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The spatial distribution pattern of species diversity and its driving variables are
essential to understanding how biodiversity will respond to the threat of future
climatic instability. This study examines how the alpha and beta diversity indices
vary along the elevation gradient and which factors are more responsible for arid
and semi-arid plant diversity and community assembly. There were 121 species
from 90 genera and 42 families found at elevations ranging from 1,200 to 2,600 m
within the Ningxia Helan Mountain National Nature Reserve in China. These were
primarily shrubs and herbs with characteristics adapted to extreme temperatures.
The diversity of both the shrub layer and the herb layer was highest at mid-
elevation, underscoring the importance of protecting mid-elevation ecosystems.
Climatic distance and topographic distance were more influential than spatial
distance in driving the species composition change of shrubs and herbs. In the
herb layer, climatic, topographic, and spatial factors contributed more to
community assembly than shrub communities. In this case, improving the
environment in the community or introducing herbs could help the restoration
of these places. These findings provide insight into biogeographic patterns,
biodiversity growth mechanisms, and community formation processes.
Moreover, it can improve projections of climate change within and across
ecosystems and provide the scientific basis for the use and management of
plant resources in arid and semi-arid regions.
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1 Introduction

Dryland ecosystems are susceptible to climate change due to their
infertile soils and lack of vegetation (Bradford et al., 2020; Zhou et al.,
2021). The hydroclimatic response to global warming is projected to be
a dominant feature of the 21st century, resulting in fewer precipitation
events and longer dry periods worldwide (Giorgi et al., 2014). As a result
of these trends, drylands are likely to grow, andmore people are likely to
experience land degradation and water shortages. Consequently, living
environments may become more fragile, and minor disturbances can
have catastrophic consequences (Anjum et al., 2010; Bhargava, 2019).
Therefore, the conservation of drylands requires understanding how
drylands function (Moreno-Jiménez et al., 2019). The mountain
ecosystem is a vital biodiversity center and an ecological function
area in arid and semi-arid regions (Geng et al., 2022). Mountain
ecosystems show apparent ecological vulnerability and are very
difficult to recover from disturbances (Ahmad et al., 2020; Arif
et al., 2023). Vegetation must be adequately managed and protected
to reduce ecosystem vulnerability as species diversity loss may weaken
ecosystem stability (Huang et al., 2016; Li et al., 2021; Arif et al., 2022).

The spatial distribution pattern of plant species diversity is a
comprehensive reflection of various ecological gradient changes
(Chi et al., 2014). α-diversity describes the species diversity
within a community at a small scale or local scale, generally the
size of one ecosystem, β-diversity describes the species diversity
between two communities or ecosystems. But most of them have
only focused on α-diversity, which might limit our understanding of
the governing rules concerning biodiversity patterns along
elevational gradients (Sarker et al., 2019). In fact, both α- and β-
diversity play a vital role in understanding biogeographic patterns
and underlying ecological processes (Mori et al., 2018), which
should be integrated into the research.

It has long been recognized that the species diversity of different
organisms changes in a predictable way with increasing elevation
(Wiens and Donoghue, 2004; Muhammad and Changxiao, 2022).
As with other environmental gradients, understanding the
ecological processes associated with elevation gradients is
imperative for developing more general patterns of spatial
biodiversity (Rosindell et al., 2011). Abiotic factors such as
temperature and precipitation change with elevation (Currie
et al., 2004), but the corresponding changes in biodiversity are
not consistent (Sun et al., 2020; Arif et al., 2022). In the context
of different spatial and taxonomic scales, the changes in biodiversity
along the altitudinal gradient need to be further explored
(Pourmasoumi et al., 2019). A metacommunity is defined as a set
of local communities that are linked by the diffusion of multiple
potentially interacting species. The fundamental issues of
metacommunity studies are the mechanism of multiple species
coexistence in the same system and the causes and maintenance
of biodiversity (Leibold et al., 2004). As a result, the metacommunity
provides an effective idea and method for community assembly. It
also explains the observed spatial and temporal distribution pattern
of species, as well as the distribution andmaintenance mechanism of
biodiversity. Moreover, the community assembly mechanism and its
process have always been an important and controversial topic in
ecology. Generally, there are two basic community assembly
processes, namely, the deterministic community assembly process
based on niche theory and the stochastic community assembly

process based on neutral theory (Laland et al., 2016; Rocha et al.,
2018). According to niche theory, environmental factors such as
climate and physics dominate plant species diversity patterns on
various scales (Siefert et al., 2012; Qin et al., 2017; Ding et al., 2022),
and community similarity decreases with the increase of
environmental distance (Sun et al., 2020). However, some studies
suggest that spatial autocorrelation of species diversity may also be
caused by the stochastic community assembly process (Alonso and
McKane, 2004; Volkov et al., 2007).

For plants, β-diversity is usually associated with the
environment and spatial distance. Two components that are
often interpreted as signals for different community assembly
processes, such as environmental filtering and diffusion limitation
(Keita et al., 2021), and that the relative contributions of the two are
dependent on the study scale and ecosystem type (Legendre et al.,
2009; Chase, 2010). Therefore, a decomposition of the relative
contributions of the two processes to community assembly may
facilitate a better understanding of community assembly processes
(Götzenberger et al., 2012; Guo et al., 2018; Pinto et al., 2020).
Environmental components indicate the importance of abiotic
environmental controls on species distribution (environmental
filtering), and climatic and topographic variables can serve as
environmental variables (Keita et al., 2021). The spatial
component can be calculated as a variable based on the original
coordinates (longitude and latitude, and/or their polynomial values)
(Borcard et al., 2004). Researchers have studied the impact of climate
on the spatial replacement of different species (Davey et al., 2013;
Jones et al., 2016). Topography not only increases the heterogeneity
of environmental factors, including microclimate, but also increases
the spatial isolation of species, thereby reducing the similarity
between regions or communities, so some researchers consider it
a separate factor (Qian and Ricklefs, 2012). In addition, the neutral
theory holds that with an increase in spatial distance, the dispersal
ability of species will show a trend of decline. This is because there is
a spatial dispersal limitation for species. These three factors all affect
the assembly of plant communities. Related studies have been
conducted in various ecosystems, including tropical or
subtropical forests (Chen et al., 2020; Li et al., 2021; Hu et al.,
2022), temperate forests (Chudomelova et al., 2017), desert plant
communities (Jiang et al., 2021), and plain areas (Marteinsdottir
et al., 2018). Yet, their application to arid and semi-arid mountain
forest ecosystems is limited, especially when considering the
different plant layers. This gap has resulted in a lack of
understanding of the processes shaping plant communities and
an insufficient scientific basis for conserving biodiversity in arid
and semi-arid mountain ecosystems (Andersen et al., 2015).

We investigated how the alpha and beta diversity indices vary
with altitude in the HelanMountain of China. In addition, the role of
environmental filtering and dispersal limitations is also of
importance in determining the diversity and composition
variation of plants in arid and semi-arid regions (Hu et al.,
2009). As the study area is in the temperate steppe climate zone
of north-western China, it is assumed that the distribution area types
of plant families and genera in the region are dominated by
temperate components. Unimodal patterns have previously been
observed in gradients in the Dhauladhar Mountains in the Lesser
Himalayas and theMount Namjagbarwa region (Ahmad et al., 2020;
Sun et al., 2020), while a monotonic response to altitude has been
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observed in the Swedish mountains and a subarctic mountain
tundra (Måsviken et al., 2019; Naud et al., 2019). Furthermore,
we expect a unimodal or monotonically decreasing diversity with
increasing altitude based on empirical observations. Based on
ecological niche theory and neutrality theory, we hypothesize that
environmental filtering and diffusion processes jointly explain the
assembly of plant communities in the study area. However, their
contribution needs to be further explored. The knowledge acquired
from this study can assist protected area authorities in developing
strategies for biodiversity conservation in arid and semi-arid areas.

2 Materials and methods

2.1 Study area

The Ningxia Helan Mountain National Nature Reserve
(Figure 1), which traverses the junction of temperate grassland
and desert, is a typical representative area of China’s wind-sand
dry forest ecosystem (38°19′-39°22′N, 105°49′-106°41′E). Ningxia
Helan Mountain can be divided into three parts: north, middle, and
south. The vegetation in the northern section of the mountain is
sparsely distributed. The middle section is rich in vegetation. The
peaks above 3,000 m are centrally distributed here, but these areas
are difficult to reach. The southern part of the mountain is low and
sparsely vegetated. The HelanMountain area has a typical temperate

continental climate, and the annual average temperature can drop
from 7.3°C at the front of the mountain to −0.9°C on the main peak;
the annual precipitation span ranges from 200 mm at the base of the
mountain to 500 mm at the main peak (Su et al., 2018). The
vegetation of Helan Mountain has obvious vertical distribution
characteristics, which may be affected by climate, soil, elevation
and other factors (Geng et al., 2022). With the increase in elevation,
vegetation types are desert steppe, terrace meadow, arboreal forest,
and alpine meadow (Su et al., 2018). The corresponding soil types
are grey desert soil, brown calcic soil, grey cinnamon, and subalpine
meadow soil (Wu et al., 2021). “Near-natural recovery” is currently
used as an important guideline for the restoration of degraded
ecosystems in this region, aiming to restore biodiversity,
structural and functional integrity, stability, and sustainability.

2.2 Field investigation and data acquisition

A total of 23 plots (20 m2 × 20 m2) were laid along the elevation
transect ranging from 1,200 to 2,600 m ultimately. The sample plots
were pre-established at an interval of 100 m. However, at some
elevations, there were constraints pertaining to the availability of
spatial area or due to the presence of steep slopes or large rocks
between the sampling areas. If the environmental conditions
were favorable for the setting of the sample plots, we also
appropriately added some sample plots. Within each plot, five

FIGURE 1
A sketch of the study area and sampling sites.
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quadrats of 5 m2 × 5 m2 and five quadrats of 1 m2 × 1 m2 were marked
for recording shrubs and herbs, respectively (Ahmad et al., 2020).
Finally, 8 tree quadrats (only seven plots have trees), 115 shrub
quadrats, and 115 herb quadrats were deployed, and all vegetation
types in the study area were covered along the elevation gradient. We
recorded the following in each plot: the diameter at breast height, height,
and crown width of the trees, the base diameter, height, coverage, and
number of clusters of shrubs, and the coverage, height, abundance of
herbs (Fang et al., 2009). Elevation (EL), latitude (LAT), and longitude
(LON) were collected with GPS (model: Geoxh6000, Trimble,
United States). The slope (SLO) and the aspect (ASP) of the land
were also recorded. Topographic variables include ASP, SLO and EL,
LAT and LON served as spatial variables.

2.3 Climatic data collection

From the WorldClim database, temperature and precipitation
data with a spatial resolution of 1 km at the corresponding
coordinates of each plot were calculated in ArcGIS 10.5 to
represent the climate variables (Liu et al., 2015; Fick and
Hijmans, 2017). We selected the most commonly used metrics
based on previous studies (Li et al., 2016; Liu et al., 2016; Wang
et al., 2017; Wu et al., 2018; Sun et al., 2021): mean annual
temperature (MAT), mean temperature of the coldest month
(MTCM), mean temperature of the warmest month (MTWM),
the annual variation of mean annual temperature (AVMAT),
mean annual precipitation (MAP), precipitation of the driest
quarter (PDQ), and precipitation of the wettest quarter (PWQ).

2.4 Statistics and analysis

The importance value demonstrates the relative significance of
species in plant communities. The formula is as follows (Michelsen
and Lindner, 2015):

IV � RC + RD + RF

3
(1)

Where IV is the important value, RC is the relative coverage, RD
is the relative density, and RF is the relative frequency.

Biogeographical patterns of α-diversity were characterized using
the following three indices (Zhang, 2018).

Shannon-Wiener index

H′ � −∑
S

i�1

Ni

N
ln

Ni

N
(2)

Simpson index

D � 1 −∑
S

i�1

Ni

N
( )

2

(3)

Pielou index

J � H′
ln S( ) (4)

Where Ni is the number of individuals in species i; N is the total
number of individuals in all species, and S is the number of species.

As another dimension of diversity, β-diversity was used to
quantify the variation in species composition across different
communities (Socolar et al., 2016; Geng et al., 2022; Lu et al., 2018).

Jaccard index

Cj � c

a + b − c
(5)

Cody index

βc �
a + b − 2c

2
(6)

Where a and b are the number of unique species in the two
communities, c is the number of species shared.

To reveal the elevation patterns of plant diversity, a generalized
additive model (GAMs) was implemented by R software (version
3.2.3) using the “mgcv” library (Sarker et al., 2019). To construct the
GAMs model, the distribution family and the corresponding link
function need to be determined based on the data type and
distribution characteristics of the response variable. As such, the
distribution type of the response variable in this study was
determined before the model was constructed. When continuous
biodiversity data was considered as the response variable, previous
studies have applied Gaussian distribution with an identity link
function to GAMs (Donoghoe and Marschner, 2015). Therefore, we
assumed the response variable approximated a normal distribution
and applied Gaussian distribution with an identity link function to
GAMs. Thin plate regression splines were chosen as smoothers for
the separate variables (Yi et al., 2018). Redundancy analysis (RDA)
was performed using the vegan package in R software (Oksanen
et al., 2019) to investigate the diversity indices-variable relationships
(Chen et al., 2020). For the explanatory variables, we screened before
conducting RDA to exclude explanatory variables with high
covariance, and then conducted model verification after RDA
analysis. The Mantel test was used to assess the effect of
environmental, topographic and spatial distances on the
dissimilarity in the composition of vegetation assemblages
(Ahmad et al., 2020). For this, a total of four matrices were
formulated: (i) species composition (abundance), (ii)
environmental composition, (iii) topographic composition, and
(iv) geographical coordinates (spatial distance matrix for latitude
and longitude). The dissimilarity (distance) matrices between the
samples are calculated from the two sets of variables, i.e., the sample
distances calculated from species abundance (Bray-Curtis distances)
and from certain environmental parameters (Euclidean distances)
respectively. Mantel tests based on Pearson’s correlation were
performed to explore the correlations between community
structure and environmental and spatial variables (Anderson and
Walsh, 2010; Zheng et al., 2023). The analyses were performed using
the ecodist package (Goslee and Urban, 2007). Each Mantel test
produced an r-value similar to Pearson’s correlation index, which
represents the correlation between the distance matrices. The
significance of the correlation was assessed by randomizing the
distance matrix 999 times. Finally, we used the vegan package to
conduct variance partitioning analysis and analyzed the
independent interpretations of the climatic distance,
topographical distance, and spatial distance relative to the
community assembly (Zheng et al., 2023). Environmental
differences between plots were estimated using Euclidean
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distances. The spatial distance between each pair of plots was
calculated using GPS coordinates taken from each plot and the R
package fossil (Zheng et al., 2022).

3 Results

3.1 Composition and geographical flora in
Helan Mountain

We identified a total of 121 plant species from 42 families and
90 genera between 1,200 m and 2,600 m in the study area. Families
with the highest number of species were Asteraceae (16 species),
Poaceae (13), Rosaceae (13), and Fabaceae (10). At relatively low
elevation (1,200–1,500 m), the dominant species were Salsola
laricifolia, Reaumuria trigyna, Ajania fruticulosa, Convolvulus

tragacanthoides, Ulmus glaucescens, and Stipa Przewalski. At mid-
elevation (1,560–1768 m), the dominant species were Amygdalus
Mongolica, S. Przewalskyi, U. glaucescens, Agropyron mongolicum,
and Stipa tianschanica. At high elevation (2013–2,600 m), the
dominant species were composed of U. glaucescens, Picea
crassifolia, Carex tristachya, Potentilla parvifolia, and Pinus
tabuliformis (Table 1).

According to the classification scheme of seed plant distribution
areas in China and related research (Wu et al., 2006; Zhao et al.,
2014), we found that, on the regional scale (Table 2), there were
7 geographical distribution types of plant families. The type of
“cosmopolitan distribution” (F1) contained the largest number of
families (up to 17), and it was not counted as usual (Zhao et al.,
2014). The type of “pantropic distribution” (F2) accounted for
32.00% of the total families. The “temperate distribution” (F8-
F14) accounted for 64.00%, with the “north temperate

TABLE 1 Information regarding investigation sites and dominant species.

Elevation (m) Species
richness

Habitat
condition

Slope Aspect Dominant
species

Species important
value

The number of plots
surveyed

/(°) /(°)

1,200 9 S-H 21 286 Salsola laricifolia 0.78 10

1,218 16 S-H 13 10 Reaumuria trigyna 0.36 10

1,236 9 S-H 21 230 Ajania fruticulosa 0.58 10

1,296 10 S-H 46 3 Convolvulus
tragacanthoides

0.54 10

1,315 12 S-H 6 267 Convolvulus
tragacanthoides

0.66 10

1,318 16 S-H 36 260 Ajania fruticulosa 0.46 10

1,340 19 T-S-H 26 39 Ulmus glaucescens 1.00 11

1,360 12 S-H 67 3 Stipa przewalskyi 0.59 10

1,403 15 S-H 2 84 Convolvulus
tragacanthoides

0.58 10

1,500 24 S-H 28 320 Stipa przewalskyi 0.34 10

1,560 24 S-H 11 260 Amygdalus mongolica 0.30 10

1,615 24 S-H 30 350 Stipa przewalskyi 0.37 10

1,625 24 T-S-H 35 280 Ulmus glaucescens 1.00 11

1,723 19 S-H 18 222 Agropyron mongolicum 0.39 10

1,768 23 S-H 30 270 Stipa tianschanica 0.38 10

2,013 26 T-S-H 24 340 Ulmus glaucescens 1.00 11

2,038 15 T-S-H 35 348 Ulmus glaucescens 0.73 11

2,176 12 T-S-H 20 185 Pinus tabuliformis 0.80 11

2,278 19 T-S-H 8 220 Carex tristachya 0.56 11

2,294 23 S-H 21 262 Potentilla parvifolia 0.50 10

2,296 16 T-S-H 30 290 Pinus tabuliformis 0.72 11

2,509 19 T-S-H 17 239 Picea crassifolia 0.72 11

2,600 21 S-H 19 190 Carex tristachya 0.54 10

The abbreviations used in the table denote: T, tree; S, shrub; H, herb.
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distribution” accounting for the most (84.62% of the “temperate
distribution”). In comparison, most of the genus-level geographical
types have the attributes of “temperate distribution” (F8-F14,
72 genera in total). The “northern temperate distribution” (F8,
28 genera, accounting for 38.88% of the “temperate distribution”)
accounted for the most proportion.

3.2 Change of α- and β-diversity indices of
plant community along an elevation
gradient

There are several native species of trees found on Helan
Mountain, including P. crassifolia, P. tabuliformis, and Populus
davidiana, and the undergrowth species are relatively abundant.
Therefore, we only considered changes in the species diversity of the
shrub and herb layers along the elevation gradient. For shrubs and
herbs, a hump-shaped relationship that initially increased and then
decreased was found between the α-diversity and elevation
(Figure 2). The Cody index reflects the rate at which species are
replaced along the habitat gradient. The Jaccard index indicates the
proportion of species shared between sites to the total number of

species in a region. The β-diversity characterized by the Cody index
of shrubs and herbs showed a hump-shaped pattern across the
elevation gradient, indicating a distinct species composition change
among communities at mid-elevation. For shrubs, the Jaccard index
varies along an elevation gradient with an inverted hump pattern,
unlike the Cody index. The Jaccard index for herb species, on the
other hand, remains higher at mid-elevation which shows an
opposite trend to that of shrubs (Figure 3).

3.3 Influence of environmental and spatial
variables on plant diversity and community
assembly

The results showed that (Figure 4), MAT and α-diversity of the
herb layer showed a close positive correlation, while MAP showed
scarcely negative correlation with α-diversity of the herb layer. For
the shrub layer, MAP was positively correlated with the α-diversity
index and weaker correlation with Shannon Wiener Index. For
spatial factors, both LAT and LON were negatively correlated with
the α-diversity index of the shrub layer. LON was positively
correlated with the α-diversity of the herb layer, while LAT was

TABLE 2 A description of the types of families and genera of plants found in the study area.

Geographical distribution type Family Genus

No. (%) No. (%)

Cosmopolitan distribution F1. Cosmopolitan 17 — 14 —

Pantropic distribution F2. Pantropic 8 32.00 4 5.26

F2-1. Trop. Asia, Astralasia and S. Amer. disjuncted 1 4.00 — —

Temperate distribution F8. North Temperate 11 44.00 28 36.84

F8-4. Arctic to Altai and N. Amer. disjuncted 2 8.00 8 10.53

F8-5. Eurasia and Temp. S. Amer. disjuncted — — 2 2.63

F9. E. Asia and N. Amer. disjuncted 1 4.00 3 3.95

F10. Old World Temperate 1 4.00 8 10.53

F10-1. Mediterranea. W. Asia (or C. Asia) and E. Asia disjuncted — — 2 2.63

F11. Temp. Asia — — 8 10.53

F12. Mediterranea, W Asia to C. Asia — — 3 3.95

F12-2. Mediterranea to C. Asia and Mexico to S. United States.
disjuncted

— — 1 1.32

F12-3. Mediterranea to Temp. -Trop. Asia, Australasia and S.
Amer. disjuncted

1 4.00 1 1.32

F12-4. Mediterranea to Trop. Africa and Himalaya disjuncted — — 1 1.32

F13. C. Asia — — 1 1.32

F13-1. East C. Asia (or Asia Media) — — 1 1.32

F14. E. Asia — — 3 3.95

F14-1. Sino-Himalaya — — 2 2.63

Total 42 100.00 90 100.00

Geographic distribution types that do not appear to carry any plant species; “cosmopolitan distribution” was not statistically analyzed.
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negatively correlated with the α-diversity of the herb layer. The first
axis was associated with MAT, ASP, SLO, LON, ELE, and LAT. The
second axis was related to MAP and ELE. ELE and MAT have
comparable interpretation rates on both axes. It was worth noting
that the species diversity of the herb layer was positively correlated
with LON and negatively correlated with MAP. On the contrary, the
diversity indices of the shrub layer were positively correlated with
MAP while negatively correlated with LON.

The Mantel test (Table 3) showed that with increasing
environmental differences (except for SLO distance and ASP
distance) and spatial distance, the β-diversity among
communities increased; that is, the species turnover rate within
the communities increased. Species turnover of shrubs and herbs
had significant positive correlations with changing climatic distance
(except for PDQ distance). More importantly, the correlations
between temperature-related distances and species turnover have
all reached a significant level (p < 0.01). It is particularly in the shrub
layer that MAT has the greatest effect on species turnover.
Concerning spatial distance, slope and aspect distances showed a
non-significant statistical correlation with the Bray-Curtis
dissimilarity of the shrub and herb layer. As an indicator of
habitat heterogeneity, elevation distance significantly impacted

the β-diversity (p < 0.05), implying that species composition
diverges with increasing elevation distance, particularly in herb
communities. The correlations between species dissimilarity and
spatial distance (except for LON distance in the shrub layer) showed
positive correlations (p < 0.05). Variation partitioning analysis
showed (Figure 5) that in terms of the size of the overall effect,
the proportion of climatic, topographic, and spatial factors in the
herb communities assembly was greater than that of the shrub layer,
with a value of 0.41, 0.30, and 0.29; while the value in the shrub layer
was 0.20, 0.07, and 0.08 respectively, interpretation of two or three
variables also occupies a certain proportion. The combined effect of
climate and space contributed to the community assembly of the
herb layer with a value of 0.05, and the combined effect of climate,
space, and topography also contributed to a certain extent, with a
value of 0.02. For the shrub layer, the combined effect among the
factors all contributed to the community assembly. In terms of
independent effects, both climatic and topographic factors explained
more variance than spatial factors for shrub and herb assembly,
suggesting that changes in species β-diversity are more sensitive to
environmental differences. The spatial variables were measured
based on latitude and longitude. Plant distribution patterns, seed
dispersal, and community assembly processes all depend on spatial

FIGURE 2
Response curves of Shannon-Wiener index, Simpson index, and Pielou index of shrub (A,C,E), and herb (B,D,F) plants to elevation in the GAM
analysis. The vertical axes indicate the relative influence of each explanatory variable on the prediction. Shaded areas indicate 95% confidence limits.
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characteristics (Grigoropoulou et al., 2022). Furthermore, the part
explained by the spatial variables alone may represent the role of
geological history and dispersal limitations on species diversity. In
this study, the lower proportion of spatial factors explained the lower
impact of a neutral process on community assembly.

4 Discussion

4.1 Elevation patterns of α- and β-diversity
indices

Altitude significantly influenced the α- and β-diversity. We
found that the α-diversity initially increased and declined
thereafter (Figure 2). This observed hump-shaped pattern of α-
diversity is corroborated by similar findings in other regions. For
example, in the Eastern Himalaya, India (Acharya et al., 2011),
Alborz mountains, Iran (Mahdavi et al., 2013; Gómez-Díaz et al.,
2017), Chilean andes (Lopez-Angulo et al., 2018), South-eastern
pyrenees and nearby mountains of Catalonia (Grau et al., 2012). The
most plausible explanation for the hump pattern was that the lower
elevations of the Helan Mountain are dominated by shrub species of
the genera Spinosa and Ajania. Herb species beneath these shrubs
are scarce. In addition, the lower elevations are subject to frequent
anthropogenic pressure regimes, as a result, the natural vegetation in

this area was destroyed and the α-diversity was low (Zhang et al.,
2016; Ahmad et al., 2020). The greater α-diversity at mid-elevation
was largely associated with water availability and optimum
temperature (Zhang et al., 2016; Vibhuti et al., 2018). This
hump-shaped curve may also be closely related to habitat
diversity at the median elevations (Chawla et al., 2008).
Obviously, the higher elevation does not foster a rich diversity of
plants, and only some shrub species and alpine meadows were found
(Lee et al., 2013; Gómez-Díaz et al., 2017; Ahmad et al., 2020). More
importantly, at higher elevations, plants usually face harsh
environmental conditions such as extremely low temperatures,
shorter growing seasons, and a high frequency of fog. These
environmental conditions might have resulted in an overall
reduction in species diversity at higher elevations.

The β-diversity calculated by the Cody index and Jaccard index
indicated that community diversity was markedly affected by the
elevation gradient (Figure 3). At mid-elevation gradients, the Cody
index showed that species composition changed significantly, which
could be explained by unique habitat and environmental conditions.
Consequently, mid-elevation regions support unique species such as
P. crassifolia, P. tabuliformis, and P. davidiana, with the structure
and composition of the plant communities differing considerably
from those at other elevation gradients. The maximum diversity at
mid-altitudes could be explained by the mid-domain effect which
aims to explain spatial patterns in species richness by invoking only

FIGURE 3
Response curves of Jaccard index, Cody index of shrub (A,C), and herb (B,D) plants to elevation in the GAM analysis. The vertical axes indicate the
relative influence of each explanatory variable on the prediction. Shaded areas indicate 95% confidence limits.
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stochasticity and geometrical constraints (Rangel and Diniz, 2005;
Ahmad et al., 2020). Therefore, efforts should be made to prioritize
the conservation of species in mid-elevational forests (Muhammad
et al., 2022). Furthermore, the herb Jaccard index remained higher at
mid-elevation, showing an opposite trend to that of shrubs, which

was related to the life-history responses of different life-type plants
and their response to the environment (Qin et al., 2019). It may also
be related to competition between different species and disturbance
factors (Whittaker et al., 2001). Our results showed that the α- and
β-diversity show different distribution patterns along the altitudinal
gradient, implying that the conservation of plant diversity in the
Helan Mountains requires consideration of both scales of diversity
indices (Chen et al., 2020).

4.2 Relative importance of environmental
filtering and dispersal limitation in shaping
plant diversity and assembly

In dryland and mountain ecosystems, temperature and
precipitation strongly influence plant communities (Hawkins
and Porter, 2003; Ulrich et al., 2014). They both function to
regulate plant diversity across elevations. Since altitude correlates
with significant changes in species diversity and vegetation
composition in mountainous plant communities, there is a
need to build a framework to understand and predict such
patterns. Bray-Curtis dissimilarity reflects temporal and spatial
changes in species turnover. It quantifies the effects of
environmental and spatial factors on species turnover and can
reveal the mechanisms of plant community assembly (Chen et al.,
2020). In this study, the results of the Mantel test indicated that
climatic, topographic, and spatial variables all affect species
turnover (Table 3). The relatively weak influence of spatial
factors on species turnover compared to topographic
(elevation) and climatic factors suggests that environmental
filtering was more important than dispersal limitations in
shaping plant community assembly in Helan Mountain. The
variational partitioning analysis further supported the results

FIGURE 4
Biplots of RDA analysis between species diversity indices and
topographical, spatial and environmental factors. Red lines represent
environmental and spatial factors. The abbreviations used in the figure
denote: EL, elevation; MAP, mean annual precipitation; ASP,
aspect; SLO, slope; MAT, mean annual temperature; LON, longitude;
LAT, latitude. Blue lines represent shrub and herb plants; shrub was
abbreviated as “S” while herb was abbreviated as “H”.

TABLE 3 Correlations between the Jaccard dissimilarity index, environmental, topographic and spatial factors for shrubs and herbs using the Mantel test.

Indicators Shrub layer Herb layer

r p r p

Environmental factors MAT 0.69 <0.01 0.65 <0.01

MTCM 0.67 <0.01 0.62 <0.01

MTWM 0.67 <0.01 0.67 <0.01

MTCM 0.67 <0.01 0.68 <0.01

MAP 0.57 <0.01 0.50 <0.01

PDQ 0.09 0.13 0.09 0.13

PWQ 0.63 <0.01 0.58 <0.01

Topographic factors ELE 0.41 0.01 0.71 <0.01

SLO 0.03 0.29 −0.03 0.61

ASP 0.01 0.41 −0.01 0.49

Spatial factors LON 0.12 0.23 0.17 0.03

LAT 0.41 0.01 0.31 <0.01

The abbreviations used in the table denote: MAT, mean annual temperature; MTCM, mean temperature of the coldest month; MTWM, mean temperature of the warmest month; AVMAT,

annual variation of mean annual temperature; MAP, mean annual precipitation; PDQ, precipitation of the driest quarter; PWQ, precipitation of the wettest quarter; ELE, elevation; SLO, slope;

ASP, aspect; LON, longitude; LAT, latitude.
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of the Mantel test (Figure 5). Climatic factors and topographic
factors are more important than spatial factors in driving
community turnover in shrub and herb communities.
Compared to herb species, the more limited long-distance
dispersal of shrub species may be due to the larger size of
individuals or seeds (Farjalla et al., 2012), which was reflected
in the association between shrub community assembly and
spatial distance. In the present study, we found that climate
has an important influence on community assembly,
i.e., environmental filtering has greater importance than
diffusion limitation in plant community assembly, which is
consistent with previous research in desert regions of
Northwest China (Wang et al., 2021). As a result, for plant
protection of Helan Mountain, it is necessary to select species
for artificial planting according to plant adaptability. Moreover,
environmental filtering contributes more to herb community
assembly than to shrub community assembly. In conjunction
with the Ningxia Helan Mountain Forest Ecosystem Orientation
Observation Research Station, the project team is working with
the Ningxia Helan Mountain National Nature Reserve
Administration to carry out some anthropogenic interventions
to promote further restoration, as the study found little or no
herbaceous presence in the undergrowth of the oil pine forest. We
suggest that conducting environmental protection and enhancing

species dispersal between communities [such as overcoming
barriers to the spread of plant propagules (seeds) by means of
artificial seed dispersal] will be necessary measures to promote
community restoration and reconstruction.

The relative contributions of deterministic and stochastic
processes to community assembly patterns at spatial scales
remain controversial. For example, ecological niche
differentiation plays a major role in communities that are
relatively simple in structure, whereas neutral processes
dominate the maintenance of species diversity in species-rich
areas (Gravel et al., 2006). According to the variation partitioning
analysis of our study, environmental differences have a stronger
effect on changes in species composition than spatial distance
(Figure 5). Given the lack of competition and other historical
biogeographical factors, it seems that environmental filtering
plays a more critical role than dispersal limitations in driving
the assembly of plant communities in mountainous arid and
semi-arid regions. In addition, the unexplained variations in
plant species composition may be partly related to stochastic
processes such as evolutionary and historical factors (Varzinczak
et al., 2018). Moreover, other environmental factors not
measured in our study, might contribute to the unexplained
variations (Zheng et al., 2022), which should be taken into
account in future work. Nevertheless, our results confirmed
that environmental heterogeneity and dispersal limitations
shaped the plant community assembly in this arid and semi-
arid region of China.

5 Conclusion

At Helan Mountain, 121 plant species belonging to 42 families
and 90 genera with obvious temperate characteristics have been
identified. A unimodal hump-shaped pattern for α-diversity indexes
was observed along the elevation gradient. At mid-elevation, obvious
species composition changes were observed among the
communities. Climatic factors and topographic factors were more
influential than spatial factors in the assembly of shrub and herb
communities, which indicates that changes in species β-diversity
were more sensitive to environmental differences. Both
environmental filtering and dispersal limitations had an impact
on community assembly. It was found that environmental
distance in shrub and herb communities explained more
variation than spatial distance.
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