian

household consumption. Kok et al. (2006) compared different
methods for quantifying the energy requirements of household
consumption, including input-output analysis based on national
accounts, input-output analysis using household expenditure data,
and a hybrid analysis combining input-output modeling with
process modeling. They obtained similar results from the three
methods for a case study of households in the Netherlands but
noted that the hybrid analysis enables identifying options for more
sustainable consumption. Jones and Kammen (2011) quantified
carbon footprints of typical U.S. households in 28 cities for a range
of household sizes, as well as GHG and financial savings from a set
of potential mitigation actions across household types. Chini et al.
(2016) evaluated the relationship between water and energy in U.S.
household appliances and fixtures and identified opportunities for
reducing direct and indirect water and energy use through a cost
abatement analysis.

In addition to these large-scale studies, a number of studies have
developed tools for tracking consumption and measuring the impacts
of individual households. For example, Benders et al. (2006) describe a
web-based tool that provides participants with feedback on their
energy use and personalized options for energy conservation.
Indirect energy use was estimated using a hybrid approach
combining input-output analysis with process analysis. The tool
was tested with a sample of 300 households in the Netherlands,
resulting in a reduction of about 8.5% in direct energy use
compared to a control group, though the reduction in indirect
energy use was not statistically significant. Using the same analysis
program, Abrahamse et al. (2007) developed other web-based tools to
encourage households to reduce direct and indirect energy use. Using
a combination of tailored information, goal setting, and feedback, they
examined whether this combination of interventions would result in
changes in direct and indirect energy use, energy-related behaviors,
and knowledge. Households exposed to the combination of
interventions reduced their direct energy use by about 5%, but as
in Benders et al. (2006), changes in indirect energy use were not
significant. Jones and Kammen (2011) incorporated their carbon
footprint model in an open-access online tool that can be used to
inform behavior change at the household level. Another online tool,
called EcoRunner, was developed by Frostell et al. (2015) to calculate
the direct and indirect environmental loads of purchase decisions by
households in Sweden. Use of EcoRunner was demonstrated using
average expenditure values to analyze energy use, global warming
potential, and nitrogen oxide emissions. Related to these studies are a
number of “living lab” experiments, i.e., collaborative work with
households to change practices and behaviors, particularly focusing
on energy conservation (e.g., Korsnes et al., 2018; Sovacool et al., 2020;
Sahakian et al., 2021).

Our work builds on these previous studies to focus on the FEW
nexus at the household scale. Specifically, we have developed a web-
based software application called HomeTracker for measuring the
direct and indirect energy use, water use, and GHG emissions of
household food purchases, water use, and energy consumption. While
many of the existing studies use datasets that represent either an
average level of consumption or a snapshot of consumption behavior,
HomeTracker captures FEW consumption in participating households
over an extended period of time to allow for trends to be assessed.
HomeTracker provides timely feedback on the life-cycle impacts of
FEW consumption, potentially affecting conservation behavior and
short-term decision making.
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Design and development of the HomeTracker application,
participant FEW data collection procedures, and environmental
impact factors and norming used in the model are summarized in
the methods section. (Additional details are provided in
Supplementary Information.) Data is then presented to
demonstrate how HomeTracker is used in a multidisciplinary study.
Finally, limitations of the tool and future work are discussed.

2 Materials and methods

2.1 HomeTracker software development

The Food-Energy-Water Conscious (FEWCON) project focuses
on the environmental impacts of household food, energy, and water
consumption and potential interventions for reducing those impacts
(Watkins et al., 2019). A major component of the project is a study
conducted from February 2020 to August 2021 among 174 household
participants in Lake County, Illinois, an area selected to be
representative of United States suburban populations. The
HomeTracker application was developed to provide a common
portal for participants in the study.

Through HomeTracker, study participants enter their grocery and
restaurant receipt purchases, monthly water bills, monthly natural gas
bills, and monthly electricity bills. Environmental impacts, including
greenhouse gas emissions and water use, are calculated from this
consumption, and feedback is provided to participants in a visual
interface highlighting the environmental impact of their household
consumption. A key component of HomeTracker is a novel food,
energy, and water consumption-based life cycle assessment (LCA)
model quantifying direct and indirect environmental impacts from
households. The hybrid LCA model, based on input-output and
processed-based methods, is implemented in the software to
compute environmental impact metrics from consumption input.
In addition to collecting utility and food data via HomeTracker, the
study also included a series of surveys to capture socio-economic and
demographic information, as well as beliefs, attitudes and self-reported
behaviors related to food, energy, and water consumption.

As the central communication medium for participants in the
FEW consumption study, the HomeTracker system has a number of
key system requirements. The primary behavioral (functional)
requirements are continuous collection of consumption data and
accurate reporting of household consumption via intervention
messages. Equally important are the following non-behavioral
requirements: minimization of participant burden, maintenance of
privacy, and clarity of the consumption input interface and the
intervention messaging.

The foundation for the HomeTracker application is Grails, an
open-source Java-based framework that uses the Apache Groovy
programming language. An Apache Tomcat server hosted at
Michigan Technological University provides Java Database
Connectivity between the application and the MariaDB relational
database management system. Implementing HomeTracker as a web
application allows household participants to access the service through
any device that supports a standard web browser. Since Grails is the
application framework used in Michigan Technological University’s
User Interface Design and Implementation course, students can easily
transition from that course into aHomeTracker development role. The
W3.CSS (cascading style sheet) framework provides a responsive

interface layout that adapts to the type of device being used (e.g.,
laptop, tablet, smartphone).

Development of HomeTracker began in summer 2018; student
developers at Michigan Technological University worked iteratively
with members of the project team in designing and implementing the
app, according to the needs and expectations of the project scientists.
In spring 2019, students at Michigan Technological University and
Rutgers University provided initial user testing, followed by a pilot test
with household volunteers from the Rutgers community. User
feedback from this testing drove changes to the interface design,
along with development of the HomeTracker User Guide, in
summer 2019. A second round of user testing was conducted
among FEWCON project staff and a small group of volunteers in
Lake County, evaluating the revised interface and checking that the
HomeTracker application and the User Guide were compatible.
HomeTracker was deployed and made available to study
participants in February 2020.

2.2 Data collection

Consumption data collected by HomeTracker include electricity
use, natural gas use, water use, and food purchases. Food data
collection is the most onerous from the household perspective and
was thus limited to three two-week periods during the study period, as
opposed to continuous monthly collection of energy and water data.
HomeTracker collects consumption data through a variety of
automated and manual methods. In addition to these quantitative
data, households were asked to respond to a series of surveys and
invited to provide reflective statements on their consumption behavior
through open-ended survey questions and a journaling feature in
HomeTracker.

In designing the data acquisition processes, automation was
favored for easing the burden on household participants, but only
if the underlying technology was robust and came at minimal risk to
accuracy of the data. We initially explored the use of in-house sensor
devices (e.g., Smappee, Sense) that household owners can install on the
metering equipment in their houses. Many of these devices offer
application programming interfaces (APIs) that allow third parties to
access data collected by the devices, but they also require some non-
trivial work attaching physical sensors to metering equipment. After
some experience installing a few such devices in local houses, it became
clear that the risk of faulty installation and the cost of installing and
maintaining hundreds of individual monitors made this option
infeasible.

An alternative automated means of collecting electricity
consumption data that avoids the costs and inaccuracies of in-
house installation was identified. The study area’s local service
provider, Commonwealth Edison (ComEd), partners with a
company called UtilityAPI to provide electricity billing data, for
consumers who authorize it, to third-party applications. UtilityAPI
stores up-to-date versions of these data on its own secure servers so
that apps like HomeTracker can access them as needed. In addition,
subscribing to the UtilityAPI service provides access to a rich set of
additional historical billing data for authorizing consumers.
Household participants must authorize UtilityAPI to access their
ComEd billing data. Completing the authorization form creates
secure credentials that HomeTracker then uses to access data
through UtilityAPI.
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Unlike electricity, the utilities supplying natural gas and water vary
within the study area. The smaller-scale authorities providing these
utilities, particularly the local municipalities in charge of water supply,
do not have the resources to provide third-party data access. While
there are home-installed sensors (e.g., Sense, Pecan Street) that
provide monitoring, most of these products were not available
during the development of HomeTracker, and risk and cost
concerns over installation and maintenance made this option
infeasible. Participants instead entered their gas and water billing
data manually in HomeTracker using the standard billing statements
they receive at regular intervals.

Food data collection occurred during several specified two-week
periods in the study. During these periods, household participants
were asked to upload all purchases, both food at home (i.e., food
purchased with the intent of preparing it at home) and food away from
home (i.e., food prepared and purchased outside the home).
Participants distinguished between full service restaurants, defined
as food establishments that provide not only preparation but also
service of the food and limited service restaurants, defined as
establishments like delicatessens or cafeterias that prepare but do
not serve the food. For food at home, the itemized breakdown of the
purchases allows for greater detail and more nuanced analysis. In

entering these purchases intoHomeTracker, participants were asked to
provide details for each item purchased. If the purchase included a
receipt, the household participant uploaded images of the receipt and
provided an item-by-item description of the purchase. Later, student
workers consulted the receipt images and participant descriptions of
the line items to determine the food category and confirm price
information. For a purchase without receipt images (e.g., farmer’s
market, forgotten or lost receipt), household participants provided
descriptions and prices of the line items.

2.3 Environmental impact factors

HomeTracker uses a LCA approach to quantify direct and indirect
environmental impacts of household consumption of food, energy,
and water resources. Life cycle assessment is used to assess the
potential environmental impact of a product, process or service
using four key steps: i) Goal definition and scoping, ii) Inventory
analysis, iii) Impact assessment, and iv) Interpretation of results
(Curran 2008). The framework for this LCA-based environmental
impact model starts with input of direct household resource
consumption values. These resources include water use in gallons

FIGURE 1
Model steps to convert consumption-based direct and indirect inputs to environmental impacts: water use in gallons and greenhouse gas emissions in kg
CO2-eq.
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(gal), electricity use in kilowatt hours (kWh), natural gas use in therms
(therm), and food purchases in U.S. dollars (USD). Environmental
impact factors are applied to determine the direct and indirect
environmental impact due to the use or consumption of each
resource. The direct and indirect environmental impacts are then
summed to output total water withdrawal in gallons and total
greenhouse gas emissions in kilograms of carbon dioxide
equivalents (kg CO2 eq). Figure 1 summarizes the steps in
calculating direct and indirect environmental impacts. The
environmental impact factors used in these calculations are
summarized in Table 1. Sample calculations are shown in
Supplementary Information.

2.3.1 Water use factors
It is important to clearly define water use when quantifying it to

avoid ambiguity and inconsistency (Grubert, Rogers, and Sanders
2020). Water use in this study refers to water withdrawn from its
original source (i.e., blue water). Water use per therm of natural gas
was estimated from a study which developed life cycle water use
factors for different stages of conventional and shale gas life cycles,
combined with Energy Information Administration data on the
current proportion of each gas source currently in use in the U.S.
(Ali and Kumar 2016; U.S. EIA, 2019c). Water use per gallon of water
used at the household is a cumulative estimate that includes both
direct water use and indirect water use embedded in all of the materials
and energy required to treat and deliver water to the home, as well as
all of the unit operations involved in treating water after it leaves the
household in a standard municipal wastewater treatment system. Life
cycle inventory data for upstream water treatment and delivery, as well
as downstream wastewater treatment, comes from the Ecoinvent
database (Wernet et al., 2016). Water use factors for food
purchases are described in Section 2.3.3, and water use factors for
electricity are described in Section 2.3.4.

2.3.2 Greenhouse gas emissions factors
Greenhouse gas emissions per gallon of water used in the

household are also estimated from Ecoinvent, and are analyzed
with the Intergovernmental Panel on Climate Change 2013 GWP
100a method, which is an impact assessment method that expresses
emissions impacts of climate-active greenhouse gas emissions in kg
CO2-eq. (Wernet et al., 2016). Greenhouse gas emissions per kilowatt
hour (kWh) of electricity generated were estimated by combining U.S.

EPA eGRID data on average emissions per kWh for power plant
emissions in the RFCWest subregion, combined with the average grid
composition in the region and the upstream emissions impacts for fuel
production for each relevant fuel type from Ecoinvent (U.S. EPA
2018). Greenhouse gas emissions per therm of natural gas were
estimated by combining combustion emissions per therm of
natural gas with Ecoinvent data on upstream natural gas
processing and transmission. Greenhouse gas emissions factors for
food purchases are described in Section 2.3.4.

2.3.3 Water use intensity for electricity generation
The Pennsylvania-New Jersey-Maryland Interconnection (PJM) is

a Regional Transmission Organization (RTO) that administers the
grid for the region in which our study area lies. The water use intensity
of electricity generation for the entire fuel mix in PJMwas calculated at
a monthly resolution for 2019 to best represent the FEWCON study
area. The United States Energy Information reports monthly
thermoelectric cooling water data at the generator level for power
plants in the United States in Form EIA-923 (U.S. EIA 2019a). This
form was cross-indexed with Form EIA-860 (U.S. EIA 2019b) to
determine which plants are connected to the PJM grid. Since Form

TABLE 1 Summary of environmental impact factors for indirect resource consumption (1 Gal = 0.003785 m3).

Environmental impact Indirect contributor Factor Units Scale References

Water Use Water 3.01 Gal/Gal National Wernet et al. (2016)

Electricity See Table 2 Gal/kWh Regional U.S. EIA (2019b)

Natural Gas 0.46 Gal/Therm National Ali and Kumar (2016) and U.S. EIA (2019c)

Food See Figure 2 Gal/USD National Yang et al. (2017b)

Greenhouse Gas Emissions Water 0.0044 kg CO2 eq./Gal National Wernet et al. (2016)

Electricity 0.643 kg CO2 eq./kWh Midwest U.S. EPA (2018)

Natural Gas 8.05 kg CO2 eq./Therm Midwest Wernet et al. (2016)

Food See Figure 2 kg CO2 eq./USD National Yang et al. (2017b)

aGal, Gallon; kWh, Kilowatt-Hour; Therm, Therm; USD, US Dollar; kg CO2 eq, Kilograms of Carbon Dioxide Equivalent.

TABLE 2 Monthly water withdrawal intensities for PJM.

Month Water withdrawal intensity (Gal/MWh)

January 10,569

February 9,621

March 9,850

April 11,910

May 12,505

June 12,312

July 11,972

August 11,926

September 11,894

October 12,219

November 11,218

December 11,288
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EIA-923 only reports on thermoelectric generators, electricity
generation data from PJM was used to determine how much
electricity generation was attributed to hydroelectric, solar, and
wind generation (PJM 2019). Total water withdrawal and total
generation were aggregated by month. The total water withdrawal
(gallons) in month i, Wi, is calculated from the total electricity
generation (MWh) in month i, Gi, and the average monthly water
withdrawal intensity (gallons/MWh) for month i, (AWFi) using Eq. 1.

Wi � Gi*AWFi (1)
Monthly water withdrawal intensity values (AWFi) for PJM are

shown in Table 2.

2.3.4 USEEIO v.1.1
The United States Environmentally Extended Input-Output

Model (USEEIO v.1.1) is a United States-specific environmentally
extended input-output model that can be used to quantify
environmental impacts of production and consumption in
389 industry sectors. Environmental data allows for quantification
of impacts related to land cover, water, energy use, mineral use,
greenhouse gas emissions, air pollutants, nutrients, and toxics. This
model was selected for use in this research task as it is useful in
performing streamlined life cycle assessment. Environmental impact is
quantified per U.S. Dollar (USD) spent, allowing for simple calculation
of environmental impact based on purchase data submitted by
participants through the HomeTracker interface. The
environmental impacts, specifically water use and greenhouse gas
emissions, can be calculated for 29 detailed categories of food-related
spending. Greenhouse gas emissions are estimated using the
2013 greenhouse gas inventory as compiled by the U.S.

Environmental Protection Agency while water withdrawals were
determined for irrigation of crops, watering of livestock, cooling
water in thermoelectric power generation, mining operations, and
other commercial and industrial purposes using multiple data sources
as outlined in the USEEIO Model Details (Yang et al., 2017a).

Figure 2 represents the environmental impact factors for
calculation of GHG emissions and water withdrawal resulting from
food consumption. Packaged meat and dairy have the highest
greenhouse gas emissions per dollar spent, while fresh fruits,
breakfast cereals, and seafood have notably lower greenhouse gas
emissions per dollar spent. Fresh vegetables, melons, and potatoes
require the most water per dollar spent. Other water-intensive
categories include fresh fruits; sugar, candy and chocolate; snack
foods; coffee and tea; and seasonings and dressings. Less water-
intensive categories include mushrooms, breakfast cereal, and
seafood. Full-service and limited-service restaurant impacts are
relatively low for both GHG emissions and water withdrawal per
dollar spent compared to other food categories, due to the increase in
price of goods purchased at a restaurant rather than at a market,
effectively increasing the denominator in the “impact per dollar spent”
factor.

2.4 Norming values

Table 3 shows the average household consumption values that are
displayed as norming feedback to participants in the FEWCON study.
According to Steg and Vlek (2009), descriptive norms “refer to the
extent to which behaviour is supposed to be commonly approved or
disapproved of.” These values were selected to be as representative as

FIGURE 2
Environmental impact factors for calculation of greenhouse gas emissions (kg CO2 eq.) and water withdrawal (gallons) resulting from food purchases
(USD) (Yang et al., 2017a).
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possible of Lake County, IL. The average volume of water for domestic
water use in Lake County is 6,254 gallons per household per month.
This data comes from the United States Geological Survey (USGS)
Water Resources National Water Information System for Lake
County, IL (USGS 2018). The average monthly household
electricity use and natural gas use is 796 kWh and 64 therms,
respectively. These values are from the 2018 Residential Energy
Consumption Survey (RECS) Report and are based on annual
averages for the Midwest United States. This data is representative
of the year 2015. The average dollar amount spent on food at home
and food away from home is 658 USD and comes from the U.S. Bureau
of Labor Statistics 2018 Consumer Expenditure Survey: Table 1,400
(BLS 2018). The average water withdrawal and GHG emissions
footprints for food are calculated based on the average dollar
amount spent using the United States Environmentally Extended
Input Output model (Yang et al., 2017b).

3 Results and discussion

This section presents consumption data and associated
environmental impact data for 130 households in Lake County, IL
using the HomeTracker application. We show how household
consumption and environmental impact data can be analyzed and
summarized to identify opportunities for behavior change and
reduced environmental impact. Data is analyzed by evaluating
temporal trends, trends by household size and income range, and
general averages for the entire study group. These trends and
observations are summarized in Figures 3–10.

Figure 3 shows average household consumption data for all
participating households collected via HomeTracker in
2020 compared with the norming values (Table 3). On average,
households participating in the study consumed less electricity and
natural gas, but used more water and spent more on food than the
norming values. These results may be indicative of the study sample,
which on average had household incomes above the median income
for the county. Additionally, 79 households reported having children,
while 51 households reported having no children. This consumption
data can be assessed for individual households, and paired with survey
responses to identify specific causes of above or below average
household consumption behavior as future work.

HomeTracker food data entry distinguishes between food
consumed at home and food consumed away from home. Figure 4
shows average monthly household food consumption both at the
home and out of the home for 2020. Notable differences in the style of
food consumption can be observed in the households enrolled within
the study. While most households spent more in the “Food at Home”
category compared to “Food Away From Home,” this proportion
varied considerably across households. Total household spending on
food was also quite variable, which can be attributed in part to the
short duration of our food data collection, as well as the variability
between households in size, income, and consumption patterns.
Disruptions due to the COVID-19 pandemic may also have
contributed to high variability in food purchasing patterns, such as
households stocking large quantities of food.

Figure 5 shows a summary of direct water and energy use in
130 households over the course of the study. Impacts of the COVID-19
crisis are not apparent in this aggregated data, and variability is
consistent with typical seasonal patterns. For example, natural gas
use occurs primarily in the winter for heating, while electricity use
increases in the summer due to the use of air conditioning, consistent
with heating and cooling degree-day data for the county (Figure 6,
NOAA, 2022). Another expected pattern is the increase in water use
during the growing season, when outdoor water use occurs. Outdoor
water use is expected to be inversely proportional to rainfall, and this
relationship is observed in the water use data. Specifically, the spring of
2020 was wetter than average (16.7 inches of rainfall in March-May),
followed by near-average rainfall in the summer; whereas the spring of
2021 was very dry (just 3.4 inches of rain inMarch-May), followed by a
wet June (4.7 inches of rain) (NOAA, 2022).

Figures 7, 8 show the variation in contributions to environmental
impacts from FEW consumption categories, along with decreases in
per capita impacts associated with larger household sizes. Food
purchases represent by far the largest contribution to total (blue)
water use, and they are also the largest contributor to GHG emissions,
with natural gas use and electricity contributing significantly to GHG
emissions as well. Direct water use in the home is small compared to

TABLE 3 Summary of average consumption values for household norming feedback.

Consumption category Monthly average Units Scale References

Water Use 6,254 Gal Lake County USGS (2018)

Electricity Use 796 kWh Midwest U.S. EIA (2018)

Natural Gas Use 64 Therm Midwest U.S. EIA (2018)

Food Purchases 658 USD National U.S. BLS (2018)

FIGURE 3
Monthly average household consumption (direct use) data
compared with norming values.
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indirect water use, and water use makes an insignificant contribution
to GHG emissions. The average person in the United States uses
82 gallons per day (Dieter et al., 2018), and in our study the average
direct water use was just 42 gallons per person per day. However, the
average indirect water use was 755 gallons per person per day. Thirty-
seven households did not report household size and were excluded
from this analysis.

Figures 9, 10 show how consumption and environmental impacts
vary with household income. There are increasing trends in all FEW

consumption categories as household income rises, with the greatest
increase seen in food purchases. Households in the highest income
category spend more than five times the amount on food than do
households in the lowest category. This results in sharply rising trends
in environmental impacts with increasing income, as the highest-
income households have approximately four times the total water use
and GHG emissions attributable to the household FEW consumption.
Eighteen households did not report their household income and were
excluded from this analysis.

FIGURE 4
Average monthly total food spending for 130 sample households categorized as amount (USD) spent on food consumed away from home (FAFH) and
amount spent on food consumed at the home (FAH) in 2020.

FIGURE 5
Monthly time series data showing average household direct water use (gallons), electricity use (kWh), and natural gas use (therms) over the study period
for 130 households. Average household size is 3.2 people.
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4 Future work

While the analyses herein focus on the aggregated data for all
participating households, future work will investigate how
demographics, attitudes, and behaviors affect consumption patterns
of individual households. The impacts of intervention messages, sent
periodically by HomeTracker in the closing months of the study, will
also be analyzed. The messages were both graphical and textual in
form, reporting household consumption and the associated
environmental impacts and comparing them to the norming
values. Example textual messages are shown in Table 4. This
feedback from HomeTracker can help identify targeted messages

that will inform households of their consumption patterns and
identify mitigation strategies to reduce environmental loads.

There are also a number of methodological and data limitations in
our study that could be addressed in future work. First, data collection
and analysis focused on food, water, and energy consumption within
the home and did not include transportation or other expenditures
such as clothing, appliances, furniture, and other goods, as in other
household metabolism studies (e.g., Frostell et al., 2015; Vita et al.,
2021). This was mainly due to a desire to focus on the FEW nexus and
limit the administrative burden placed on study participants.
HomeTracker could be extended to account for other activities and
household expenditures in the future using various life cycle inventory

FIGURE 6
Monthly heating and cooling degree-days in Lake County, IL during the study period (NOAA, 2022).

FIGURE 7
Average monthly total (direct + indirect) water use by FEW consumption category and household size in 2020.
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databases, including USEEIO, Ecoinvent, and the U.S. Life Cycle
Inventory Database.

Second, USEEIO v1.1 (Yang et al., 2017a) has some important
limitations for ecological footprint analysis. One limitation is that
USEEIO considers only water withdrawals and consumptive use of
withdrawals (i.e., blue water use) and does not account for rainwater
used by crops (i.e., green water use). This can lead to an
underestimation of the terrestrial and aquatic ecosystem impacts of
food production, as well as an inability to compare results directly with
those of other water footprint studies. Another limitation of USEEIO

v1.1 is that it is based on the value of commodities at the point of
manufacture (producer’s price) rather than at the point of sale
(purchaser’s price). Since distribution and retail margins may be
considerable, this leads to a systematic overestimation of
environmental impacts in our study based on food purchase data.
While this may have some effect on household behavior changes (e.g.,
participants overestimate the relative impact of changing their diet
compared to adjusting their thermostat), this is not expected to have a
significant impact on observed household behavior since norming
values were derived consistently. In future work, the most recent

FIGURE 8
Average monthly greenhouse gas emissions by FEW consumption category and household size in 2020.

FIGURE 9
Direct FEW consumption (water use, natural gas use, electricity use, and food purchases) by household income range.
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version of USEEIO will be used, and USEEIO v.2 accounts for the
value added per commodity between point of manufacture and point
of sale (Ingwersen et al., 2022).

5 Conclusion

This paper explores how a life cycle assessment-based software
application can facilitate collection and translation of household food,
energy, and water consumption data to meaningful environmental
impacts. Specifically, the HomeTracker software tool supports
quantification of the environmental impact values for household
consumption in a typical U.S. suburban area, allowing for
examination of what consumers actually purchase and consume
over an extended period of time. The HomeTracker was
implemented in an intervention study with a data collection period
running from February 2020 through June 2021. The study included
three two-week food collection periods, continuous electricity
monitoring, bi-monthly water data input, and monthly natural gas
input. Households also received messaging and took surveys
throughout the study. Across all households in the study, seasonal
and weather-dependent trends in water, electricity, and natural gas use
are apparent, as are significant trends in per capita food, energy, and

water consumption with household size and income. Impacts of the
COVID-19 pandemic are not apparent in the aggregated data.

Future research using HomeTracker consumption and
environmental impact data will investigate the specific attitudes
and behaviors that affect consumption levels, as well as attempt to
better understand consumption impacts of the COVID-19 pandemic,
in individual households. Future work may also include expansion of
the environmental impact factors to improve spatial and temporal
resolution, in areas with sufficient data availability. It may also include
expansion of the geographic coverage of environmental impact factors
to allow users across the United States, or globe, to benefit from use of
the HomeTracker without modifying the source code. In addition, as
sensor and automation technology become more robust and
affordable, HomeTracker can be modified to reduce the burden of
data entry on users.

Ultimately, we think it is valuable to provide more detailed
information to stakeholders, on both the consumption side and the
production side of FEWS, regarding the direct and indirect
consequences of our current FEW system metabolism on multiple
scales. On the consumption side, a more informed set of choices at the
household scale might lead people to make different choices about the
amount and type of FEW services to consume in order to lower their
household impacts. At a policy level, the results of this study could

FIGURE 10
Total (direct and indirect) water use and total GHG emissions by household income range.

TABLE 4 Sample intervention message feedback to participants.

Message 1 Changing your old incandescent light bulbs to newer light emitting diodes (LEDs) can reduce your household GHG emissions from electricity use by
1,000 lb per year (5%) and reduce your household water footprint by over 16,000 gallons per year (2%).

Message 2 Switching your household to a renewable energy option at your electric utility could reduce your household GHG emissions by over 10,500 lb per year
(43%) and reduce your household water footprint by over 230,000 gallons (27%).

Message 3 Lowering your thermostat by 5° in the winter can reduce your household GHG emissions by 740 lb per year (4%); and for homes with A/C, raising
your thermostat by 5° in the summer can reduce your household GHG emissions by an additional 630 lb per year (3%).
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inform policy analyses of environmental labeling and information
schemes, as well as the setting of nationally determined contributions
to emissions reduction targets. While it is hard to predict the ultimate
effects household behavior change may have on the production of
FEW services, the impacts could lead to, for instance, a shifting of
power production to a different grid mix when baseload power needs
are lower, postponement of energy and water infrastructure
investments, as conservation offsets projected increases in demand;
or a shift in the market share of comparable FEW products with
markedly different environmental impacts, such as the rise in
popularity of plant-based dairy and meat alternatives.
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