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Integrated assessment models (IAMs) capture synergies between human
development and natural ecosystems that have important implications for the
food-energy-water (FEW) nexus. However, their lack of fine-scale representation
of water regulatory structure and landscape heterogeneity impedes their application
to FEW impact studies in water-limited basins. To address this limitation, we
developed a framework for studying effects of global change on regional
outcomes for food crops, bioenergy, hydropower, and instream flows. We
applied the new methodology to the Columbia River Basin (CRB) as a case study.
The framework uses the Demeter land-use and land-cover change (LULCC)
downscaling tool, which we updated so that water rights are spatially integrated
in the land allocation process. We downscaled two LULCC scenarios (SSP2-RCP
4.5 and SSP5-RCP 8.5) under three levels of irrigation expansion: no expansion
(historical extent), moderate expansion (all land presently authorized by a water right
is irrigated), and maximum expansion (new water rights are granted to cover all
irrigable land). The downscaled scenarios were evaluated using a hydrology-
cropping systems model and a reservoir model coupled in a linear fashion to
quantify changes in food and bioenergy crop production, hydropower
generation, and availability of instream flows for fish. The net changes in each
sector were partitioned among climate, land use, and irrigation-expansion effects.
We found that climate change alone resulted in approximately 50% greater
production of switchgrass for bioenergy and 20% greater instream flow deficits.
In the irrigation-expansion scenarios, the combination of climate change and greater
irrigated extent increased switchgrass production by 76% to 256% at the cost of 42%
to 165% greater instream flow deficits and 0% to 8% less hydropower generation.
Therefore, while irrigation expansion increased bioenergy crop productivity, it also
exacerbated seasonal water shortages, especially for instream use. This paper
provides a general framework for assessing benchmark scenarios of global
LULCC in terms of their regional FEW subsystem outcomes.
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1 Introduction

Food, energy, and water are essential for life. In modern society, it
is difficult to imagine describing the process by which essential
nutrients move from the earth to the ordinary person’s dinner
plate without speaking anything of energy being used to make
fertilizer, water being pumped to irrigate cropland, or fuel being
used to move food to the grocery store. The interactions among
food, energy, and water (FEW) in the face of scarcity define the FEW
nexus (Hoff, 2011). Over the last decade, nexus thinking has become
the paradigm for discussion around sustainable development and
resource security on the global stage (Leck et al., 2015). Examples
include the World Economic Forum’s Water Initiative report (WEF
Water Initiative, 2011), the International Institute for Sustainable
Development report on FEW security (Bizikova et al., 2013), and
the U.N. Sustainable Development Goals (Weitz, 2014).

Mutual improvement in human wellbeing and ecosystem
functioning will require more efficient use of resources and a
greater understanding of tradeoffs and synergies among FEW
sectors under societal, economic, and climatic pressures (Rasul and
Sharma, 2016). Multi-sector, interdisciplinary computer models are
useful to this end (Albrecht et al., 2018; Schull et al., 2020; Reed et al.,
2022). These Integrated Assessment Models (IAMs) simulate complex
interactions between socioeconomic and biophysical processes across
multiple spatial and temporal scales (Fisher-Vanden and Weyant,
2020), and they bring together knowledge from many disciplines to
generate decision-relevant information for making multi-objective
policy (Harremoes and Turner, 2001).

An important aim of global-scale IAMs is to generate emission
scenarios that describe changes in socioeconomic conditions,
greenhouse gas emissions, and climate (Moss et al., 2010). The
most recent generation of scenarios integrates Representative
Concentration Pathways (RCPs) with Shared Socioeconomic
Pathways (SSPs) (van Vuuren et al., 2014; Riahi et al., 2017). The
RCPs are a set of greenhouse gas concentrations leading to different
levels of radiative forcing by 2100 (van Vuuren, 2011). The SSPs, when
coupled with climate policy assumptions, provide trajectories for
reaching the greenhouse gas concentrations specified in the RCPs
(van Vuuren et al., 2014). Each SSP has a storyline that describes the
evolution of population, economy, energy, culture, and governance,
and is characterized by relative ease of climate mitigation and
adaptation (O’Neill et al., 2014; van Vuuren et al., 2014; O’Neill
et al., 2017).

Land-use and land-cover change (LULCC) is an important
outcome of scenario development and application, and it serves as
an essential input for many modelling studies. This is because LULCC
can have far-reaching effects on ecosystems (DeFries and Eshleman,
2004; Rickebusch et al., 2011), food security (Moore et al., 2012), and
the terrestrial carbon cycle (Sohl et al., 2012). Moreover, LULCC often
interacts with environmental factors that are site specific (Hibbard and
Janetos, 2013). For example, conversion of natural grasslands to
irrigated cropland in a region with declining groundwater could
place undue strain on local water resources.

Global models may lack sufficient spatial detail to capture themost
relevant features of a region. Accordingly, methods are needed to
translate global-scale LULCC projections to regional-scale outcomes
that reflect local climate, geography, culture, and institutions (Voisin
et al., 2013; Le Page et al., 2016). In multi-scale modelling, this is
accomplished by allocating land estimates produced by an aggregate

model among smaller spatial units, typically grids that are tens of
square kilometers, or even smaller. The downscaled LULCC maps can
then be fed into a high-resolution model, such as an Earth system
model, that is well suited to answer a set of research questions (West
et al., 2014).

Many tools are available for spatial downscaling, including those
that use cellular automata (Li et al., 2017), neural networks (Shi et al.,
2021), and statistical models (Chakir, 2009). Multi-criteria methods
are also commonly used in downscaling applications (Hellman and
Verburg, 2011; Sakieh et al., 2015). Disaggregation of land use by
multi-criteria procedures requires the identification and weighting of
factors that make geographical locations suitable for a given land type
(Fu et al., 2018). A suitability score is then computed from the
weighted factors and combined with other decision rules to allocate
land among grid cells (Ghadikolaei et al., 2012). An example of
software that uses criteria-based downscaling algorithms is the
Python-based package, Demeter (Vernon et al., 2018). Demeter
applies user-defined transition rules and spatial constraints to
disaggregate LULCC data from geopolitical regions and large water
basins to the users’ desired grid size. Demeter has recently been used to
evaluate bioenergy crops vs. afforestation in terms of their carbon
sequestration costs and benefits (Cheng et al., 2022) and to study the
impact of bioenergy cropland expansion on water security (Wild et al.,
2021). In another application, Khan et al. (2020) integrated Demeter
with a multi-model framework to explore the energy-water-land nexus
implications of strengthening Uruguay’s beef, soy, and rice exports.
Their results highlighted the importance of LULCC to the trajectory of
food and energy production under different policy assumptions.

The strength of Demeter is its flexibility and ease of use. The
multiple steps involved in downscaling are automated by Demeter so
that results can be reproduced with minimal user error. Since it is open
source, the code can be extended to include new functionality if
desired (Vernon et al., 2018). One limitation of the current
Demeter code is that hard constraints are not explicitly
implemented. In agriculture-rich basins that rely heavily on
irrigation, irrigated farmland should not be allocated where there
are no water rights. Inclusion of a hard constraint for water rights is
therefore an important part of downscaling land-use change in regions
where irrigated agriculture is essential to the local economy. Likewise,
cropland, both irrigated and non-irrigated, should be constrained by
the availability of arable land.

In this paper, we refine Demeter downscaling software by
incorporating hard constraints on cropland allocation based on
extent of water rights and arable land. We then provide a proof-of-
concept for the downscaling methodology within a wider framework
featuring specialized cropping systems and reservoir models. The case
study for the multi-model framework explores the potential impact of
expanding irrigated extent to enhance crop yields, especially bioenergy
crops, on hydropower generation and instream flows in the Columbia
River Basin (CRB) under different LULCC scenarios.

The Columbia River is intensively managed for flood control,
hydropower production, and maintenance of instream flows to
support fish migration. Additionally, the Columbia River and its
tributaries supply irrigation water for a thriving agricultural
economy. These multiple beneficial uses must compete for limited
available water. For example, diversion of streamflow for irrigation
reduces the amount of water that can be stored in reservoirs for
hydropower generation and reduces instream flows that support
migratory fish species during critical stages of development.
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Another tradeoff that emerges under future scenarios of land-use
change is between two forms of renewable energy: bioenergy and
hydropower. Future climate mitigation scenarios project exponential
growth in bioenergy crops as part of policy to reduce carbon emissions
(Thomson et al., 2011). While ramping up hydropower would also
reduce carbon emissions, constraints on available water may not allow
both industries to grow concurrently. Competition for the river’s
resources among agriculture, hydropower, and fish presents an
ongoing water resources challenge for the CRB, and it is one that
will likely intensify under climate change and LULCC.

Water regulation moderates the impact of LULCC on productivity
of the basin’s FEW sectors by restricting the expansion of cropland
under irrigation. State governments regulate water use in the CRB by
issuing water rights that authorize beneficial use according to the
doctrine of prior appropriation. Water right documents minimally
specify priority date, purpose of use, point of diversion, place of use
(POU), and water quantity (Benson, 1998). In the context of spatial
downscaling, the most important of these features is water right POU
because it restricts the spatial extent of cropland allowed to be irrigated,
thereby mitigating the effect of streamflow depletion on instream uses.

Integrated modelling frameworks facilitate better understanding
of FEW synergies and tradeoffs (Liu et al., 2017). Scenario testing with
these tools can help elucidate implications of various policies aimed at
mitigation, adaptation, or enhancing resource security (Howells et al.,
2013). However, a persistent challenge is how to involve stakeholders,
especially those tasked with resource planning and management, in
the process of scenario assessment. One solution is to develop more
user-friendly models for analyzing tradeoffs in the FEW landscape and
to curate suitable FEW nexus models for stakeholders (Dargin et al.,
2019). Decision-support type models include the Water-energy-food
Nexus Tool (Daher and Mohtar, 2015) and CLEWs (Howells et al.,
2013). Another approach, the one we pursue in this paper, is to
compose a multi-model framework from loosely coupled sub-models
(Liu et al., 2017). Researchers can use these frameworks to test
scenarios and communicate scenario outcomes to stakeholders who
can provide feedback, leading to higher quality assessments and
crafting of scenarios better calibrated to stakeholder aims.

The objectives of this paper are: 1) to present a spatial downscaling
approach for the assessment of global LULCC scenarios in terms of
regional impacts on food, energy, and water resources, and 2) to make
application of the framework in a case study that focuses on the
interconnected hydropower, bioenergy, food crop, and instream flow
sectors in a water-limited basin.

This paper contributes to the literature on scenario assessment and
FEW impacts by linking benchmark socioeconomic and emissions
scenarios to regional FEW subsystem outcomes. Incorporation of
irrigation expansion into the assessment scheme highlights
competition between sectors for available water, which has clear
implications for the FEW nexus. Furthermore, we contribute to the
spatial downscaling literature by demonstrating the importance of
water rights to the allocation of irrigated cropland in downscaling
applications. We do so by describing a highly adaptable downscaling
software tool that has been updated to include water right POU as a
hard constraint on the expansion of irrigated agriculture. The general
framework described in this paper may also facilitate future studies of
the influence that water regulatory activities have on FEW subsystems.
These activities include, for example, water markets, water right
curtailment, negotiation of transboundary treaties, and adjudication
of Tribal water rights.

2 Methodology

2.1 Site description

Our case study encompasses the CRB in addition to western
Washington State and almost all of Oregon. Figure 1 shows the
study area and important FEW sectors in the basin. The CRB
covers a large part of four states in the U.S. Pacific Northwest, in
addition to the Canadian province of British Columbia. Draining
roughly 660,000 km2, the Columbia River is the largest river in the
Pacific Northwest (Bureau of Reclamation, 2016) and the fourth
largest river in North America by discharge (Ward and Ward,
2004). Hydrology and climate of the Pacific Northwest region are
greatly influenced by topography, especially by the orographic effect of
the Cascade Range on precipitation patterns (Leung and Ghan, 1998).
The Columbia River hydrograph exhibits a strong snowmelt signature,
with approximately 60% of runoff occurring in May through July
(Kirschbaum and Lettenmaier, 1997).

The Columbia River is managed by a network of reservoirs and
hydroelectric dams that provides flood control, generates hydropower,
supplies water for irrigation, and maintains streamflow for navigation,
recreation, and ecological benefits (BPA, 2001). Construction of the
dams has blocked fish migration for the basins’ native salmonid
species (Fish Passage Center, 2009), leading to severe declines in
salmon from a high of 6–16 million at their peak in the 1880’s to less
than 1 million today (Peery, 2012). This is particularly a concern to the
basin’s Native American Tribes, for whom the fish have deeply rooted
cultural significance and provide a stable food source (Taylor, 1999).
Four species of trout and eight species of salmon in the CRB are
protected under the Endangered Species Act (ESA) (NMFS, 2020).

Agriculture is an important industry in the CRB, annually
generating $10 billion of revenue in Washington State (USDA,
2017) and $7 billion in Idaho (Mahler, 2019). Irrigation accounts
for 85% of total water withdrawals in the Pacific Northwest states of
Washington, Oregon, Idaho, and Montana (Dieter et al., 2018). The
majority of irrigated cropland is located in the Yakima Basin and
Columbia Basin Project of eastern Washington State, the Snake River
Basin of southern Idaho, and Oregon’s Willamette Valley.

Energy production in the basin depends greatly on the many
hydroelectric dams along the Columbia mainstem and its largest
tributary, the Snake River. This cheap and clean source of energy
accounts for approximately 50% of energy production in the Pacific
Northwest (EIA, 2020). Biofuel constitutes a small percentage (<1%)
of total production (EIA, 2020). To achieve carbon reductions in the
CRB, the energy sector could assimilate more renewable feedstocks,
like agricultural residues and dedicated bioenergy crops. Switchgrass
has received attention as a potential bioenergy crop because it
produces large quantities of biomass, can be grown on marginal
lands, and requires relatively little agricultural inputs (McLaughlin
and Kszos, 2005).

Water rights in the CRB are regulated according to prior
appropriation. Under prior appropriation water law, states issue
water rights that authorize water users to withdraw water from a
source, over a limited season, for enumerated purpose(s) of use, in a
given amount, and to apply it within specified place(s) of use (Benson,
1998). An essential tenant of prior appropriations is that water rights
established earlier in time must be satisfied before rights established
later in time (Schilling, 2018). State-adopted instream flow rules are
enforced via curtailment of interruptible water rights (those with
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FIGURE 1
Food, energy and water subsystems of the Columbia River Basin (CRB). The black boundary delineates the CRB, and the light grey area corresponds to
the CRB inclusive of western Washington andmost of Oregon (extended CRB). The density of irrigated area is in units of km2 per 1/16-degree grid cell. Critical
habitat for ESA-listed salmonids are marked with the fish symbols. Locations of hydroelectric dams are shown with a red, crossed circle, with symbol size
proportional to the square root of generating capacity.

FIGURE 2
Spatial downscaling and multi-model workflow. Elements in the purple-shaded box illustrate downscaling LULCC projections from GCAM (grey
hexagon) with Demeter (yellow hexagon). The scenarios shown in the Venn Diagram are constituted of LULCC scenarios from GCAM and irrigation scenarios
endogenous to Demeter. FEW subsystems modelling is shown in the blue-shaded box. The cropping systems and hydrology model, VIC-CropSyst (green
hexagon), simulates naturalized streamflow, irrigation demand, and crop yield. Naturalized streamflow and water demand drive the reservoir model,
RColSim (orange hexagon). Outputs from the two models are then used to calculate FEW metrics.
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priority dates later than establishment of the flow rule) whenever
streamflow falls short of the flow rule (Geller, 2014; Sessions, 2017).

2.2 Multi-model framework

We used a multi-model approach to simulate water for irrigation,
water for hydropower, and water for instream flow. Each of these
subsystems was simulated with specialized regional models. We
included scenarios of irrigation expansion (see Section 2.3.1) to
amplify one-way interactions among subsystems, and these
interactions were evaluated by comparing changes in FEW metrics
due to irrigation expansion, climate change, and LULCC (see Section
2.4.5). We simulated the food subsystem in terms of crop production
for groups of major food crops grown in the CRB, the energy
subsystem in terms of switchgrass crop production (bioenergy) and
hydropower generation, and the water subsystem in terms of instream
flow deficit and irrigation demand. The multi-model framework
integrates the FEW subsystems by means of a soft coupling
between a hydrology-cropping systems model and a reservoir
model, i.e., water supply and demand from the former is used as
input for the latter. Both models have been evaluated in previous
publications (see Section 2.4.1 and Section 2.4.4).

Figure 2 shows the workflow used for scenario assessment, divided
into three stages: global energy-economic modelling, LULCC
downscaling, and FEW subsystem modelling. In the first stage, an
IAM called the Global Change Analysis Model (GCAM) (Calvin et al.,
2014; Calvin et al., 2019) was used to generate LULCC projections
consistent with the SSP2-RCP 4.5 and SSP5-RCP 8.5 scenario
storylines (Graham et al., 2020). A brief summary of GCAM and
its applications can be found in the supplementary material
(Supplementary Section S1). The second stage, shown in the
purple-shaded box of Figure 2, illustrates scenario development
and disaggregation of LULCC projections from regional to grid
scale at 1/16th-degree (~36 km2) resolution using the spatial
downscaling software, Demeter (Vernon et al., 2018). The two
socioeconomic and emissions scenarios from GCAM (SSP5-RCP
8.5 and SSP2-RCP 4.5) were combined with three irrigation
scenarios (no, moderate, and maximum expansion) endogenous to
Demeter. Storylines for each of the scenarios (two baselines and six
integrated scenarios) are given in Section 2.3.1. Demeter is described
in Section 2.3.2, including modifications made to accommodate hard
constraints.

The case study of FEW subsystems in the CRB is represented by
the blue-shaded box in Figure 2. Demeter-downscaled maps were used
to parameterize land use/cover in the grid-scale, hydrology and
cropping systems model, VIC-CropSyst (Malek et al., 2017). The
model was run twice for each scenario, once with irrigation turned
off to simulate water supply and once with irrigation turned on to
simulate irrigation demand and crop yield for food, bioenergy, and
forage crops. VIC-CropSyst irrigation demands and estimates of
consumptive municipal water use were partitioned between
groundwater and surface water to estimate surface water demand
(Section 2.4.2). When irrigation is turned off, the CropSyst portion is
not invoked, and only the hydrological components of the model (VIC
portion) are engaged. Surface runoff and base flow from VIC supply
runs were routed to stream gauges throughout the CRB and bias-
corrected at a weekly timestep to estimate naturalized flow (Section
2.4.3). Next, naturalized flow and surface water demand simulated

with VIC-CropSyst were used to drive the reservoir model, RColSim
(Malek et al., in review), which simulates regulated flow with irrigation
withdrawals removed, from which instream flow deficit is derived, and
hydropower generation on a weekly timestep (Section 2.4.4). The
RcolSim model outputs were combined with crop production output
from VIC-CropSyst to compute FEW metrics. These metrics were
aggregated over the study area and adjusted to remove climate model
bias. Finally, the changes in FEW metrics under the integrated
scenarios were evaluated (Section 2.4.5).

2.3 Downscaled scenarios for the CRB

We evaluated eight scenarios (two baselines and six integrated
LULCC-irrigation scenarios) to demonstrate the role of LULCC,
climate change, and irrigation expansion in the simulation of
regional FEW systems (Table 1). Our approach to scenario-based
analysis differed from an ensemble approach wherein results from
multiple downscaling parameter sets and multiple climate models are
jointly assessed to generate a prediction with quantified uncertainty.
Rather than prediction, we tested how the FEW sectors would respond
under specific storylines. Each of the scenarios are described in this
section, along with storylines for the six integrated scenarios.

2.3.1 Scenario descriptions
2.3.1.1 Historical baseline

The first baseline scenario assumes historical conditions of land
use, irrigated extent, and climate. This scenario uses observed land-use
data directly, without any downscaling. Land-use observations were
derived from multiple sources, including the Cropland Data Layer
(USDA-NASS, 2016) and the Agricultural Land Use dataset (WSDA,
2016). Historical irrigated extent for the U.S. portion of the study area
was derived from IrrMapper (Ketchum et al., 2020) for the year 2018,
as well as from the 2016 Agricultural Land Use dataset, which
distinguishes between irrigated and dryland agriculture. For the
Canadian portion of the study area, irrigated extent was
determined following methodology used to create the 2017 MODIS
Irrigated Agriculture Dataset (MIrAD) for the contiguous U.S. (Brown
and Pervez, 2014) as reported in Hills et al. (2020).

2.3.1.2 GCAM baseline
The second baseline scenario is also based on historical conditions

of land use, irrigated extent, and climate. However, theGCAM baseline
scenario uses historical irrigated extent and 2015 land-use data that
have been spatially downscaled and harmonized to match observed
land use due to differences in land-use classification between the
GCAM and high-resolution datasets; therefore, the GCAM baseline
scenario does not perfectly match input from the observed baseline
dataset (see Section 2.3.2.2). Additionally, we ran a simplified set of
crops for sake of computational efficiency (see Section 2.4.1.4). We
include both baseline scenarios to provide a sense of how these sources
of error impacted our analyses.

2.3.1.3 RCP 8.5 no expansion
The RCP 8.5 no expansion scenario is based on a high-emissions

pathway without climate mitigation, and without any irrigation
expansion. The heavy reliance on fossil fuels in the absence of
climate policy in this scenario leads to greenhouse gas emissions
and atmospheric concentrations consistent with the RCP 8.5 pathway
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(Riahi et al., 2011). The social and economic conditions underlying
RCP 8.5 no expansion are consistent with SSP5 (Kriegler et al., 2017).
Challenges for climate mitigation are high under SSP5 due to fossil-
fuel based development and lack of environmental concern, but the
challenges for adaptation are low due to rapid technological progress,
strong investment in education, and high levels of global market
integration (Kriegler et al., 2017; O’Neill et al., 2017). Both population
and per capita calorie consumption increase in high-income nations,
resulting in higher food demands. Agricultural growth, however, is
driven mostly by replacement of traditional biomass with lingo-
cellulosic feedstocks derived from non-food crops and agricultural
residues (Kriegler et al., 2017). The addition of “no expansion” to the
SSP5-RCP 8.5 storyline implies sustained interest among
policymakers and the public in protecting or enhancing fish habitat
and continuing fish recovery efforts. Accordingly, new land for
dedicated bioenergy crops does not increase irrigated extent
beyond historical levels.

2.3.1.4 RCP 8.5 moderate expansion
The RCP 8.5 moderate expansion scenario follows the same

pathways (SSP5 and RCP 8.5) and future climate conditions as
RCP 8.5 no expansion. However, lower priority is placed on
instream flow protection, and higher priority is placed on
bioenergy production. As a result, irrigated area is allowed to
expand to improve crop yields. Rather than irrigation being

constrained to historical extent, it is permitted on all land currently
authorized by a water right. There are multiple reasons why the area
actually irrigated may not coincide with the POU printed on a water
right document. These include land that has voluntarily been taken out
of irrigated management as part of an instream water transfer or lease
program, water rights that have not been perfected (i.e., the
infrastructure is not yet in place), and water rights that have been
fully or partially relinquished for non-use. Under moderate expansion,
irrigated cropland can fill any parcel of land authorized by a water
right. The locations of water right POUs were obtained from the
databases of respective governments’ departments of ecology. These
spatial datasets are the Geographic Water Information System
(Ecology, 2018) for Washington State, the “Statewide Water Right
Spatial Data” (OWRD, 2018) for Oregon, the “Place of Use: Water
Right” dataset (IDWR, 2018) for Idaho, “Montana Water Rights”
dataset (Montana DNRC, 2018) for Montana, and the “Land Parcels
with Water Licenses” dataset for British Columbia (LWRS, 2018).

2.3.1.5 RCP 8.5 maximum expansion
The RCP 8.5 maximum expansion scenario also follows the

SSP5 pathway; however, it assumes there will be very little
protection for instream flows, and bioenergy production is
prioritized over fish and hydropower. The only restriction on
irrigation is land suitability, meaning that all irrigable land is
granted a water right. Land suitability for irrigation was

TABLE 1 Scenario implementation. There are two baseline scenarios which assume historical climate, irrigated extent, and land use. The remaining six scenarios assume
combinations of three irrigation levels and two LULCC scenarios from GCAM over the period 2015-2100. Each of these scenarios was forced by an observed historical
(GridMet/Livneh), modeled historical (CNRM-CM5 historical), and modeled future (CNRM-CM5 RCP 4.5/RCP 8.5) climate dataset.

Scenario name Climate forcing Irrigated extent Land use

Historical baseline GridMet/Livneh WSDA/IrrMapper/MIrAD WSDA/USDA-NASS

GCAM baseline GridMet/Livneh WSDA/IrrMapper/MIrAD GCAM SSP5-RCP 8.5 (2015)

RCP 4.5 no expansion GridMet/Livneh WSDA/IrrMapper/MIrAD GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 RCP 4.5 WSDA/IrrMapper/MIrAD GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 historical WSDA/IrrMapper/MIrAD GCAM SSP2-RCP 4.5 (2015-2100)

RCP 4.5 moderate expansion GridMet/Livneh Water right POU GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 RCP 4.5 Water right POU GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 historical Water right POU GCAM SSP2-RCP 4.5 (2015-2100)

RCP 4.5 maximum expansion GridMet/Livneh SSURGO GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 RCP 4.5 SSURGO GCAM SSP2-RCP 4.5 (2015-2100)

CNRM-CM5 historical SSURGO GCAM SSP2-RCP 4.5 (2015-2100)

RCP 8.5 no expansion GridMet/Livneh WSDA/IrrMapper/MIrAD GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 RCP 8.5 WSDA/IrrMapper/MIrAD GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 historical WSDA/IrrMapper/MIrAD GCAM SSP5-RCP 8.5 (2015-2100)

RCP 8.5 moderate expansion GridMet/Livneh Water right POU GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 RCP 8.5 Water right POU GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 historical Water right POU GCAM SSP5-RCP 8.5 (2015-2100)

RCP 8.5 maximum expansion GridMet/Livneh SSURGO GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 RCP 8.5 SSURGO GCAM SSP5-RCP 8.5 (2015-2100)

CNRM-CM5 historical SSURGO GCAM SSP5-RCP 8.5 (2015-2100)
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determined from the Soil Survey Geographic (SSURGO) irrigated
capability class (Soil Survey Staff(a), 2019). The maximum-irrigation
scenario should not be considered a likely development but one which
provides an upper bound for the impact of irrigation expansion.

2.3.1.6 RCP 4.5 no expansion
The RCP 4.5 no expansion scenario follows a biomass-focused

pathway to climate mitigation. It is consistent with stabilization of
radiative forcing at 4.5 W/m2 (Thomson et al., 2011). The underlying
social and economic conditions follow the SSP2 pathway, resulting in
intermediate challenges for climate adaptation and mitigation.
Climate policy incentivizes bioenergy production with carbon
capture and storage (Fricko et al., 2017). Population growth is
moderate and levels off in the second half of the century. Medium
levels of human development and continued environmental
degradation create obstacles to adaptation, while limited reliance
on fossil fuels makes mitigation moderately difficult (O’Neill et al.,
2017). Demand for bioenergy is met without expanding irrigation,
reflecting the need to balance instream needs of fish and hydropower
with consumptive needs of agriculture.

2.3.1.7 RCP 4.5 moderate expansion
Socioeconomic, emissions, and climate trajectories in RCP

4.5 moderate expansion follow those of the RCP 4.5 no expansion
scenario. There is large growth in irrigation to improve agricultural
productivity and to increase the carbon capture and storage potential
of dedicated bioenergy crops. However, no new water rights are
granted, limiting potential streamflow impairment by new cropland.

2.3.1.8 RCP 4.5 maximum expansion
The RCP 4.5 maximum expansion scenario follows the RCP

4.5 and SSP2 pathways. Large-scale expansion of bioenergy
cropland in combination with unrestricted access to water rights
creates large carbon sequestration benefits and optimal conditions
for bioenergy production. This comes at the cost of water availability
for instream use. In this scenario, pursuit of climate mitigation goals
mostly precludes efforts to ensure fish survival or to maintain
hydropower reliability.

2.3.1.9 Adding climate impacts to scenario storylines
The Historical baseline and GCAM baseline scenarios were

evaluated with historical climate data derived from GridMet
(Abatzoglou, 2013) for the U.S. portion of the study area and
Livneh et al. (2013) for the Canadian portion. The Livneh dataset
includes daily maximum and minimum temperatures, precipitation,
and average wind speed. GridMet also provides shortwave solar
radiation and daily minimum and maximum relative humidity.
The reason for using GridMet rather than the Livneh dataset,
where available, is that GridMet has a smaller cold-temperature
bias in topographically complex landscapes like the Pacific
Northwest (Behnke et al., 2016). The six integrated scenarios were
evaluated under both historical and future climate conditions.
Historical simulations were forced using the GridMet and Livneh
datasets, while future simulations were forced using climate
projections representing mid-range changes in precipitation and
temperature. To find these mid-range values, we screened 17 global
circulation models (GCMs) from the Multivariate Adaptive
Constructed Analog downscaled climate dataset (Abatzoglou and
Brown, 2012) and selected the GCM that produced mid-range

climate projections in the study region, under both the RCP
8.5 and RCP 4.5 emissions pathways. The selection process
consisted of first ranking each GCM with respect to temperature,
precipitation, and runoff generation, then summing the ranks, and
finally choosing the GCM corresponding to the median of the rank
sums. The GCM we chose through this selection process was CNRM-
CM5. Each GCM dataset comes with a historical reference
(1950–2005) and a future (2006–2094) time series.

2.3.2 Spatial downscaling
The GCAM-based LULCC projections were downscaled from

regional scale (U.S. and Canadian regions of the extended CRB) to
1/16th-degree grid scale. We used Demeter, a Python-based
downscaling software package that assimilates well into new multi-
model workflows. Prior to downscaling with Demeter, land use in the
base year is harmonized between the IAM and an observed historical
land-use map so that the land categories match between the two data
sources. The harmonized base-year land use is then compared to land
demand from the next timestep, and target change is computed.
Transition rules are used to distribute target land-use changes in
each timestep at the resolution of the historical land-use map,
subject to user-defined spatial constraints. The transition rules
consist of treatment order, i.e., the order in which land classes are
downscaled; transition priority, which assigns preferences for which
types of land use convert to which; spatial constraints relating to
suitability of land for a particular land use; kernel density reflecting
the land-use composition of neighboring grid cells; and intensification
(increase in a grid cell where the increasing land use exists) vs. expansion
(increase in a grid cell where it did not exist previously). Once the
required land-use transitions have been achieved via intensification and
expansion, the downscaled land areas for the current timestep become
the baseline land areas for the next 5-yr timestep. A full description of
transition rules can be found in Le Page et al. (2016); Vernon et al.
(2018). Refer to supplementary material for a summary of the Demeter
model components (Supplementary Section S2; Supplementary Figure
S1). In this section, we describe how hard constraints were added to the
original code and discuss model parameterization.

2.3.2.1 Land allocation with hard constraints in Demeter
Hard constraints restrict the area available for any given land use.

Even if a grid cell is highly suitable for cultivation on average, the land
could contain a mixture of poor and fertile soils such that most of the
area is suitable, while a sizeable minority is not. In this case, the
amount of land allocated to crops should not exceed the total amount
of suitable area in that grid cell. Similarly, irrigated cropland should
not be allocated in excess of land with a water right for irrigation.
Implementation of hard constraints consists of four steps. First, the
land area available for conversion to land use k in grid cell i (AGik) is
calculated according to Eq. (1).

AGik � min 0, Fik · Gi − Aik( ) (1)
The term Fik denotes the fraction of grid cell i that meets cutoff

criteria for all applicable hard constraints. The Fik multiplied by grid
cell area (Gi) gives the maximum allowable area for land use k in grid
cell i. If no hard constraints apply to land use k, then Fik � 1, and the
whole grid is available for land use k. Land area already under land use
k (Aik) is subtracted from Fik · Gi to give the greatest potential growth
of land use k subject to hard constraints (i.e.AGik). Next, the process of
intensification selects candidate grid cells with land available for
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conversion to land use k and where land use k already exists. Then,
suitability for land use k in each of the candidate cells is determined
from a weighted linear combination of factors (β) that indicate fitness
for land use k (see Section 2.3.2.2 for a description of these factors).
Each β is continuous in the range 0–1, where 1 is the highest level of
suitability and 0 is the lowest. The weights for each factor are specific
to each land use and satisfy the condition given by Equation 2,

∑
j
wjk � 1 (2)

where wjk is the weight for factor j and land use k. The normalized
suitability index (σ) is the suitability in grid cell i for land use k divided
by the mean of suitability across all candidate grid cells (Eq. 3).

σ ik �
∑j wjk · βji( )

∑i ∑j wjk · βji( )/I for i ∈ C (3)

The term I represents the number of candidate cells andC denotes
the set of candidate cells, defined as the set of all grid cells that satisfy:

AGik > 0, Aik > 0, andAim > 0 (4)
where Aim denotes the area of land use m that can convert to land use
k. The normalized suitability index (i.e., σ ik) is used to calculate an
allocation factor (L) that apportions land-use growth among the
candidate cells (Eq. 5).

Lik �
σ ik

max σ ik( )( )2

∑i
σik

max σ ik( )( )2 (5)

The potential growth of land use k in grid cell i (ΔAik
′ ) is then:

ΔAik
′ � ΔAk · Lik (6)

where the term ΔAk denotes the total intensification of land use k
in all grid cells, subject to hard constraints. It is determined from
Equation 7,

ΔAk � min AGk, Am, Tk,−Tm( ) (7)
where AGk is the total land area available for conversion to land use k,
subject to all hard constraints, Am is the total area available to undergo
conversion from land use m to land use k, Tk is the target growth of
land use k by the process of intensification (i.e. target intensification),
and the term −Tm is the negative of target intensification (i.e. target
contraction) of land usem. The actual growth of land use k in grid cell i
(ΔAik) is determined from the minimum of potential growth and land
available for growth (Equation 8).

ΔAik � min ΔAik
′ , AGik( ) (8)

In the third step, target expansion of land use k is allocated among
candidate grid cells using Eqs 1–8. However, for expansion, the
candidate cells satisfy the following condition:

AGik > 0, Aik � 0, andAim > 0 (9)
The difference from Equation 4 is that land use k does not exist in

candidates for expansion, so Aik � 0. The final step is a second
iteration of intensification, which distributes the remaining target
change, subject to all constraints.

The above four-step procedure is repeated for all ‘convert-from’

land classes (m’s), either until the target growth of land class k has been

achieved, or until there is no space available for land use k in any grid
cell, whichever comes first. Then, the next land use in the treatment
order with a positive target change (the next land use k) undergoes
intensification and expansion according to the above procedure, and
the process repeats until all required land-use transitions have been
simulated for a given timestep. The processes of expansion and
intensification with a hard constraint are illustrated in Figure 3.

2.3.2.2 Demeter parameterization
The coefficient matrices used for mapping observed land types and

GCAM land types to common land types are provided in
Supplementary Tables S1, S2. The reclassified dataset derived from
the observed land use/cover did not perfectly match the reclassified
dataset derived from GCAM in terms of the total areas within each
land class. The Demeter code contains an algorithm that rescales the
GCAM data so that the two reclassified datasets match (see Chen et al.

FIGURE 3
Land-use transition with hard constraints in the updated Demeter
code. Land use k (increasing) can replace land use m (contracting) only
to the point at which the area of land use k equals the fraction of the grid
cell satisfying conditions of the hard constraint (Fik) multiplied by
the grid area (Gi). At time (1) the entire grid cell consists of a single land
use, m. From time (1) to time (2), land use k expands into the grid cell,
replacing some of land usem. From time (2) to time (3), intensification of
land use k replaces more of land use m, but there is still room for more
intensification (AGik). From time (3) to time (4), land use k fills all the area
permitted by the hard constraint.
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(2020) for details). However, we were working with an earlier version
of the code that did not contain this rescaling algorithm. Instead, we
harmonized the two datasets by manually adjusting the matrix
coefficients until the reclassified land use/cover from observations
were close to the reclassified land use/cover from GCAM.

The treatment order we chose gave highest priority to high-value
crops, like corn, that are always irrigated. Next priority was given to
medium-value crops that are sometimes irrigated, followed by low-
value crops like wheat. Bioenergy crops were assigned the last
treatment order among crop types because crop price data
simulated with PRIMA (Kraucunas et al., 2015) indicate bioenergy
crops will have lower value than food crops, even under RCP 4.5.
Urban, shrubs, and forest were placed last in the treatment list
(Supplementary Table S3). We chose transition priority rules
consistent with West et al. (2014). This meant that when
considering expansion of farmland, we prioritized conversion of
grassland over forest and urban land (Supplementary Table S4).
The most sensitive parameter in Demeter is the intensification
ratio (Chen et al., 2019b). We used a ratio of 0.8 as suggested by
West et al. (2014), meaning that 80% of the target growth was achieved
via intensification.

We parameterized Demeter with the following spatial constraints:
irrigated and dryland capability class, total arable land, total irrigable
land, and total marginal land. The term “total” in the latter three
constraints designates their operation as hard constraints. The first
two constraints, together with kernel density, are the suitability factors
(β′s from Eq. 3) that determine allocation factor (L from Eq. 5). Kernel
density indicates the proximity of grid cells to other grid cells that
share the same land use, and it is calculated according to Le Page et al.
(2016). The rationale for including kernel density as a suitability factor
is that land-use conversions tend to favor land use of the surrounding
area. We computed kernel density with a 20 × 20-grid moving
window.

Irrigated cropland and dryland crop suitability were determined
from the land capability classifications of SSURGO (Soil Survey
Staff(a), 2019). There are eight capability classes in order of
decreasing suitability. Classes I-IV are generally suited to
cultivation, while classes V and VI are only suited to some
specialized crops and native plants, and classes VII and VIII are
restricted in their use to recreation, wildlife, and grazing (Soil
Conservation Service, 1961). Dryland crop suitability was
supplemented with climate suitability. Climate suitability was
calculated from GridMet climate data as the green-water
availability ratio, which is the ratio of water supply (growing-
season precipitation plus water-holding capacity) to water demand.
Water demand for wheat and hay was determined as the actual
evapotranspiration from a well-watered crop, following the method
of Allen et al. (1998). We rescaled the suitability factors from 0 to
1 according to Supplementary Table S5. The criteria weights for the
suitability factors are given in Supplementary Table S6.

The total area of land within non-irrigated capability classes I-VI
or irrigated capability classes I-IV was used as a hard constraint on the
expansion of arable land. The hard constraint for irrigated land area
was formulated as the minimum of total land with a water right
determined from the water right POU and the total area within
irrigated capability classes I-IV. Marginal land was defined as any
land in non-irrigated capability classes III-VI or irrigated capability
classes IV-VI. Marginal land was imposed as a hard constraint for
bioenergy crops since we assumed that they would not be competing

with food crops for prime farmland. Hard constraint binary weights
for each land type are given in Supplementary Table S7.

The hard constraint on irrigated cropland controls the split of
irrigated vs. dryland crops. Some crops, such as corn and potatoes
are always irrigated, so a hard constraint was enforced to prevent
expansion into land without a water right, and these crops
were assigned an irrigated fraction of 1. Other crops are rarely
irrigated (e.g., oilseed crops), so their irrigated fraction was
assumed to be zero. For the remaining crops that are not
always irrigated (cereal crops, hay, fruits and vegetables), the
maximum irrigated area allowed by the hard constraint was
satisfied first, and then any remaining cropland was assumed to be
non-irrigated.

2.4 Case study: CRB FEW subsystems

2.4.1 Hydrology and cropping systems modelling
Water supply and demand was simulated at a daily timestep and 1/

16th-degree resolution using the tightly-coupled hydrology and
cropping systems model, VIC-CropSyst. The model was developed
to study the interplay between agricultural decision-making, climate,
and hydrologic systems. The VIC portion of VIC-CropSyst (Liang
et al., 1994) is a large-scale, process-based water and energy balance
model. It has been used extensively in climate change studies in the
Pacific Northwest (Hamlet et al., 2010; Mantua et al., 2010), as well as
in the nearby Colorado River Basin (Christensen and Lettenmaier,
2007) and Sierra Nevada of California (Maurer, 2007). The CropSyst
portion of VIC-CropSyst simulates growth and phenology of
numerous annual and perennial crops under both irrigated and
dryland conditions and under various management practices
(Stöckle et al., 2003). A unique feature of VIC-CropSyst is its
rigorous representation of cropping systems within a land surface
model. The model has process-based representations of the
hydrologic, carbon, and nitrogen cycles. The coupling of VIC with
CropSyst is described by Malek et al. (2017). VIC-CropSyst has been
used to study climate change impacts on irrigation demands and crop
yields in the CRB (Rajagopalan et al., 2018), impacts of efficient
irrigation technologies on performance of FEW sectors in the
Yakima Basin (Malek et al., 2021), and climate change impacts on
inter-annual crop yield variability and revenue volatility (Malek et al.,
2020).

2.4.1.1 Soil and land-cover data
The data source for U.S. soils was STATSGO2 (Soil Survey

Staff(b), 2019), and the soils data for the Canadian portion of the
study area came from the Land Data Assimilation System (Mitchell
et al., 2004). Historical land-use data were obtained from three
sources: the 2016 Cropland Data Layer (USDA-NASS, 2016), the
2016 Washington Agricultural Land Use dataset (WSDA, 2016), and
the Annual Crop Inventory Database (Agriculture and Agri-Food
Canada, 2016), the first two being for the U.S. portion and the last
being for the Canadian portion. Future land cover came from the
Demeter-downscaled LULCC scenarios. VIC-CropSyst currently
requires fixed land cover, so we ran all future scenarios with
2060 downscaled land-use/cover inputs. The VIC runs for
generating water supply used a different land-cover
parameterization than the runs for generating irrigation demands
and crop yields. For VIC supply runs (irrigation turned off), the nearly
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100 crop types in the Demeter-downscaled input files were aggregated
to a single crop type to match VIC land categories, which identify all
field crops as corn.

2.4.1.2 VIC-CropSyst calibration
VIC has been calibrated and evaluated in the topographically

complex, Pacific Northwest region (Elsner et al., 2010; Hamlet et al.,
2013). The calibration and evaluation of streamflow for VIC is
reported in Adam et al. (2022). Detailed crop calibration data and
procedures for CropSyst used in this study are reported in Adam et al.
(2022). However, that calibration set did not include bioenergy crops,
therefore, we calibrated switchgrass (see supplementary material,
Supplementary Section S3 and Supplementary Figure S2).

2.4.1.3 Climate forcing
Historical and future climate forcing data were obtained in the

manner described in Section 2.3.1.9.

2.4.1.4 Irrigation demand and crop yield
VIC-CropSyst provides “top-of-crop” water demand, which is the

water applied on the field. It does not include water lost in conveyance
(e.g., seepage through canal lining). We excluded conveyance losses
from the demand calculations, assuming that leakage from canals
returns to the river network and becomes available for downstream in-
and out-of-stream uses.

Crop yields and irrigation demands were calculated from VIC-
CropSyst outputs using a two-step procedure. In the first step, area-
weighted, average irrigation depth and yield were calculated for each of
the CropSyst crop types according to Equation 10,

]k � ∑i(Aik · ]ik)∑iAik
(10)

where Aik denotes the area of crop type k in grid cell i, and ]ik is
the corresponding depth of irrigation (mm/day) or yield (kg/m2/year).
The CropSyst simulations used a simplified land-use file containing
only crops with areas greater than 1% of a grid cell. The full land-use
file included all crops with areas greater than 0.0001% of a grid
cell. Only simulating crops from the simplified land-use file
greatly reduced the number of crops that needed to be run, which
increased computational efficiency. Following the first step, we used
the full land-use file to convert from per-area irrigation demands
and crop yields to irrigation volume and crop production as per
Equation 11,

Yk � ]k · Ak (11)
where Yk denotes volumetric irrigation rate (acre-feet/month) or crop
production (kg/year), ]k is determined according to Equation 10, and
Ak is determined from the full land-use file as the area of crop type k
summed across all grid cells.

2.4.2 Water source partitioning
A portion of irrigation withdrawals are satisfied from a groundwater

source and do not significantly impact streamflow. Thus, groundwater
demands were removed from VIC-CropSyst irrigation demands and
from consumptive municipal use prior to reservoir modelling and
calculation of instream flow. See Supplementary Section S4 for a
detailed description of how these splits were determined. The basin-
wide average split determined by these methods for consumptive water
use was 80% surface water and 20% groundwater.

2.4.3 Streamflow routing and bias correction
Runoff and base flow simulated for each VIC grid cell were routed

to 66 stream gauge locations selected from the Columbia Basin
Climate Change Scenario Project (Hamlet et al., 2013). Daily
streamflow was generated using the methodology of Lohmann
et al. (1996). Bias in routed streamflow prediction owing to model
structural uncertainties, as well as uncertainties in the meteorological
inputs and calibration parameters, was corrected at monthly and
annual timesteps to the no-regulation, no-irrigation (NRNI) dataset
(BPA, 2014) using the methodology of Snover et al. (2003). The
resulting bias-corrected, monthly flows were converted to weekly
flows. This was achieved via multiplication of the daily routed
flows by the ratio of monthly bias-corrected to monthly routed
flows. Then, the resultant ‘bias-corrected’ daily flows were
aggregated to a weekly timestep. The result of these steps was
weekly, bias-corrected, naturalized streamflow.

2.4.4 Reservoir modelling
The Columbia River hydrograph has been significantly altered by

an extensive system of reservoirs and hydroelectric dams. The
influence of these dams was modeled using a version of ColSim
(Hamlet and Lettenmaier, 1999), a reservoir model for simulating
operations of major dams to meet multiple objectives including flood
control, hydropower production, maintenance of environmental
flows, navigation, and recreation. The new version implements
ColSim algorithms in the open-source computational software, R
(Malek et al., in review). RColSim simulates the management of
major storage and run-of-river dams along the Columbia River
starting at Mica Dam, near the headwaters in British Columbia,
and ending at Bonneville Dam in Oregon. It also includes dams
along the Snake, Kootenai, Clark Fork, and Pend O’reille
tributaries (see Supplementary Figure S3).

RColSim combines naturalized flow and surface water demand
inputs with dam operating rules to produce regulated flow and
hydroelectricity generation outputs. Dam operating rules for
hydropower production, flood control, and flow targets are mostly
the same as those used by Hamlet and Lettenmaier (1999), with
minimal modification to capture important changes to the operating
rules (Alan Hamlet, personal communication). The operating rule
curves are chosen by the model based on the annual runoff forecast to
ensure sufficient flood evacuation in winter and refill by end of
summer. The mass balance for a reservoir in RColSim is calculated
according to Equation 12,

ΔR
Δt � Qinc −Dinc +∑Qup( ) − Qout (12)

where ΔR/Δt is change in reservoir storage per week, Qinc denotes
naturalized flow generated between the downstream and upstream
dam(s), Qup is outflow from immediately upstream dam(s),Dinc is the
surface water consumptive demand between the downstream and
upstream dam(s), and Qout is the reservoir outflow.

2.4.5 FEW metrics
2.4.5.1 Description of metrics

The food sector was evaluated on median annual crop production
of food crops aggregated to six groups (fruits, vegetables, potatoes,
wheat, corn, and other grains) (more details on the calculation of mean
or median can be found in the end of this section). We evaluated
impacts on the energy sector by calculating mean monthly
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hydropower generation andmedian annual production of switchgrass.
The water sector was evaluated on median monthly irrigation demand
(including groundwater irrigation) and mean monthly Columbia
River flow deficit calculated over a 30-year period.

The hydropower generation (Ehydro) is the total hydropower
generated at all dams during a weekly timestep (Equation 13).

Ehydro � ∑ Q · γ · h · η( ) (13)

Where the hydropower generated at a single dam is calculated as
the flow of water passing through the turbine (Q) multiplied by the
product of net head (h), the specific weight of water (γ), and the
combined turbine efficiency (η). The instream flow deficit is the
difference between the instream flow rule (ISF) for the Columbia
River established at The Dalles and regulated outflow from The Dalles
reservoir (QDalle) (Equation 14).

Qdeficit � ISF − QDalle if QDalle < ISF
0 otherwise

{ (14)

Both hydropower generation and instream flow deficit were
aggregated from a weekly to a monthly timestep, and the mean
monthly value was calculated.

For all metrics, a median or mean of the metric values at the
monthly or annual time scale was taken over the appropriate 30-yr
time frame. For CNRM-CM5 historical climate data this was
1976–2005, for future CNRM-CM5 data it was 2046–2075, and for
historical GridMet/Livneh data it was 1986–2015. Following
calculation of the mean/median, we bias-adjusted the results
according to the method described in the next sub-section.

2.4.5.2 Bias-adjustment of metrics
The CNRM-CM5 data, like data from any GCM, has bias.

We adjusted for the impact of bias on our metrics by using
either the difference method (Equation 15) or the ratio method
(Equation 16):

Mi,l,future � Mi,l,future
′ −Mi,l,historical +Mi,l,GridMet (15)

Mi,l,future � Mi,l,future
′

Mi,l,historical
·Mi,l,GridMet (16)

where M represents a given metric, the subscript i denotes the
irrigation scenario (no expansion, moderate expansion, or
maximum expansion), the subscript l denotes the land-use scenario
(RCP 8.5/4.5). The future subscript denotes the irrigation and land-use
scenario run with future CNRM-CM5 climate inputs, the historical
subscript indicates that same scenario using historical CNRM-CM5
climate data, and the GridMet subscript indicates that scenario using
observed GridMet/Livneh climate data. The prime (ʹ) designates the
metric prior to bias-adjustment.

The difference method often produces negative values during low
flows. To avoid this, we adjusted Columbia River instream flow deficits
using the ratio method (Equation 16).

2.4.5.3 Quantifying changes in the metrics
The changes in metrics for food, energy, and water were

compared across scenarios to evaluate impacts of LULCC, climate,
and irrigation expansion. We partitioned the net change in each of the
food, energy, and water metrics into its climate (ΔClim), land use
(ΔLU), and irrigation expansion (ΔIrr) components (Equations
17–20):

ΔClimi,l � Mi,l,future −Mi,l,GridMet

Mbaseline
( ) · 100% (17)

ΔIrri,l � Mi,l,GridMet −Mnoexpansion,l,GridMet

Mbaseline
( ) · 100% (18)

ΔLUl � Mnoexpansion,l,GridMet −Mbaseline

Mbaseline
( ) · 100% (19)

ΔTotali,l � Mi,l,future −Mbaseline

Mbaseline
( ) � ΔClimi,l + ΔIrri,l + ΔLUl (20)

where the baseline subscript denotes the GCAM baseline scenario
(2015 SSP5-RCP 8.5 land use and historical climate forcing). All
differences were normalized by the GCAM baseline scenario. It is
noteworthy that ΔClim combines the effects of climate change and
changes in atmospheric CO2. We assumed that in all future climate
scenarios, the CO2 concentrations increase according to the RCP 8.5
(611 ppm by the 2060s) or RCP 4.5 (507 ppm by the 2060s) emissions
pathways. The CO2 concentration over the baseline period
(1986–2015) had a mean value of 371 ppm.

3 Results and discussion

3.1 Downscaled scenarios for the CRB

We created spatially downscaled, integrated scenarios of LULCC
and irrigation expansion for the extended CRB. Since it provides

FIGURE 4
Projected trends in land use/cover across the extended CRB over
the 21st century. Results are shown for two GCAM LULCC scenarios:
SSP5-RCP 8.5 and SSP2-RCP 4.5.
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necessary context for the downscaled scenarios, Section 3.1.1 presents
trends in the GCAM LULCC data from 2015 to 2100. These include
projections under the high-emissions (SSP5-RCP 8.5) and climate
mitigation (SSP2-RCP 4.5) scenarios. Section 3.1.2 describes the
spatial distribution of land-use/cover trends and irrigation intensity
under the integrated scenarios. For simplicity, when discussing the
integrated scenarios, we will refer to SSP2-RCP 4.5 as RCP 4.5 and
SSP5-RCP 8.5 as RCP 8.5. However, when referring specifically to the
LULCC scenarios from GCAM, we will keep the full name.

3.1.1 Description of land-use/cover trends from
GCAM

GCAM projected large increases in bioenergy across the study
area, even for SSP5-RCP 8.5, which does not assume a global policy on
carbon emissions. Bioenergy under this scenario increased from a
baseline of zero in 2015 to approximately 40,000 km2 by 2060 and
remained nearly constant afterward through 2100 (Figure 4). The
corresponding increase under the mitigation scenario (SSP2-RCP 4.5)
was larger, with approximately 50,000 km2 planted by 2060. The trend
after 2060 was an exponential increase in bioenergy to approximately
240,000 km2 by 2100. This exponential increase was achieved by
conversion of shrubs, grasslands, and forests. Therefore, forests and
grasslands decreased exponentially after 2060 under SSP2-RCP 4.5.

The amount of land allocated for food production followed trends
unique to each SSP storyline. Under SSP2-RCP 4.5, the area steadily
increased from 2015 to 2040, reaching a plateau of 33,000 km2. In
contrast, the food cropland under SSP5-RCP 8.5 decreased from
30,000 km2 in 2015 to 28,000 km2 by 2040 but increased after 2050.
The difference in trends was due to differences in the assumptions
regarding population growth, agricultural technology, and per capita
food consumption between the SSPs. Population is projected to grow
until 2050 under both SSP2 and SSP5 (O’Neill et al., 2017); however,
agricultural productivity increases rapidly in SSP5, leading to a decline
in the area required to meet food demands. After 2050, population
stabilizes in SSP2 (Fricko et al., 2017) but continues to increase slightly
in SSP5 (Kriegler et al., 2017). This, combined with the greater per
capita calorie consumption rates under SSP5, led the food cropland
requirement under SSP5-RCP 8.5 to increase after 2050 and eventually
catch-up by the end of the century.

Land dedicated to pasture and growing forage crops like alfalfa hay
was projected under both GCAM scenarios to increase in a nearly
linear fashion over the 21st century from 11,000 km2 in 2015 to
17,000 km2 by 2100 under SSP5-RCP 8.5 and to 20,000 km2 by
2100 under SSP2-RCP 4.5. These growth trends follow from
assumptions of growth in demand for cattle feed to supply meat-
rich diets, especially under SSP5 (Kriegler et al., 2017). The “other”
land category includes land that could be cultivated in addition to non-
arable land categories like rock/ice/desert. The trend for this category
mirrored that of grass, shrubs, and forest, as marginal lands were
converted to grow bioenergy crops.

3.1.2 Spatially downscaled trends in LULCC
Figure 5 shows spatially downscaled LULCC in each of the more

than 20,000 model grid cells for the more than 100 VIC-CropSyst land
categories grouped under forest, grasses and shrubs, forage, other,
food, and bioenergy land categories. The highest food and forage crop
densities were located in four major agricultural regions in the CRB:
TheWillamette Valley of Oregon, southern Idaho’s Snake River Basin,
central and eastern Washington, and the Palouse dryland cropping

region of eastern Washington and north central Idaho. While there
was modest growth in food and forage in these regions, bioenergy
crops contributed most to agricultural intensification, mainly by
replacing grasslands, shrubs, and forest on marginal lands. The
transition from forest to bioenergy was especially stark for RCP
4.5. By 2100, large swathes of forest in western Washington and
Oregon were converted to trees harvested for biomass. It is important
to note that GCAM includes two categories of biomass: grasses and
trees. For simplicity and due to model limitations, we converted all the
tree biomass to switchgrass for crop simulations.

The spatial extent of water rights controls the area of land
authorized for irrigation. Since the no-expansion scenario
constrains total irrigated area to the 2018 level of 34,000 km2,
change in the total amount of irrigated land under either RCP
4.5 no expansion or RCP 8.5 no expansion was negligible (see
Figure 6). When the irrigated area was allowed to increase on land
with an existing water right (moderate expansion), irrigation
intensified in eastern Washington and the Snake River Basin
(Figure 6A). After an initial 10,000 km2 spike in irrigated area due
to maximizing irrigated area within existing POUs, irrigated extent
continued increasing over time, from 44,000 km2 in 2020 to
50,000 km2 by 2100 under the RCP 8.5 moderate expansion
scenario and from 44,000 km2 in 2020 to 53,000 km2 by
2100 under the RCP 4.5 moderate expansion scenario, driven
largely by irrigated bioenergy crops for both scenarios (Figure 6B).
The approximately 50% increase in irrigated area under moderate
expansion compared to no expansion indicates large potential for
irrigation expansion under existing water rights, without the need for
issuing new ones.

In addition to intensification of irrigated agriculture, Figure 6A
also reveals some areas where the irrigated area is less under moderate
expansion than under no expansion. This is most notable in the
southwestern part of the basin, in Oregon’s Willamette Valley. This
counterintuitive result is due to lack of agreement between estimates of
water right POU extent and satellite-based estimates of irrigated
extent. When estimating the historical irrigated extent, we assumed
that high-value crops like fruits, vegetables, seed crops, and alfalfa are
always irrigated. This resulted in assigning some agricultural lands to
the irrigated category despite the absence of an existing water right.
The implication is either that we misclassified non-irrigated land as
irrigated by this process or that the POU data were incomplete. Since it
would not be feasible to investigate each grid cell to definitively
determine the source of error, we had to either adjust the data so
that the two datasets matched or accept some level of uncertainty. Our
approach was to accept small uncertainty and to determine POU
extent and historical irrigated extent by independent methods.
Consequently, there were notable hotspots where historical
irrigated area exceeded POU area within individual grid cells.
Across the extended CRB region, these hotspots, when defined as
historical irrigated area exceeding POU area by more than 1% of a grid
cell, occurred in 9% of irrigated grids. Had we chosen to harmonize the
water right POU with the historical irrigation datasets, either by
increasing the POU extent or by decreasing the historical irrigated
extent, changes in the FEW metrics from baseline would have been
equal to or greater in magnitude than we report in Section 3.2.

Under maximum-expansion scenarios, new land was brought
under irrigation in areas formerly covered by shrubs, grassland,
and forest. The maximum-expansion scenarios showed an almost
300% increase in irrigated area by 2040 for both RCP 8.5 and RCP
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4.5 compared to baseline, driven by conversion of marginal lands in
the main agricultural regions to irrigated switchgrass. The growth
slowed after 2040 for RCP 8.5, resulting in 121,000 km2 by 2100, but it
accelerated under RCP 4.5 due to exponential bioenergy growth, such
that there was 190,000 km2 of irrigated land by 2100 (Figure 6B).

3.2 Case study: CRB FEW subsystems

The spatially downscaled LULCC scenarios provided the
necessary land-use/cover parameterization for conducting our case
study, which evaluated climate and LULCC impacts on select
Columbia FEW subsystems. Expanding irrigated acreage to
increase food crop and bioenergy crop production resulted in a
decrease by 0% to 8% in hydropower generation and an increase
by 9% to 165% in Columbia River instream flow deficits, when also
accounting for the effects of climate and land use.

We used statistically downscaled climate projections from the
CNRM-CM5 GCM to simulate middle-of-the-road changes in
temperature and precipitation. By the 2060’s, the mean annual
temperature is projected to increase by 2.1°C to 3.6°C with a mean
of 3.0°C under the RCP 8.5 emissions pathway across all grid cells in
the study region and by 1.6°C to 2.9°C with a mean of 2.2°C under the
RCP 4.5 pathway. The mean annual precipitation is projected to
increase by 396 to −121 mm/year with a mean of 56 mm/year (RCP

8.5) and by 290 to 121 mm/year with a mean of 40 mm/year (RCP 4.5).
The spatial variation in climate projections by the 2060’s is shown
alongside historical temperature and precipitation in Supplementary
Figure S4. Climate change in isolation generally led to higher crop
yields, greater instream flow deficits, and less hydropower generation
in summer and fall.

3.2.1 Food sector: Food crop production
The response of food crop production to land use, climate, and

irrigation varied considerably by crop category. Overall, the only crop
showing an increase in production across all six future scenarios was
wheat. Fruit, vegetable, and potato production declined under RCP 8.5 due
to a decline in land area dedicated to those crops. Corn was the only crop
for which the yield impact of climate was consistently negative.

The difference in food crop production between scenarios with
different levels of irrigation expansion but the same land use (e.g., RCP
4.5 maximum expansion and RCP 4.5 no expansion) was most
pronounced for crops, like wheat, that are grown under both
irrigated and non-irrigated conditions (see Figure 7). Expanding
irrigation resulted in a greater percentage of irrigated vs. dryland
wheat, thus increasing wheat yields overall. In contrast, we assumed
that crops like corn, potatoes, and fruit trees are always irrigated, leaving
no room for their irrigated fractions to increase. While climate change
(inclusive of elevated CO2) had a positive influence on all wheat yields
(see Table 2), ΔClim for wheat was greater for the no-expansion

FIGURE 5
Spatially downscaled LULCC trends and six major land-use/cover categories under the RCP 8.5 and RCP 4.5 pathways. Trends are given in terms of
difference from the 2015 base year. The grey area is the extended CRB, which includes land in western Washington and Oregon lying outside the CRB
boundary. The black boundary demarcates the CRB proper.
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scenarios (ΔClim of 39% under RCP 8.5 and 32% under RCP 4.5) than it
was for the maximum-expansion scenarios (ΔClim of 17% under both
RCP 8.5 and RCP 4.5). This result is likely due to the greater percentage
of dryland wheat in the no-expansion scenarios. Dryland wheat has
lower baseline yields and therefore greater potential for productivity
growth. Two competing factors determine the combined effect of
climate and CO2 on yield of annual crops like wheat. The first is
CO2 fertilization, which tends to raise yields, and the second is
accelerated crop maturity caused by warming temperatures, which
tends to diminish yields (Rajagopalan et al., 2018). The positive
ΔClim among annual crops in our simulations suggest CO2

fertilization stimulated the dominant response.
Total production of potatoes, fruits, and vegetables declined due to

a reduction in their share of crop area. Namely, ΔLU was −30% under
RCP 8.5 and −11% under RCP 4.5. The modest positive influence of
climate was unable to compensate for loss of cropland under RCP 8.5.
This caused the production of fruits, vegetables, and potatoes to

change by −15% (ΔTotal for maximum-expansion scenario)
to −20% (ΔTotal for no-expansion scenario). Our results conflict
somewhat with those reported by Rajagopalan et al. (2018), who found
on average a 7% decrease in potato yields over the CRB due to climate
change. We observed an average 17% increase in potato yields due to
climate change alone (even though production decreased due to
decline in potato cropland). This large disparity can be attributed
to differences between the two studies in the values used for the crop
parameters that control the potato CO2 response.

Corn is unique from the other food crops because it has a
C4 photosynthetic pathway, which allows it to efficiently fix CO2

from the atmosphere. Free-air CO2 enrichment experiments have
shown that C4 plants are less responsive to elevated CO2 than are
C3 plants (Kimball et al., 2002). Meanwhile, warming temperatures
shorten the crop cycle length (Hatfield et al., 2011). As a result, corn
yields declined under both RCP 8.5 (ΔClim = −9% for all irrigation
levels) and RCP 4.5 (ΔClim = −4% for all irrigation levels).

FIGURE 6
Time series of total irrigated area under RCP 4.5 and RCP 8.5 LULCC scenarios and three irrigation expansion scenarios: no expansion (2018 irrigation),
moderate expansion (constrained by water right place of use), and maximum expansion (constrained by SSURGO irrigated land capability class). Panel (A)
shows the spatial distribution of changes in irrigated area from contemporary irrigated extent and panel (B) gives total irrigated area over the entire study area
in 5-year increments from 2015 to 2100.
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3.2.2 Energy sector: Bioenergy and hydropower
Climate change alone caused both bioenergy crop production

and hydropower generation to increase. The hydropower response to
climate had a distinct seasonality. Hydropower generation decreased
June through November because of large withdrawals during the
irrigation season (April through October) combined with declines in
summer water supply due to warming-induced shift in streamflow
timing. Earlier streamflow peaks led to greater winter streamflow and
a marked increase in winter hydropower generation. The net effect of
climate on an annual timescale was a small increase in generation
(ΔClim of 1% to 2%). Irrigation expansion and land-use change both
had negative effects on hydropower and positive effects on
bioenergy. As a result, while switchgrass production increased by
46% (ΔTotal) at the lower end for RCP 8.5 no expansion to 256% at
the upper end for RCP 4.5 maximum expansion, hydropower
generation decreased by 0% under RCP 8.5 no expansion and
decreased by 8% under RCP 4.5 maximum expansion (see Table 3).

These results have important implications for energy development
in the region. The Northwest Power and Conservation Council is

already planning to integrate more renewable energy in the form of
solar and wind power (NWPCC, 2022). Climate mitigation policy to
incentivize bioenergy could shift the composition of the energy sector
away from hydropower and could result in downsizing or shuttering of
some hydroelectric facilities, especially if reduced flows make
hydropower less reliable.

3.2.2.1 Bioenergy (switchgrass) production
The results for bioenergy crop production are shown in Figure 8.

The large ΔClim values were due in part to our choice to simulate all
bioenergy crops as switchgrass, which is typically harvested two or
three times in a single year. Multiple-cutting crops like switchgrass can
benefit from enhanced biomass accumulation, so long as there is
sufficient water to irrigate them (Rajagopalan et al., 2018). For RCP
4.5 land use, crop production was greater primarily because
switchgrass land area was approximately 20% greater under RCP
4.5 than under RCP 8.5. This led to a ΔLU of 24% for the RCP 4.5 no
expansion scenario when measured against the RCP 8.5 no expansion
scenario as a baseline (Table 3). The change in baseline from GCAM

FIGURE 7
Annual crop production for major food crops in the extended CRB. Total production, both irrigated and dryland, was aggregated from CropSyst crop
types to the six crop groups, and themedian annual production for each crop groupwas calculated over the appropriate 30-yr time frame for future scenarios
(2046–2075) or baseline scenarios (1986–2015). The black horizontal line within (or above) each column marks the crop production value for that scenario
using historical GridMet/Livneh climate data. The distance measurements show each component used to calculate ΔClim, ΔIrr, ΔLU, and ΔTotal as per
Eqs 17–20, using RCP 4.5 maximum expansion as an example. Results shown do not account for curtailment impact on irrigated yields.

TABLE 2 Response of food crop production to climate change (ΔClim), irrigation expansion (ΔIrr), and land-use change (ΔLU), normalized by the GCAM baseline
scenario. Values do not reflect impact of curtailment on irrigated yields.

Scenario Fruits, vegetables, and potatoes Wheat and small grains Corn

ΔClim ΔIrr ΔLU ΔTotal ΔClim ΔIrr ΔLU ΔTotal ΔClim ΔIrr ΔLU ΔTotal

RCP 8.5 no expansion 10% 0% −30% −20% 39% 0% −2% 37% −9% 0% 0% −9%

RCP 8.5 moderate exp 10% 0% −30% −20% 32% 21% −2% 51% −9% 0% 0% −9%

RCP 8.5 maximum exp 11% 4% −30% −15% 17% 65% −2% 80% −9% −1% 0% −10%

RCP 4.5 no expansion 12% 0% −11% −1% 32% 0% 3% 35% −4% 0% 3% −1%

RCP 4.5 moderate exp 12% −1% −11% 0% 28% 22% 3% 53% −4% 0% 3% −1%

RCP 4.5 maximum exp 13% 4% −11% 6% 17% 66% 3% 86% −4% −1% 3% −2%
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baseline to RCP 8.5 no expansion was required since GCAM baseline
has zero bioenergy cropland. An additional effect of more switchgrass
under RCP 4.5 was a greater change in production in response to
expanding access to water rights. Accordingly, the ΔIrr for RCP
4.5 maximum expansion was 143% compared to 102% for RCP
8.5 maximum expansion.

3.2.2.2 Hydropower
The effects of climate, irrigation, and land use on hydropower are

shown in Figure 9. Hydropower generation largely reflected seasonal
trends in streamflow. The CRB has a snowmelt-dominant streamflow
regime, with peak streamflow occurring historically in May or June.
However, climate change is expected to shift streamflow timing earlier
in the season due to a smaller percentage of precipitation falling as
snow (Barnett et al., 2005). This should create conditions of greater
winter water availability and reduced summer water availability (Hall
et al., 2021). In support of this hypothesis, we found that ΔClim was
positive in winter (15% under RCP 8.5 no expansion) and negative in

summer (−13% under RCP 8.5 no expansion). These results are
comparable to those of Hamlet et al. (2010) who reported a 5%
increase in winter hydropower output and 12% to 15% decrease in
summer hydropower output. On the annual time scale, climate had a
small positive effect on hydropower (see Table 3). The ΔClim was
slightly greater for the RCP 8.5 scenarios (2% for all irrigation
scenarios) than for the RCP 4.5 scenarios (1% for all irrigation
scenarios). The difference between RCPs was primarily due to a
smaller increase in winter flows and therefore a smaller increase in
hydropower generation under RCP 4.5 climate conditions.

Expansion of water rights had greater influence on hydropower
generation than climate, with annual ΔIrr ranging from −2% under
RCP 8.5 moderate expansion to −7% under RCP 4.5 maximum
expansion (Table 3). The ΔIrr was more negative June through
August, when irrigation withdrawals were greatest, and less
negative during the months of September and October, when
irrigation withdrawals were small (Figure 9). However, the ΔIrr in
November caused generation to fall beneath the firm energy load (line

TABLE 3 Response of hydropower generation and bioenergy crop production to climate change (ΔClim), land-use change (ΔLU), and irrigation expansion (ΔIrr).
Hydropower generation is normalized by the GCAM baseline scenario and Bioenergy production is normalized by the RCP 8.5 no expansion scenario. The monthly
median/mean results for hydropower were summed before using Eqs 17–20 to calculate annual net changes.

Scenario Hydropower generation Bioenergy crop production

ΔClim ΔIrr ΔLU ΔTotal ΔClim ΔIrr ΔLU ΔTotal

RCP 8.5 no expansion 2% 0% −2% 0% 46% 0% 0% 46%

RCP 8.5 moderate exp 2% −2% −2% −2% 53% 23% 0% 76%

RCP 8.5 maximum exp 2% −6% −2% −6% 81% 102% 0% 183%

RCP 4.5 no expansion 1% 0% −2% −1% 47% 0% 24% 71%

RCP 4.5 moderate exp 1% −2% −2% −3% 54% 27% 24% 105%

RCP 4.5 maximum exp 1% −7% −2% −8% 89% 143% 24% 256%

FIGURE 8
Annual production of bioenergy crops, represented by switchgrass in the extended CRB. Switchgrass production, both irrigated and dryland, was
summed over all grid cells and the median calculated over the years 2046–2075 (future scenarios) or 1986–2015 (historical scenarios). The horizontal black
line within (or above) each column marks the crop production value for that scenario using historical GridMet/Livneh climate data. The distance
measurements show each component used to calculate ΔClim, ΔIrr, ΔLU, and ΔTotal as per Eqs 17–20, using RCP 4.5 maximum expansion as an
example. The baseline scenarios are not shown because the bioenergy acreage was zero in the 2015 base year. Therefore, RCP 8.5 no expansion was
substituted for GCAM baseline in the computation of ΔClim, ΔIrr, ΔLU, and ΔTotal. Results do not account for impact of curtailment on irrigated yields.
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plot in Figure 9), which is the energy that must be generated under
contract. Declines in November were caused by greater withdrawals
during the irrigation season leading to less water stored in the
reservoirs for the late-fall drafting period. The effect of land-use
change alone (ΔLU) was similar in magnitude to ΔIrr and ΔClim
(−2% under both RCP 8.5 and RCP 4.5) (Table 3). The land-use effect
was negative because switchgrass was more water intensive than the
irrigated crops it replaced.

3.2.3 Water sector: Irrigation demand and
instream flow

The overall changes in climate, irrigation expansion, and land
use resulted in greater irrigation demands and flow deficits
(Table 4). Climate change caused greater irrigation demand in
most months but caused significant declines in July (Figure 10).
Meanwhile, climate change led to smaller instream flow deficits

April through June and greater deficits July through October (see
Figure 11). The seasonal sensitivity of instream flow to climate
change implies heightened competition between irrigation and
fish survival in the months of July through September, even absent
any increase in irrigation. The hypothesis that climate pressures
on instream flows will increase is supported by Markoff and Cullen
(2008), who similarly found that targets for instream flows along
the Columbia River were missed more frequently under all future
climate scenarios. Their results and ours suggest climate change
will exacerbate the unintended consequences of expanding
irrigation. Such consequences include substantial damage to the
fishing industry and further strain on the survival of salmon: a
centerpiece of Native American diet and custom. At present,
several of these tribes have treaty rights to fish at “usual and
accustomed places” (Bernholz and Weiner, 2008). Expanding
irrigated agriculture in basins where flows are near critical
levels would increase the risk of breaking treaty obligations.

3.2.3.1 Irrigation demand
The ΔClim values for irrigation demand reflected physiological

changes in the irrigated crops due to warming temperatures, leading to
accelerated plant growth and water consumption early in the irrigation
season (April through July). Accelerated growth resulted in earlier
maturity for annual crops, like wheat, and reduced irrigation demands
for the month of July, the peak irrigation month. In addition to
warming-induced shortening of crop cycles, it is well established that
increased CO2 concentrations produce higher water-use efficiencies in
most plant species due to a decrease in stomatal conductance (Kimball
et al., 2002). In a cropping systems simulation experiment, Scarpare
et al. (2022) found that elevated CO2 reduced crop water use for a
range of annual crops, including both C3 and C4 varieties.

Following harvest of most annual crops, irrigation
requirements were driven by perennial crops like tree fruits and
by crops with multiple cuttings, like alfalfa and switchgrass. Crops
with multiple cuttings had a greater annual irrigation requirement
under future climate conditions because biomass accumulated
more quickly following each cut, and there were more cuts on
average. This resulted in greater ΔClim values late in the irrigation
season during the months of August through October (Figure 10).
On the annual timescale, ΔClim ranged from −4% to 0% under
RCP 8.5 and from −1% to 15% under RCP 4.5 (Table 4). The

FIGURE 9
Hydropower generation at major hydroelectric dams in the CRB
compared to the firm energy load. Mean monthly generation was
calculated over 1986–2015 (baseline scenarios) or 2046–2075 (future
scenarios). The black horizontal line within (or above) each column
represents the hydropower generation for that scenario run with
historical GridMet/Livneh climate data.

TABLE 4 Response of irrigation demand and instream flow deficit to climate change (ΔClim), irrigation expansion (ΔIrr), and land-use change (ΔLU), normalized by the
GCAM baseline scenario. The monthly median/mean results were summed before using Eqs 17–20 to calculate annual net changes.

Scenario Annual irrigation demand Columbia river instream flow deficit

ΔClim ΔIrr ΔLU ΔTotal ΔClim ΔIrr ΔLU ΔTotal

RCP 8.5 no expansion −4% 0% 1% −3% 25% 0% −4% 21%

RCP 8.5 moderate exp −3% 44% 1% 42% 35% 25% −4% 56%

RCP 8.5 maximum exp 0% 217% 1% 218% 49% 89% −4% 134%

RCP 4.5 no expansion −1% 0% −1% −2% 14% 0% −5% 9%

RCP 4.5 moderate exp 1% 47% −1% 47% 20% 27% −5% 42%

RCP 4.5 maximum exp 15% 246% −1% 260% 37% 133% −5% 165%
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greater ΔClim for RCP 4.5 relative to RCP 8.5 was due primarily to
a greater percentage of switchgrass in the crop mix for RCP 4.5.

TheΔLU for irrigation demand was smaller than ΔClim. The most
important role of land-use change was its interaction with irrigation
expansion. The RCP 4.5 scenario had a greater portion of land
allocated to switchgrass than the RCP 8.5 scenario. Switchgrass
primarily replaced non-irrigated categories like forest and shrubs,
resulting in large increases in irrigation demand under the moderate
and maximum irrigation-expansion scenarios. Accordingly, the
annual ΔIrr ranged from 44% to 217% for RCP 8.5 and from 47%
to 246% for RCP 4.5 (Table 4).

3.2.3.2 Instream flow deficit
Instream flow deficit for the Columbia River mainstemwas heavily

influenced by both climate change and irrigation expansion. Climate
influenced crop water-use patterns and streamflow timing, leading to
distinct seasonality in the instream flow response (Figure 11B). The
role played by water supply in flow deficit is shown in Figure 11A by
plotting regulated flow without irrigation, i.e., water supply under the
influence of dams before any withdrawals have been made. The water
supply for future climate scenarios was greater during the winter
months and smaller during the summer months due to the smaller
snowmelt contribution to total runoff (Figure 11A). As previously
noted, climate change generally caused irrigation demands to increase
in months other than July. The combination of lower summer supply
and higher irrigation demands late in the summer contributed to large

FIGURE 10
Total monthly irrigation demand for the extended CRB. The water
demand includes groundwater and surface water irrigation (excluding
conveyance losses). Median demand was calculated over 1986–2015
(baseline scenarios) or 2046–2075 (future scenarios). The black
horizontal line within (or above) each column represents irrigation
demand for that scenario run with historical GridMet/Livneh climate
data.

FIGURE 11
Columbia River regulated water supply (A) and instream flow deficit (B) measured at The Dalles, Oregon. The mean monthly deficit over 1986–2015
(baseline scenarios) or 2046–2075 (future scenarios) includes years with zero deficit in that month. The black horizontal line within (or above) each column
represents deficit for that scenario run with historical GridMet climate data. Panel (A) shows the instream flow (ISF) rule along with regulated water supply (no
irrigation) from The Dalles reservoir corresponding to historical GridMet climate and future RCP 8.5/4.5 climate.
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July and August flow deficits. On the annual timescale, climate
contributed to increases in the flow deficit by 25% to 49% under
RCP 8.5 and by 14% to 37% under RCP 4.5. The flow deficits were
intensified by irrigation expansion, with ΔIrr on the annual time scale
ranging from 25% to 89% for RCP 8.5 and from 27% to 133% for RCP
4.5 (Table 4).

Similar studies that address the impact of bioenergy cropland
expansion on water availability have likewise found that scenarios with
a bioenergy-based pathway for climate mitigation exhibit greater water
stress. For instance, Cheng et al. (2022) calculated a 2.7% decrease in
annual runoff for the Pacific Northwest region under the SSP2-RCP
4.5 scenario. We observed an increase in flow deficit by 9% under the
comparable RCP 4.5 no expansion scenario. Their study, and ours
more directly, suggest bioenergy expansion could compromise water
security in the CRB.

3.2.4 Study limitation and future directions
Here we highlight a couple key limitations in our analysis. The

FEW metrics did not account for the influence of water right
curtailment. The principal effect of curtailment on FEW metrics
would be to reduce crop yields and to augment streamflow,
resulting in smaller flow deficits and greater hydropower
generation because a portion of irrigated cropland served by a
junior water right would not receive water during shortages. While
the difference in results would be minimal for the no-expansion
scenarios, the differences could be quite large for the moderate-
and maximum-expansion scenarios, since both involve increases in
cropland with an interruptible water right. Curtailment would
therefore dampen the effect of expanding irrigated acreage on
consumptive water use. Curtailment has important implications for
FEW subsystems because it can result in yield and revenue loss for
farmers with a junior water right.

The modelling framework used in this study is not currently
capable of simulating competition between bioenergy and other fuels
in local energy markets, which competition will have a major impact
on the land planted to biofuel crops. While the current framework
relies upon the price-clearing model of GCAM to simulate markets on
a global scale, the profitability of growing bioenergy crops will also be
influenced by demand for alternative heating and transportation fuels
among residents of the CRB. Therefore, a rigorous analysis of the costs
and benefits of allocating water for irrigating bioenergy crops and
hydropower generation would require simulation of prices with the
aid of a regional economic model. Moreover, additional analysis is
needed to translate depletion of streamflow into fish survivability
metrics before tradeoffs between water for irrigation and water for fish
can be communicated in practical terms.

4 Conclusion

In this paper, we assessed impacts of global change on regional
FEW sector outcomes in a water-limited basin using a multi-model
approach with spatial downscaling. Explicit representation of water
rights in the downscaling module allowed for investigating the role of
water right POU in moderating the impact of LULCC on water
availability for food crops, bioenergy, hydropower, and instream flow.

In the case study, we found the net impact of climate change in all
the scenarios to be greater yield for crops other than corn, greater

irrigation demand for months other than July, larger summer flow
deficits, smaller spring flow deficits, less June through November
hydropower generation, and greater winter hydropower generation.
While it had a large effect on total crop production, land-use change
alone had very little impact on either irrigation demand or Columbia
River instream flow deficit compared to climate change and irrigation
expansion.

The case study showed a tradeoff between expanding irrigated
extent to boost crop yields on the one hand and maintaining enough
streamflow to support hydropower and instream flow needs on the
other. Even when expansion was constrained to the extent of existing
water right POUs (moderate expansion), the increased irrigated area,
combined with climate change, led to a doubling of bioenergy crop
production concurrent with ~2% reduction in hydropower generation
and ~50% increase in instream flow deficits by the 2060’s. When all
irrigable land was given access to a water right (maximum expansion),
bioenergy crop production increased by 183% under RCP 8.5 and
256% under RCP 4.5, but this was achieved at the cost of reducing
hydropower generation by 6% under RCP 8.5 and 8% under RCP
4.5 and increasing instream flow deficits by 134% under RCP 8.5 and
165% under RCP 4.5. These tradeoffs have important implications for
the FEW nexus of the CRB.

Spatial downscaling forms a crucial bridge between IAMs and
models used to study regional FEW sectors. Our case study highlighted
competition among multiple uses of water, under the pressures of
global human and environmental change. In basins with seasonal
water scarcity, like the CRB, water law balances the requirements of
instream and out-of-stream uses. It does so, in part, by controlling how
much land can be irrigated. Bioenergy crops are expected to increase in
many LULCC scenarios to meet rising demands for second-generation
biofuels. Our results indicate bioenergy production would be greatly
enhanced by expanding access to water rights, but this benefit would
come at considerable cost to fish and hydropower. Basins worldwide
are likely to face similar challenges to co-managing resources in the
coming century. A fuller integration of water rights into FEW
subsystem analysis would give greater insight into the role of water
regulation in shaping each of the sectors and may help evaluate
impacts of water policy on FEW security.
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