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Since the reform and opening-up, China has made remarkable achievements in
economic growth, but also led to a substantial increase in carbon emissions. The
Chinese government has actively formulated energy intensity reduction targets
and taken carbon emission reductionmeasures. The paper investigates the impact
of energy intensity reduction targets on carbon emissions using a dynamic spatial
Durbin model based on panel data from 30 provinces in China from 2006 to 2019.
The results show that energy intensity reduction targets promote the reduction of
local carbon emissions, but have a positive spillover effect on carbon emissions in
adjacent regions. Meanwhile, green technology innovation has a non-linear
moderating effect between energy intensity reduction targets and carbon
emissions. Energy intensity reduction targets promote carbon emission
reduction when green technology innovation is less than a threshold, while the
promotion effect disappears when green technology innovation exceeds a
threshold. The mechanism analysis shows that energy consumption structure
is a channel through which energy intensity reduction targets affect carbon
emissions in both local and adjacent regions. Further research found that peer
competitive pressure promotes carbon emission reduction and alleviates
pollution spillover, while central assessment pressure increases carbon
emissions and aggravates pollution spillover. Based on the above findings, this
study provides suggestions for policymakers aiming at carbon emission reduction
by implementing target management policies and optimizing target management
systems.
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1 Introduction

Since the reform and opening up, China’s economy has experienced rapid expansion and
people’s living standards have risen markedly. However, its extensive development mode
characterized by high energy consumption, high emissions, and high pollution has also led to
serious ecological damage and environmental pollution. The International Energy Agency
(IEA) reports that China surpassed the US as the world’s top emitter of carbon dioxide in
2006 with carbon emissions totaling 5.96 billion tons (Wang and Guo, 2022). According to
Carbon Emissions Accounts and Databases (CEADs), China’s total carbon emissions
increased from 3.03 billion tons in 1997 to 10.43 billion tons in 2019, which has an
average annual increase of 5.78%; per capita carbon emissions have increased from 5.27 tons
in 2006 to 9.10 tons in 2019, which has an average annual increase of 4.29%. As a responsible
major power, China takes responsibility actively for reducing carbon emissions and taking
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active measures to participate in climate problem control actions
together with other countries. Within the framework of the Paris
Agreement, China submitted to Enhanced Action on Climate
Change: China’s Intended Nationally Determined Contributions
and committed to reaching a carbon peak by 2030 and carbon
neutrality by 2060 (Liu et al., 2022).

Given severe environmental pollution and increasing
environmental pressure, the central government has proposed
energy intensity reduction targets (EIRT) in its annual
government work reports since 2006. In China’s current political
system, the appointment, removal, demotion, and promotion of
local officials are determined by the superior government (Wu and
Zhang, 2018). When the central government begins to set energy
intensity reduction targets and decompose them top-down to local
governments, the achievement of these goals will be effectively
linked to the political promotion of local officials (Zhao and Wu,
2016). Therefore, local governments should consider not only the
economic growth level but also the environmental protection level in
regional development. On this occasion, local governments began to
set energy intensity reduction targets in their annual government
work reports, and implemented a series of incentives, especially to
give policy support to the research and investment in energy-saving
and consumption-reducing technologies as well as the development
and application of clean energy.

However, carbon emissions usually occur in conjunction with
the use of energy because economic development is inseparable from
energy consumption. In the study of the relationship between energy
and carbon emissions, some scholars have found that the increase in
energy intensity (Shahbaz et al., 2015) and energy consumption
(Zhou et al., 2010) leads to an increase in carbon emissions, but the
improvement of energy efficiency (Zhang G et al., 2018) promotes
carbon emission reduction. In the research on the relationship
between government policy and carbon emissions or
environmental pollution, the relevant studies mainly focus on the
impact of environmental regulation (Zhang F et al., 2020; Wang K
et al., 2022), economic growth targets (Ge et al., 2022a;Wang X et al.,
2022) and energy intensity targets (Zhang and Wang, 2022).
Environmental regulation has an inverted U-shaped relationship
with carbon emissions (Zhang W et al., 2020), but a U-shaped
relationship with environmental pollution (Wang Z R et al., 2022).
Economic growth targets may lead to an increase in carbon
emissions (Ge et al., 2022b; Wang K et al., 2022), while energy
intensity targets are conducive to promoting carbon emission
reduction based on energy intensity reduction targets data set by
the central government for each province during the three Five-Year
Plan (Zhang and Wang, 2022). However, few scholars combine
annual energy intensity reduction targets with carbon emissions to
explore the relationship between them.

To fill the abovementioned knowledge gap, this paper
incorporates EIRT and carbon emissions into the same research
framework. We aim to answer the following questions: Considering
the characteristics of yardstick competition in energy intensity target
setting under promotion tournaments, how does EIRT affect carbon
emissions of local and adjacent regions? Technological progress is an
important means to achieve the goals of energy saving and emission
reduction (Li et al., 2019; Zhang F et al., 2020) as well as plays an
important moderating role in low-carbon economic development
(Qi et al., 2019). Green innovation can also suppress carbon

emission intensity (Liu et al., 2022). Is there heterogeneity in the
carbon reduction effect of EIRT due to green technology innovation?
Apart from direct impacts, are there other pathways through which
EIRT affects carbon emissions? Will there be differences in carbon
reduction effect when local governments set EIRT according to
different reference standards? Through studying the above
questions, we can clarify the relationship between EIRT and
carbon emissions, especially the differences between regions.
These findings can provide a theoretical basis for the government
to adjust EIRT and formulate a more detailed energy target
management plan. It has important theoretical guidance and
practical significance for China to achieve high-quality economic
development and sustainable environmental development.

To solve the above problems, this paper uses the panel data of
30 provinces in China from 2006 to 2019 and the dynamic spatial
Durbin model to explore the impact of EIRT on carbon emissions. It
is found that EIRT can promote the reduction of carbon emission
intensity in a specific region, however, it will lead to an increase in
neighboring areas. Green technology innovation has a positive
moderating effect between EIRT and carbon emission intensity.
The research on intermediary mechanisms shows that energy
consumption structure plays an intermediary role between EIRT
and carbon emission intensity. Further research finds that it is more
conducive for local governments to promote carbon emission
reduction concerning the peer governments’ EIRT when setting
EIRT. Therefore, this paper proposes that the government should
balance the relationship between economic growth targets and EIRT,
intensify investment in scientific and technological research and
strengthen inter-regional cooperation and exchanges.

The contributions of this study are mainly in the following
aspects: Firstly, previous studies have extensively explored the
factors affecting carbon emissions, but few pieces of research
have been conducted from the perspective of government target
management. This paper studies the impact of energy intensity
reduction targets on carbon emission intensity to enrich the existing
literature. Secondly, considering the time dependence and spatial
correlation, the dynamic spatial Durbin model is used to
compensate for the possible bias of general regression results.
Thirdly, considering regional heterogeneity, this paper takes
green technology innovation as a moderating variable to explore
the moderating effect of energy intensity reduction targets in
promoting carbon emission reduction, which provides a specific
path for carbon emissions. Fourthly, this paper discusses the driving
force of formulating energy intensity reduction targets from three
aspects: central government, peer government, and their own
pressure, which is of great practical significance for better
implementing energy intensity target management and exerting
its energy saving and emission reduction effect.

The remainder of this paper is organized as follows: Section 2
provides a literature review. Section 3 introduces methodology and
data, including the econometric model, spatial weight matrix,
variable selection, and the source of data. Section 4 reports the
empirical results and discussions, including spatial correlation test,
spatial econometric regression results, robustness test, and
mechanism analysis. Section 5 provides further discussion to test
the impact of local government EIRT under different setting
standards on carbon emission intensity. Section 6 contains
conclusions and policy implications.
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2 Literature review

Generally, population, affluence, and technological progress are
considered to be the main factors that influence carbon emissions
(Feng et al., 2009), and these factors mainly stem from the
contribution of IPAT (I: carbon emissions, p: population, A:
affluence, T: technology) characteristics (Yan et al., 2022).
Subsequent studies have mainly improved the IPAT model and
used stochastic impacts by regression on population, affluence, and
technology (STIRPAT) model as a theoretical model for exploration.
Some scholars used other econometric methods to study, such as the
long short-term memory (LSTM) approach (Mele and Magazzino,
2020), machine learning approach (Magazzino et al., 2021;
Magazzino and Mele, 2022), logarithmic mean division index
(LMDI) decomposition method (Zhou et al., 2019), propensity
score matching and differences-in-differences (PSM-DID) (Zhou
et al., 2019), quantile regression method (Cheng et al., 2022; Liu
et al., 2022), input-output method (Liu and Zhao, 2021), partial
equilibrium model (Yu et al., 2022), autoregressive distributed lag
models (ARDL) (Wang, 2022). And they found the influencing
factors of carbon emissions containing economic growth (Ren et al.,
2021; Mele and Magazzino, 2020; Magazzino et al., 2021; Magazzino
and Mele, 2022), energy transition (Ren et al., 2021), energy
consumption and use (Udemba et al., 2020; Magazzino, 2016),
technological innovation and technological progress (Ahmed
et al., 2016; Gu et al., 2020; Cheng et al., 2022; Liu et al., 2022),
global value chain participation (Liu and Zhao, 2021), financing
constraints (Yu et al., 2022), foreign direct investment (Zeng and Ye,
2019), and capital allocation efficiency (Zhao et al., 2021).

Some scholars have also considered spatial correlation in studies
of carbon emission, but most of them use SDM (Gu et al., 2020; Liu
and Liu, 2021; Lv et al., 2019; Wu and Zhang, 2021; Xue et al., 2020;
Zhang Y et al., 2018; Zhao et al., 2021; Wang X et al., 2022). For
example, Zhang G et al. (2018) used SDM in the framework of the
STIRPAT model to find that population urbanization has a
significant positive spatial spillover effect, while land urbanization
has a significant positive effect but has no spatial spillover effect. Wu
and Zhang (2021) used SDM based on the construction of a super-
efficient SBM model, finding that foreign direct investment only
affects carbon emissions positively in the Yangtze River Delta and
middle reaches of the Yangtze River, while urbanization leads to an
increase in regional carbon emission levels. Zhao et al. (2021)
combined SDM with a panel threshold model, finding that
environmental regulation and haze pollution affect pollutant
emission reduction through positive and negative spatial spillover
effects, respectively, and that environmental regulation can
significantly reduce haze when it exceeds a threshold. Wang X
et al. (2022) used a spatial Durbin model and found that digital
inclusive finance increases local CO2 emissions but inhibits CO2

emissions in neighboring regions.
A small part of scholars used dynamic SDM (Zhang et al.,

2021; Yan et al., 2022). Zhang et al. (2021) used the dynamic SDM
and got several findings: On the one hand, there are time-
dependent and spatial spillover effects of carbon emission; on
the other hand, carbon emissions have an inverted U-shaped
relationship with both innovation agglomeration and energy
intensity. However, only innovation agglomeration reaches a
certain value, will it have the dual effects of energy saving and

emission reduction? Yan et al. (2022) used a dynamic SDM to
find that there is a temporal and spatial lock-in effect on the
suppressive effect of financial spatial structure on carbon
emission intensity, while there is only a temporal lock-in
effect on the promotional effect of economic agglomeration
and energy intensity on carbon emission intensity.

In summary, previous studies have conducted in-depth
discussions on the influence factors of carbon emissions, but the
following points still need to be improved: First, only a few studies
have concerned the impact of economic growth targets on carbon
emissions from the perspective of target management, while
ignoring the role of energy intensity targets in carbon emission
reduction. Second, the econometric models usedmainly focus on the
general regression model or static SDM, ignoring time dependence
or research from a dynamic perspective. Third, the existing literature
found that the characteristics and mechanisms of various factors
affecting carbon emissions, but the characteristics and driving forces
of energy intensity targets to promote carbon emission reduction are
still unclear. Therefore, this paper uses the dynamic spatial Durbin
model to explore the impact of EIRT on carbon emissions based on
the panel data of 30 provinces in China from 2006 to 2019.

3 Methodology and data

3.1 Econometric models

According to Shahnazi and Shabani (2021), because of inter-
regional supply chains, pollution haven hypothesis, and strategic
interaction behaviors including competition and imitation, CO2

may overflow from the local to the surrounding areas with
airflow (Ge et al., 2022a). Therefore, the paper uses a spatial
econometric model to investigate the spatial effect of energy
intensity reduction targets on carbon emissions. Compared with
the spatial autocorrelation model and spatial error model, the spatial
Durbin model takes into account the spatial correlation between the
explanatory variables and the explained variables (Elhorst, 2003).
Therefore, selecting the spatial Durbin model to study will have
general significance (Song et al., 2020; Chen J Y et al., 2022).
Meanwhile, considering that carbon emission intensity may have
a certain time dependence, the time lag term of carbon emission
intensity is added to the model to form a dynamic spatial Durbin
model. To eliminate heteroscedasticity, some data are
logarithmically processed. Set the model as follows:

lnCEIit �α0 + α1 lnCEIi,t−1 + ρ1∑
N

j�1
Wij lnCEIjt + ρ2∑

N

j�1
Wij lnCEIj,t−1

+ β1EIRTit + δ1∑
N

j�1
WijEIRTjt + β2Xit + δ2∑

N

j�1
WijXjt + μi + vt + εit

(1)

where i and j denote the province and year, respectively. CEI denotes
carbon emission intensity. EIRT denotes energy intensity reduction
targets. X denotes control variables, including economic
development level (EL), industrial structure (IS), urbanization
level (URB), infrastructure (lnPI), and environmental regulation
(ER). W denotes spatial weight matrix, α1 and β denote impact
coefficients, ρ denotes spatial autoregressive coefficients, δ denotes
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spatial term coefficients, μi denotes province fixed effects; vt denotes
time fixed effects; εit denotes error term.

Considering that the carbon reduction effect of EIRT may be
related to green technological innovation, the paper adds the
interaction term of EIRT and green technological innovation to
Eq. 1. The specific model is set as follows:

lnCEIit �α0 + α1 lnCEIi,t−1 + ρ1∑
N

j�1
Wij lnCEIjt + ρ2∑

N

j�1
Wij lnCEIj,t−1

+ β1EIRTit + δ1∑
N

j�1
WijEIRTjt + β2 lnGTIit + δ2∑

N

j�1
Wij lnGTIjt

+ β3EIRTit × lnGTIit + δ3∑
N

j�1
WijEIRTjt × lnGTIjt

+ β4Xit + δ4∑
N

j�1
WijXjt + μi + vt + εit

(2)
where GTI denotes green technology innovation measured by the
number of green invention patent applications. EIRTit × lnGTIit is
the interaction term between EIRT and green technology
innovation. The impact coefficient of EIRT is β1 + β3 lnGTIit. If
β3 > 0, it means that the lower green technology innovation, the
stronger carbon reduction effect; if β3 < 0, it means that the higher
green technology innovation, the stronger carbon reduction effect.

3.2 Spatial weight matrix

Spatial weight matrices are the basis of spatial econometric
studies. The more commonly used spatial weight matrices are
adjacency matrix, geographical distance matrix, economic
distance matrix, and economic geographical nested matrix.
Considering that carbon emissions are more sensitive to
geographical factors, the geographical distance matrix is used as a
spatial weight matrix in this paper. The specific settings are as
follows:

Wij �
1
dij

if i ≠ j

0 if i � j

⎧⎪⎪⎨
⎪⎪⎩ (3)

where dij denotes the distance between the capital of provinces i and
j. 1/dij indicates that spatial association between cities is inversely
proportional to geographical distance.

3.3 Variable selection

3.3.1 Explained variable
The explained variable is carbon emission intensity (lnCEI),

measured using CO2 emission per capita. As various statistical
yearbooks do not directly publish carbon emissions of individual
provinces and municipalities, the paper refers to Shan et al. (2018)
and draws on the sectoral accounting method published by the IPCC
to measure the carbon emissions of each province and municipality
with the following formula:

CEij � ADij × NCVi × CCi × Oij (4)

where i and j denote the category and sector, respectively. CEij is
the CO2 emissions from category i fossil fuel combustion in sector
j. AD is fossil fuel consumption. NCV is net calorific value,
i.e., calorific value produced per physical unit of fossil fuel. CC
is CO2 emissions net calorific value of fossil fuel per unit. And O is
the oxidation rate, i.e. oxidative conversion rate of fossil fuel
combustion.

CO2 emissions from fossil fuel combustion in each sector can be
summed to obtain CO2 emissions for each province.

CE � ∑
j

∑
i

CEij (5)

Based on data availability, the paper uses open-source data
published by the CEADs as CO2 emissions by province, which
are also publicly published in the journal Scientific Data (Shan et al.,
2018).

3.3.2 Explanatory variable
The core explanatory variable is energy intensity reduction

targets (EIRT). Currently, some scholars use laws and regulations
or policies implemented by the government to measure EIRT (Yao
et al., 2019), while some scholars use the Implementation Plan of
Energy Conservation Action for Thousands of Enterprises
implemented during the Eleventh Five-Year Plan to measure
EIRT (Han et al., 2020). Referring to Yao et al. (2019), the paper
uses energy consumption reduction targets set in the government
work report as a proxy variable for EIRT.

3.3.3 Control variables
The control variables (X) include economic development level

(EL), industrial structure (IS), urbanization level (URB),
infrastructure (lnPI), and environmental regulation (ER). The
economic development level is measured by GDP per capita (Xu
and Xu, 2021). The environmental Kuznets curve hypothesis (EKC)
suggests that there is an “inverted U” type relationship between
environmental pollution and economic growth, i.e., environmental
pollution tends to increase and then decrease as economic
development level increases (Luo et al., 2017). The industrial
structure is measured by the ratio of secondary industry value
added to regional GDP (Lin and Zhu, 2019; Pan et al., 2021).
The transformation and upgrading of industrial structures will
promote technological progress and contribute to carbon
emissions reduction (Zhou et al., 2013). Urbanization level is
measured by the share of the urban population in the total
population (Song et al., 2020; Xu and Xu, 2021). On the one
hand, urbanization leads to an increase in consumption demand,
which leads to an increase in carbon emissions (Wang et al., 2020).
On the other hand, urbanization can improve energy efficiency and
increase consumers’ awareness of energy saving, which is conducive
to carbon emissions reduction (Sadorsky, 2013). Therefore, the
impact of urbanization on carbon emission intensity is difficult
to determine. Infrastructure is measured by per capita postal and
telecommunications business (Jiang et al., 2021). The continuous
improvement of infrastructure promotes urbanization and
industrialization, which increases energy consumption and
carbon emissions (Xu and Xu, 2021). Environmental regulation is
measured by the amount of investment in pollution control per
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capita. Environmental regulation helps enterprises to innovate in
green technology and promotes energy saving and green
development.

3.3.4 Moderating variable
The moderating variable is green technological innovation

(lnGTI), which is measured by the number of green invention
patent applications (Chen Y et al., 2022; Wei et al., 2023).
Although it is difficult for patents to completely and
comprehensively measure the connotation of green technological
innovation, patents are an important output of technological
innovation, and green patents have been widely used to represent
the green technological innovation (Cai et al., 2020; Ma et al., 2021).
Qi et al. (2019) found that technological progress plays an important
moderating role in low-carbon economic development.
Technological innovation has a positive or negative effect on
carbon emissions, and carbon emissions have an uncertain
relationship with green technological innovation (Acemoglu
et al., 2012).

3.3.5 Mediating variable
The mediating variable is energy consumption structure

(lnECS), which is measured by the ratio of coal consumption to
energy consumption. The literature has shown that energy
consumption structure affects carbon intensity through direct
and indirect channels (Qi et al., 2019; Xiao et al., 2019). The
paper uses energy consumption structure as a mediating variable
to test whether EIRT can influence carbon intensity through energy
consumption structure.

3.4 Data source

The paper uses 30 Chinese provinces (Tibet, Hong Kong,
Macao, and Taiwan were excluded due to missing data) from
2006 to 2019 as the study subject to explore the impact of EIRT
on carbon emission intensity. Data on EIRT was obtained by
manually collecting preset targets from work reports of provincial
governments, and some of the missing values were filled in by
interpolation. Data on carbon emissions was obtained from the

CEADs. Data on green technology innovation was obtained from
the China Research Data Service Platform (CNRDS). Data on other
indicators was obtained from China Statistical Yearbook, China
Energy Statistical Yearbook, and Provincial Statistical Yearbooks.
The descriptive statistics of key variables are shown in Table 1.

4 Results and discussions

4.1 Spatial correlation test

Before using the spatial econometric model, a spatial correlation
test of carbon emission intensity using Moran’s I is required. The
results of the test are shown in Table 2. From the table, it can be seen
that Moran’s I indices of China’s carbon emission intensity from
2006 to 2019 are all significantly positive at the 5% level, so it can be
judged that there is spatial dependence and it is feasible to use a
spatial econometric model.

To further examine spatial heterogeneity of carbon emission
intensity across Chinese provinces, the paper plots local Moran
scatter plots for 2006 and 2019. The results are shown in Figure 1,
from which we can see that most provinces are located in the first
and third quadrants, which indicates that the carbon emission
intensity of most Chinese provinces has a “high-high” or “low-
low” clustering characteristic, i.e. there is a positive spatial
autocorrelation between regional carbon emission intensity.

4.2 Spatial econometric regression results

We use the Variance Inflation Factor (VIF) to test whether
there is multicollinearity, and the results show that the maximum
VIF is 4.64, so there is no need to worry about the existence of
multicollinearity. Before applying spatial econometric analysis, a
series of tests are required to select the optimal model (LeSage
and Pace, 2009) and the results are shown in Table 3. Firstly, LM-
error, LM-lag, Robust LM-error, and Robust LM-lag tests
significantly reject the original hypothesis at a 5% level, which
indicates that the spatial econometric model outperforms the
ordinary regression model. Secondly, LR-lag, LR-error, Wald-lag,

TABLE 1 Descriptive statistics.

Variable Definition Unit N Mean S.D. Min Max Skewness Kurtosis

lnCEI Logarithm of per capita CO2 emissions ton 420 1.885 0.494 0.831 3.443 0.733 3.568

EIRT Energy intensity reduction targets % 420 3.533 0.854 1.000 6.900 0.106 4.024

EL Per capita GDP 104 yuan 420 4.450 2.691 0.579 16.42 1.337 5.157

IS Secondary industry ratio % 420 46.65 7.995 19.26 66.42 −1.250 4.776

URB Share of the urban population in total population % 420 54.66 13.57 27.46 89.60 0.817 3.439

lnPI Logarithm of per capita postal and telecommunications business 103 yuan 420 0.636 0.714 −0.543 2.828 0.816 2.950

ER Per capita investment in pollution control 102 yuan 420 0.524 0.477 0.034 4.126 2.963 17.04

lnGTI Logarithm of green invention patent applications item 420 6.815 1.618 2.079 10.35 −0.206 2.793

lnECS Logarithm of coal energy proportion % 420 3.648 0.522 0.194 4.314 −2.244 11.23
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and Wald-error tests all significantly reject the original
hypothesis at a 5% level, indicating that the spatial Durbin
model cannot degenerate into a spatial lag model or a spatial
error model. Finally, the joint significance test (Province fixed
effect and Time fixed effect) significantly rejects the original

hypothesis at a 1% level, which indicates that a double fixed effect
model with individual fixed effect and time fixed effect should be
used. Meanwhile, considering the time dependence, a dynamic
spatial Durbin model is formed by adding a time-lagged term.
Therefore, the paper adopts a dynamic spatial Durbin model with

TABLE 2 Moran’s I index for lnCEI in China from 2006 to 2019.

Year Moran’s I Z-value p-value Year Moran’s I Z-value p-value

2006 0.163 5.325 0.000 2013 0.072 2.926 0.002

2007 0.159 5.239 0.000 2014 0.071 2.891 0.002

2008 0.144 4.858 0.000 2015 0.066 2.770 0.003

2009 0.125 4.363 0.000 2016 0.060 2.577 0.005

2010 0.118 4.174 0.000 2017 0.041 2.077 0.019

2011 0.075 3.015 0.001 2018 0.047 2.256 0.012

2012 0.077 3.082 0.001 2019 0.043 2.145 0.016

FIGURE 1
Scatter plots of the local Moran’s I index for lnCEI in 2006 and 2019. Note: The numbers 1–30 in the chart represent Beijing (1), Tianjin (2), Hebei (3),
Shanxi (4), Inner Mongolia (5), Liaoning (6), Jilin (7), Heilongjiang (8), Shanghai (9), Jiangsu (10), Zhejiang (11), Anhui (12), Fujian (13), Jiangxi (14), Shandong
(15), Henan (16), Hubei (17), Hunan (18), Guangdong (19), Guangxi (20), Hainan (21), Chongqing (22), Sichuan (23), Guizhou (24), Yunnan (25), Shaanxi (26),
Gansu (27), Qinghai (28), Ningxia (29) and Xinjiang (30), respectively.

TABLE 3 Test of spatial model selection.

Test Statistic p-value Test Statistic p-value

LM-error 67.594*** 0.000 LR-error 34.67*** 0.000

LM-lag 54.436*** 0.000 Wald-lag 17.53*** 0.008

Robust LM-error 17.806*** 0.000 Wald-error 15.08** 0.020

Robust LM-lag 4.648** 0.031 Province fixed effect 87.80*** 0.000

LR-lag 20.49*** 0.002 Time fixed effect 974.33*** 0.000

Note: ***, **, * represent significance levels of 1, 5 and 10%, respectively.
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double fixed effects to analyze the impact of EIRT on carbon
emission intensity.

The estimation results using dynamic SDM are presented in
Column (4) of Table 4, and as a comparison, the results using SAR,
SEM, and static SDM are also given in Columns (1–3). As shown in
Column (4), for the explained variable, the time-lagged term
coefficient of carbon emission intensity (L.lnCEI) is significantly
positive at a 1% level, which indicates that regional carbon emission
intensity has a significant time-dependent characteristic. The spatial
lag term coefficient of carbon emission intensity (W·lnCEI) is
significantly positive at a 5% level, indicating that there is a
“high-high” and “low-low” clustering of carbon emission
intensity, which is consistent with the results of the spatial
correlation test.

For the explanatory variables, coefficients of EIRT and its spatial
lag term are −0.012 and 0.080 respectively and pass the significance
test at a 5% level, which indicates that EIRT will reduce local carbon
emission intensity but increase carbon emission intensity of
surrounding areas. This is consistent with the findings of Song
et al. (2022) and Ge et al. (2022a). Under the constraint of EIRT,
local government will increase environmental management efforts
and environmental protection investment, helping enterprises to
make green technological innovations, furthermore, promoting the
reduction of local carbon emission intensity (Song et al., 2022).

While for “high energy consumption, high pollution and high
emissions” enterprises, the high cost of technological research
and development may cause them to relocate their factories to
adjacent areas with lower EIRT, thus leading to increased carbon
emission intensity of adjacent areas (Ge et al., 2022b).

LeSage and Pace (2009) showed that in the spatial Durbin
model, regression coefficients cannot fully and objectively reflect
the effect of explanatory variables on explained variables. It is usually
necessary to decompose effects into direct effect, indirect effect, and
total effect. Based on this, the paper further reports the direct,
indirect, and total effects of EIRT on carbon emission intensity, and
the results are shown in Column (4) in Table 4. As can be seen from
the table, direct and indirect effects are −0.012 and 0.068 respectively
and significant at a 1% significance level, indicating that EIRT will
reduce local carbon emission intensity but increase carbon emission
intensity of surrounding areas, which is consistent with the direction
of baseline regression results in Column (1).

Column (5) in Table 4 reports moderating effect of green
technology innovation. As can be seen from the table, coefficients
of EIRT and interaction term with green technological innovation
level (EIRT × lnGTI) are −0.036 and 0.004, respectively, and pass
the significance test at a 5% level, which indicates that there is a
positive moderating effect of green technological innovation.
When lnGTI < 9, EIRT has a positive contribution to carbon

TABLE 4 Spatial econometric regression results.

Variable (1) (2) (3) (4) (5)

SAR SEM SDM Dynamic SDM Moderating effect

EIRT −0.002 (0.009) −0.002 (0.009) −0.001 (0.009) −0.012** (0.005) −0.036*** (0.012)

EL −0.047*** (0.007) −0.048*** (0.007) −0.045*** (0.007) 0.003 (0.003) 0.002 (0.003)

IS 0.006*** (0.002) 0.006*** (0.002) 0.006*** (0.002) −0.003*** (0.001) −0.003*** (0.001)

URB 0.024*** (0.003) 0.024*** (0.003) 0.023*** (0.003) −0.006*** (0.002) −0.006*** (0.002)

LnPI −0.133*** (0.048) −0.127*** (0.049) −0.110** (0.050) 0.036 (0.026) 0.028 (0.025)

ER 0.080*** (0.017) 0.081*** (0.017) 0.080*** (0.017) −0.008 (0.015) −0.009 (0.015)

LnGTI −0.004 (0.014)

EIRT × lnGTI 0.004** (0.002)

L.lnCEI 1.042*** (0.034) 1.000*** (0.037)

W·EIRT −0.094 (0.058) 0.080*** (0.027) 0.080*** (0.027)

W·lnCEI 0.099 (0.166) 0.136 (0.163) 0.292** (0.133) 0.285** (0.139)

Direct effect −0.012*** (0.005)

Indirect effect 0.068*** (0.022)

Total effect 0.056** (0.022)

Province fixed effect Yes Yes Yes Yes Yes

Time fixed effect Yes Yes Yes Yes Yes

Log-L 507.033 507.033 507.033 474.523 507.033

R2 0.161 0.165 0.202 0.977 0.979

Observations 420 420 420 390 390

Note: ***, **, * represent significance levels of 1, 5 and 10%, respectively; standard errors in parentheses; the following tables are the same.
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emission intensity reduction; when lnGTI > 9, the positive
contribution will disappear. Possible reasons are that green
technology innovation can reduce carbon emissions by
improving energy use efficiency, using clean energy, adopting
carbon capture and storage technologies, as well as reducing the
cost of carbon-free technologies (Gerlagh, 2007; Worrell et al.,
2009; Kocak and Ulucak, 2019). In the early stages of green
technology innovation development, economic development
was dominated by agriculture and industry, economic
development had a high energy demand, and lower energy use
efficiency led to heavy consumption of energy resources. As green
technology innovation level increases, energy use efficiency will be
further improved. New energy technologies, energy-saving
technologies, and clean energy technologies will also be
developed accordingly. To a certain extent, these will lead to
the transformation of energy structure to green and clean energy
and reduce carbon emission intensity (Cai et al., 2021). When
green technology innovation reaches a fairly high level, carbon
emission intensity is at a relatively low level, green and clean
technologies are also fully applied, and it is difficult for new
technologies to achieve substantial technological breakthroughs.
Even if EIRT is set at a higher level, of which the ability to
constrain carbon emissions is lost. This is consistent with the
findings of Jiang et al. (2022), who found that when green
technology innovation is the threshold variable, the

relationship between environmental regulation and carbon
emission efficiency is U-shaped.

4.3 Robustness test

This paper conducts a robustness test by replacing the explained
variable and the spatial weight matrix, the estimation results are
shown in Table 5. Column (1) uses total carbon emissions instead of
per capita carbon emissions as the explained variable. Column (2)
uses the economic geography nested matrix instead of the
geographic distance matrix as the spatial weight matrix. In
Column (3), both the explained variable and the spatial weight
matrix are replaced. As shown in Table 5, the coefficients of EIRT
and W·EIRT are significantly negative and positive, respectively,
indicating that EIRT can curb local carbon emissions, but will lead to
an increase in carbon emissions in neighboring regions. In addition,
the decomposition results show that the direct and indirect effects of
EIRT are negative and positive, respectively, which is consistent with
the baseline regression. For example, the direct and indirect effects of
EIRT are −0.014 and 0.056 in Column (3), respectively, indicating
that a 1% increase in EIRT can result in a 0.014% decrease and
0.056% increase in carbon emissions for local and neighboring areas,
respectively. Robustness test results are consistent with the baseline
regression results, which proves the reliability of our findings.

TABLE 5 Robustness test results.

Variable (1) (2) (3)

lnCE W2 lnCE, W2

EIRT −0.013** (0.005) −0.012** (0.005) −0.014** (0.006)

EL 0.003 (0.003) 0.004 (0.003) 0.003 (0.003)

IS −0.003*** (0.001) −0.003*** (0.001) −0.003***
(0.001)

URB −0.003 (0.002) −0.006*** (0.002) −0.003 (0.002)

LnPI 0.024 (0.026) 0.040 (0.025) 0.024 (0.025)

ER −0.010 (0.014) −0.008 (0.015) −0.011 (0.014)

L.lnCE 1.057*** (0.039) 1.059*** (0.042)

L.lnCEI 1.031*** (0.036)

W·EIRT 0.053* (0.028) 0.071*** (0.024) 0.053* (0.027)

W·lnCEI 0.207 (0.132) 0.043 (0.108) 0.024 (0.109)

Direct effect −0.013*** (0.005) −0.011** (0.005) −0.014***
(0.005)

Indirect effect 0.049** (0.023) 0.071*** (0.022) 0.056**(0.027)

Total effect 0.035 (0.023) 0.059*** (0.023) 0.042 (0.027)

Province fixed effect Yes Yes Yes

Time fixed effect Yes Yes Yes

Log-L 230.286 511.322 84.609

R2 0.989 0.977 0.984

Observations 390 390 390

TABLE 6 The mediating effect test of energy consumption structure.

Variable (1) (2)

LnECS lnCEI

EIRT −0.024*** (0.008) −0.011** (0.006)

EL 0.088*** (0.006) 0.004 (0.004)

IS −0.001 (0.001) −0.002** (0.001)

URB −0.011*** (0.003) −0.002 (0.002)

LnPI −0.040 (0.044) 0.041** (0.020)

ER −0.025** (0.010) −0.004 (0.016)

LnECS −0.104*** (0.025)

(lnECS)2 0.025*** (0.009)

L.lnCEI 0.971*** (0.054)

L.lnECS 2.021*** (0.079)

W·EIRT 0.269*** (0.037) 0.076*** (0.023)

W·lnECS 0.481** (0.216) −0.518** (0.229)

W·(lnECS)2 0.101 (0.068)

W·lnCEI 0.376*** (0.140)

Province fixed effect Yes Yes

Time fixed effect Yes Yes

Log-L −3251.591 442.618

R2 0.943 0.981

Observations 390 390
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4.4 Mechanism analysis

To test the effect mechanism of EIRT, the paper draws on a test
for mediating effects by Baron and Kenny (1986) to construct a
stepwise regression model, the results of which are shown in Table 6.
Column (1) shows that an increase in EIRTwill lead to a reduction in
energy consumption structure. Column (2) incorporates EIRT,
energy consumption structure, and its quadratic term into
regression at the same time, and the results show that EIRT is
significantly negative at a 5% level and their spatial lag term is
significantly positive at a 1% level. Meanwhile, the energy
consumption structure and its spatial lagged term are
significantly negative at the 5% level, while the quadratic term of
energy consumption structure is significantly positive at the 1%
level, showing a “U-shaped” relationship between energy
consumption structure and carbon emission intensity. When
lnECS does not reach a threshold value of 2, the energy
consumption structure reduces carbon emission intensity and
mitigates pollution spillover; when lnECS exceeds the threshold
value, the energy consumption structure increases carbon emission
intensity and causes pollution spillover. The sample data shows a
general downward trend in coal consumption as a percentage of
total energy consumption in all of China’s provinces, but except for
Beijing, all provinces have values of lnECS greater than 2.

In the early stages of industrial development, when science and
technology were relatively backward and economic development

relied mainly on fossil energy sources, the increase in energy
consumption structure inevitably led to an increase in carbon
emission intensity and pollution spillover. With the advancement
of industrialization and green technology, the proportion of fossil
energy declined while that of new and clean energy increased.
Meanwhile, the application of carbon capture and storage
technology increased the carbon recovery rate, thus reducing
carbon emission intensity and mitigating pollution spillage.
Therefore, the energy consumption structure of China’s provinces
at this stage has mainly played a mediating role in reducing carbon
intensity and mitigating pollution spillover. This is consistent with
the findings of Xiao et al. (2019), who argue that optimizing the
energy consumption structure can not only reduce the carbon
emission intensity in the region but also promote the carbon
emission intensity reduction in neighboring areas.

5 Further discussions

Generally, local governments set EIRT based on the central
government, competitors, and their own actual conditions.
Therefore, we need to further investigate the sources of pressure
on local governments to set energy intensity reduction targets.
Firstly, central assessment pressure (CAP), is measured by the
ratio of local EIRT to central government’s. To achieve central
government assessment performance, local governments will use

TABLE 7 Impact of EIRT pressure indexes on carbon emission intensity.

Variable (1) (2) (3) (4)

Dynamic SDM Direct effect Indirect effect Total effect

CAP 0.406*** (0.153) 0.411*** (0.148) 0.488* (0.290) 0.899*** (0.318)

PCP −0.472*** (0.168) −0.473*** (0.158) −0.745** (0.371) −1.218*** (0.473)

ODP 0.001 (0.001) 0.001 (0.002) −0.018* (0.010) −0.017* (0.010)

EL 0.002 (0.004)

IS −0.003** (0.001)

URB −0.005** (0.002)

LnPI 0.043* (0.023)

ER −0.009 (0.014)

L.lnCEI 1.006*** (0.034)

W·CAP 0.811** (0.385)

W·PCP −1.158** (0.531)

W·ODP −0.024* (0.013)

W·lnCEI 0.383*** (0.139)

Province fixed effect Yes

Time fixed effect Yes

Log-L −341.950

R2 0.958

Observations 390
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central EIRT as a criterion. Secondly, peer competitive pressure
(PCP), is measured by the ratio of local EIRT to other provinces. To
get more promotion opportunities, local governments refer to other
provinces’ EIRT. Thirdly, own development pressure (ODP), is
measured by the ratio of local EIRT to the actual energy intensity
reduction value achieved in the previous year. In addition to
referring to the EIRT of the central government and other
provinces, local governments need to take into account their
energy-saving and consumption-reduction realities. Accounting
for this, three types of pressure are added to the model for
exploring sources of pressure on local governments to set EIRT.
The model was set up as follows:

lnCEIit �α0 + α1 lnCEIi,t−1 + ρ1∑
N

j�1
Wij lnCEIjt + ρ2∑

N

j�1
Wij lnCEIj,t−1

+ β1CAPit + δ1∑
N

j�1
WijCAPjt + β2PCPit + δ2∑

N

j�1
WijPCPjt

+ β3ODPit + δ3∑
N

j�1
WijODPjt + β4Xit + δ4∑

N

j�1
WijXjt + μi + vt + εit

(6)

where CAP denotes central assessment pressure, PCP denotes peer
competitive pressure and ODP denotes own development pressure.
The rest of the variables have the same meaning as in Eq. 1.

Based on Eq. 6, a regression analysis was conducted using the
dynamic spatial Durbin model and the results are shown in Table 7.
Column (1) shows baseline regression results of the impact of three
kinds of pressure on carbon emission intensity. CAP and its spatial lag
term are significantly positive at 5% significance, which indicates that
CAP will contribute to the increase in carbon emission intensity and
intensification of pollution spillover. Usually, the central government
will take into account the economic development of each provincewhen
setting EIRT to make the target is set at a relatively low level. This will
result in less pressure on each province to reduce carbon emissions and
a limited restraining effect on carbon emissions. PCP and its spatial lag
term are significantly negative at a 5% level, which indicates that PCP
will inhibit the increase of carbon emission intensity and mitigate
pollution spillover. According to promotion tournament theory, to gain
more promotion opportunities, local governments will set higher EIRT
with reference to adjacent regions’ EIRT, which has a greater
constraining effect on carbon emissions. The coefficient of ODP is
statistically insignificant, which indicates that ODP has no effect on
carbon emission intensity, suggesting that local governments are
seriously detached from their development realities when setting
EIRT. The results show that local governments should make more
reference to the targets set by other provinces when setting EIRT.
Meanwhile, results of direct and indirect effects in Columns (2) and (3)
show that CAPwill lead to an increase in carbon emission intensity and
intensify spatial spillover, while PCPwill suppress the increase in carbon
emission intensity and alleviate pollution spillover, besides,ODP has no
effect on carbon emission intensity, which is consistent with results of
baseline regression in Column (1).

6 Conclusions and policy implications

Based on panel data from 30 Chinese provinces from 2006 to
2019, the paper uses a dynamic spatial panel Durbin model to

investigate the spillover effect of energy intensity reduction targets
on carbon emission intensity. Meanwhile, the moderating effect of
green technological innovation and the mediating effect of energy
consumption structure are examined. Additionally, to explore power
sources of local governments to set energy intensity reduction
targets, the criteria for setting energy intensity reduction targets
are subdivided into three types of pressures: central assessment
pressure, local competitive pressure, and own development pressure.

The findings of the study are as follows: First, energy intensity
reduction targets are conducive to carbon emission intensity
reduction in the region but they contribute to an increase in
carbon emission intensity in adjacent regions. Meanwhile, green
technology innovation plays a positive moderating role between
energy intensity reduction targets and carbon emission reduction.
When green technology innovation is less than a threshold, that is,
the logarithm of green invention patent applications is less than 9,
energy intensity reduction targets have a positive promoting effect
on carbon emission reduction; when the green technology
innovation is higher than a threshold, that is, the logarithm of
green invention patent applications is higher than 9, the promoting
effect of energy intensity reduction target on carbon emission
reduction disappears. Second, the energy consumption structure
plays an intermediary role between energy intensity reduction
targets and carbon emission intensity. The energy intensity
reduction targets will affect pollution spillover through the
energy consumption structure, and the intermediary effect of the
energy consumption structure has a threshold value of 2. When the
energy consumption structure is less than the threshold, the energy
consumption structure will reduce carbon emission intensity and
mitigates the pollution spillover; when the energy consumption
structure exceeds the threshold, the energy consumption
structure will enhance carbon emission intensity and causes
pollution spillover. Finally, the central assessment pressure leads
to an increase in carbon emission intensity and exacerbates pollution
spillover, peer competition pressure promotes carbon emission
reduction and alleviates pollution spillover, while own
development pressure does not affect carbon emission intensity.

Based on the above findings, the paper proposes the following
policy implications to promote carbon emission reduction and high-
quality green economic development in China: Firstly, the
governments should balance the relationship between economic
growth targets and energy intensity reduction targets, and set energy
intensity reduction targets reasonably. On the one hand, the
governments should adjust the government official performance
evaluation criteria and increase the weight of realizing energy
intensity reduction targets in the assessment, so as to catch more
local government attention to environmental governance. On the
other hand, governments need to strengthen supervision and
improve the carbon emission reduction reward and punishment
mechanism. The governments should provide tax incentives for
enterprises with excellent performance in lower energy conservation
and carbon emission reduction, to encourage enterprises to improve
production efficiency and reduce energy consumption and carbon
emissions. Enterprises with higher energy consumption and carbon
emissions than similar ones shall be publicized and rectified within a
prescribed time limit, and those failed to do so shall be punished.

Secondly, the governments should increase science and
technology budget expenditure to help enterprises carry out
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green technology research and development. On the one hand,
through tax relief, preferential subsidies, and other fiscal policies,
the governments can strengthen the support for enterprises and help
enterprises to adjust their energy consumption structure and
industrial structure. In this way, companies will reduce the
proportion of coal energy in the energy system and increase the
use of green energy such as nuclear power, wind energy, water
energy, and solar energy, thereby transforming the industrial
structure into a low-carbon industry. On the other hand,
governments need to promote the formulation of environmental
protection-related legislation, improve the legal system related to
green innovation, and strengthen the protection of green technology
patents, which will promote enterprises to carry out green
technology innovation.

Finally, governments need to strengthen interregional
communication and cooperation and learn from the experience
of carbon emission reduction policies in developed regions. When
formulating the expected energy intensity reduction targets, local
governments should focus on the expected targets of neighboring
governments and combine the target of the central government with
their own actual development. Furthermore, the central government
can establish a shared responsibility mechanism between local
governments and neighboring governments to clarify their
proportion of carbon emission reduction responsibilities. Local
governments should speed up the process of regional low-carbon
technology cooperation and jointly build special funds for green
development. This will encourage developed regions to provide
technical and financial assistance to underdeveloped regions,
promote inter-regional factor flow and resource allocation, and
jointly help carbon emission reduction.

Although this paper expands the research on the effects of
environmental policies on carbon emissions, there are still some
limitations, which are reflected in two aspects. On the one hand, this
paper uses the provincial level data of China instead of the urban
level data to investigate the impact of energy intensity reduction
targets on carbon emissions, which may lead to some deviation. In
the future, more in-depth research can be carried out from the urban
level to provide more detailed plans for urban environmental policy
adjustment. On the other hand, this paper only investigates the
intermediary role of energy consumption structure, and there may
be other mechanisms for the impact of energy intensity reduction

targets on carbon emissions. In the future, the intermediary
mechanism can be studied in terms of energy intensity, energy
price, and energy efficiency.
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