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Coastal habitats have the potential to be biodiversity hotspots that provide

important ecosystem services, but also hotspots for human development and

exploitation. Continued use of coastal ecosystem services requires establishing

baselines that capture the present state of the benthos. This study employs

habitat mapping to establish a baseline describing the spatial distribution of

benthic organisms along thewestern coast of Placentia Bay, an Ecologically and

Biologically Significant Area (EBSA) in Newfoundland, Canada. The influence of

seafloor characteristics on the distribution of four dominant epifaunal

assemblages and two macrophyte species were modelled using two

machine learning techniques: the well-established Random Forest and the

newer Light Gradient Boosting Machine. When investigating model

performance, the inclusion of fine-scale (<1 m) substrate information from

the benthic videos was found to consistently improve model accuracy.

Predictive maps developed here suggest that the majority of the surveyed

areas consisted of a species-rich epifaunal assemblage dominated by

ophiuroids, porifera, and hydrozoans, as well as prominent coverage by

Agarum clathratum and non-geniculate crustose coralline algae. These maps

establish a baseline that enables future monitoring of Placentia Bay’s coastal

ecosystem, helping to conserve the biodiversity and ecosystem services this

area provides.
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Introduction

Human reliance on coastal ecosystem services places stress

on benthic habitats, which may impact future availability of those

services (Costanza et al., 1997; Barbier et al., 2011) and also

biodiversity (Lotze et al., 2006), warranting management actions

that balance coastal ecosystem function and human use.

Considering the modern trend of increased utilization of

ocean resources (Bennett et al., 2019), it is imperative to

understand the current distribution of biota and non-living

resources (i.e. oil, mined goods), against which change can be

monitored over time (Shumchenia and King, 2010; Siwabessy

et al., 2018). Conserving ecosystem function and services requires

effective ecosystem-based management, which aims to preserve

biodiversity and functionality by recognizing complex ecological

linkages at varying scales, instead of relying on policies managing

individual species (O’Higgins et al., 2020). The resultant holistic

management therefore works to balance stakeholder

involvement with sustainable practice (Long et al., 2015).

The benthos plays an important role in providing physical

structure to the marine environment, supporting the ecological

niches of other biota and serving as an indicator of ecosystem

health which may be monitored to inform conservation priorities

(Brey, 2012; Oug et al., 2012, Alexandridis et al., 2017). Benthic

epifaunal invertebrates form the trophic basis for marine food

webs (Iken et al., 2010), influencing both benthic and pelagic

zones via cycling of energy, nutrients, and organic matter

(Sandnes et al., 2000; Hajializadeh et al., 2020; Lam-Gordillo

et al., 2021), and acting as ecosystem engineers (Reise, 1985;

Meadows et al., 2012). The majority of benthic species are

relatively immobile, if not completely sessile (Bilyard, 1987),

and are long-lived, resulting in prolonged exposure to stressors

and disturbances (Wei et al., 2019; Meng et al., 2021). Therefore,

long-term monitoring of ecosystem function and health may

benefit from the inclusion of epibenthic invertebrates as

bioindicators.

Brown kelp, primarily of the order Laminariales, are one

particular taxon known to enhance local biodiversity (Steneck

et al., 2002; Krumhansl et al., 2016). They act as both primary and

secondary producers, sequester carbon, provide shelter from

predators, act as nursery grounds (Gagnon et al., 2003), and

provide the physical framework to increase habitat complexity

(Steneck et al., 2002). Kelp beds in temperate and sub-polar

coastal regions of the northwest Atlantic are subject to periodic

decimation by the herbivorous green sea urchin

(Strongylocentrotus droebachiensis), resulting in coastal barrens

that are less productive, which may extend 1000s of km (Filbee-

Dexter and Scheibling, 2014). In the Northeast Atlantic, some of

the few remaining floral species not consumed by urchins may

include the kelp Agarum clathratum and non-geniculate crustose

coralline algae (CCA). A. clathratum presumably deters urchins

via phenolic compounds that render them unpalatable (Vadas,

1968; Vadas, 1977). For urchins, CCA are a poor nutritional

substitute compared to kelps (Agatsuma, 2000; Kelly et al., 2008).

BothA. clathratum and CCA are associated with a unique suite of

invertebrates [Ojeda and Dearborn, 1989; Freiwald, 1993; Bégin

et al., 2004; Swanson et al., 2006; Chenelot et al., 2011; Blain and

Gagnon, 2014; Tebben et al., 2015; Jørgensbye and Halfar, 2017],

potentially boosting subtidal biodiversity.

Benthic fauna and flora associate strongly with the physical

structure of the seafloor (Auster and Langton, 1998; Kostylev

et al., 2001), and geospatial models based on remotely sensed data

may be used to support our understanding of spatial ecological

patterns and the physical factors that drive them. The defined

species-environmental relationships can be used to develop a

baseline grounded in the function of an ecosystem that qualifies

the composition and distribution of the benthos in a target area.

These resultant habitat maps have been utilized for fisheries

management (Brown et al., 2012), to inform effective Marine

Protected Areas (MPAs) (Lacharite and Brown, 2019), for

observing the impacts following ecological disturbance (e.g. oil

spills (Botello et al., 2015)), and the first step in the establishment

of long-term monitoring programs of coastal biodiversity (Obst

et al., 2018). The effectiveness of a baseline relies on accurate and

robust modelling techniques employed during its development,

and these techniques are being improved continuously as there is

an urgent need for such spatial data products.

This study aims to establish a baseline describing the benthic

epifaunal assemblages and twomarine algae species (A. clathratum

and CCA) found in the subtidal zone of an Ecologically and

Biologically Significant Area (EBSA) in Newfoundland, Canada

(Templeman, 2007; DFO, 2016). An EBSA is an area notable for its

distinct ecosystem characteristics, role in species’ life stages (i.e.

feeding/spawning grounds), resilience, and socio-economic

utilization (DFO, 2004). The Placentia Bay EBSA has exhibited

growth in vessel traffic and coastline activities that will likely shift

the state of the benthos (DFO, 2007; LGL, 2018). The baseline

established here will enable documenting changes to the dominant

epifauna and marine algae using spatially explicit predictions of

their current distribution based on the relationships with the

physical structure of the seafloor. While modeling the

relationship between seafloor features and biota, the

performance of a new machine-learning algorithm, Light

Gradient Boosting Machine (LightGBM), is tested against a

well-established algorithm, Random Forest (RF). The predictive

models and habitat maps developed in this study may be applied

for futuremonitoring of changes in ecosystem structure and health

within the Placentia Bay EBSA.

Methods

Study area

Placentia Bay is a deep-water embayment located on the

southern side of the Island of Newfoundland, in the province of
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Newfoundland and Labrador (Atlantic Canada). Following an

overview of its ecosystem status, present fish distribution and

spawning locations, and a species inventory, Placentia Bay was

designated by the Government of Canada Department of

Fisheries and Oceans as an EBSA (Templeman, 2007; DFO,

2016). Any severe disturbance (i.e. oil spill) would be of greater

ecological consequence within the EBSA boundary than if the

same perturbation occurred beyond its extent (DFO, 2004).

Placentia Bay hosts important capelin spawning beaches,

seagrass meadows, seabird colonies, and herring

aggregations (Sjare et al., 2003). It is also a location where

charismatic megafauna such as whales (DFO, 2018) and

leatherback turtles (DFO, 2012b) may be observed. Paired

with its ecological relevance, Placentia Bay has local socio-

economic importance, including traditional and commercial

fisheries of groundfish and shellfish (Robichaud and Rose,

2006; DFO, 2012a; DFO, 2019), a growing finfish

aquaculture industry (LGL, 2018), and frequent marine

traffic, including oil tankers. Placentia Bay is considered to

be amongst marine areas at greatest risk of oil spill across

Canada (DFO, 2007).

Four survey areas along the west coast of Placentia Bay

were selected for this study: Rushoon, D’Argent Bay, Burin

and St-Lawrence (Figure 1). These sites are notable for their

local ecological importance. Rushoon was the northernmost

site surveyed, and is likely one of the more pristine of the four

due to its remoteness. This may be subject to change, as

development of salmon aquaculture progresses in the area,

which may impact the local environment (LGL, 2018). Further

southwest, D’Argent Bay was selected for its capelin spawning

sites, herring aggregations, and high occurrence of whales

(Sjare et al., 2003). Burin is near a relatively large cluster of

towns, including the towns of Burin and Marystown. Finally,

closest to the mouth of Placentia Bay, St. Lawrence was

selected for its capelin spawning sites, as well as its role as

an important seabird habitat (White, 2018).

FIGURE 1
(A) Location of Placentia Bay (highlighted in the blue box) on the southern coast of the Island of Newfoundland, located on the eastern coast of
Canada. (B) Locations of the four survey areas along the west coast of Placentia Bay. Bathymetry and ground-truth locations for (C) Rushoon, (D)
D’Argent Bay, (E) Burin, and (F) St. Lawrence.
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Environmental survey

Multibeam echosounder (MBES) surveying was carried out

between winter 2018 and summer 2020 (Table 1) on board the

27’ Fisheries and Marine Institute research vessel D. Cartwright.

MBES uses sound waves that travel from the sensor to the

seafloor and back again, forming a swath of depth soundings

across the path of the vessel. As sound waves echo back from the

seafloor, the strength of their return is also measured, and this

acoustic backscatter can be indicative of substrate types. Harder

substrates like bedrock or boulders return a higher backscatter

signal, while softer sediments like mud or sand will produce a

weaker signal (Lamarche et al., 2011; Lurton and Lamarche, 2015;

Calvert et al., 2015). Bathymetry and backscatter were collected

using a Kongsberg EM 2040P, operating at 400 kHz. Positioning

data were obtained using a Fugro 3,610 differential GPS with a

Seastar subscription that provided spatial accuracy of up to 8 cm.

Sound Velocity Profiles (SVP) between the transducer and

seafloor were obtained using an AML BaseX sound velocity

profiler, while sound velocity measurements at the MBES

transducer head were obtained by an AML Micro SV sound

speed sensor.

Raw sonar files for each survey area were imported into the

Quality Positioning Services (QPS) Qimera v2.0.3 software.

Bathymetric data were adjusted for Rushoon and D’Argent

Bay using observations from the Argentia tide station (Station

#835, https://www.tides.gc.ca/en/stations/835) and for Burin and

St. Lawrence using the St. Lawrence tide station (Station #755,

https://www.tides.gc.ca/en/stations/00755).). SVPs were

imported into each respective Qimera project: 25 for D’Argent

Bay, 19 for Rushoon, 19 for Burin, and 17 for St. Lawrence. Spline

filters were employed to automatically remove outliers, and once

processing was completed, a bathymetric surface was exported as

a Floating Point GeoTIFF Grid at 5 × 5 m spatial resolution for

each area. Processed files were additionally exported to. GSF

format, and were imported into QPS Fledermaus Geocoder

Toolbox (FMGT) v.7.8.4. For backscatter processing.

Backscatter mosaics were exported at 5 × 5 m spatial

resolution. All environmental rasters were projected to UTM

Zone 21.

Bathymetric surfaces were used to derive terrain features that

have been found to influence benthic biota distribution. These

features can act as surrogates for variables that are difficult to

measure directly (e.g. slope can act as a proxy for finer-scale

currents). Six terrain features identified by Lecours et al., 2016a

that capture a large amount of topographic information were

calculated in ESRI ArcGIS using the Terrain Attribute Selection

for Spatial Ecology toolbox (TASSE) (Lecours, 2015). These

included slope (change in elevation), eastness and northness

(orientation, calculated as the sine and cosine of slope),

relative difference to the mean value (RDMV; relative

position), and standard deviation (SD) of bathymetry (a

measure of rugosity). Additionally, bathymetric position index

(BPI) and vector ruggedness measure (VRM) were also selected

to potentially provide information on seafloor structure. BPI is an

adaptation of the topographic position index (Weiss, 2001) that

measures the relative position of an area to the surrounding

seabed (Lecours et al., 2016b). Positive and negative values

represent peaks and troughs, respectively. VRM incorporates

both slope and aspect in a single measure of surface roughness

that is independent of slope (Hobson, 1972; Sappingtom et al.,

2007; Martín-García et al., 2013), unlike SD. BPI, and VRM were

derived from the bathymetric surfaces using the Benthic Terrain

Modeller (BTM) Version 3.0 (Wright et al., 2012). Additionally, a

layer measuring the distance from the coast was calculated within

each survey area using the ‘Euclidean Distance’ tool in ESRI

ArcGIS, which has previously been used to inform on benthic

assemblage distributions (Degraer et al., 2008; Richmond and

Stevens, 2014; Vassallo et al., 2018).

Features were derived from backscatter mosaics based on the

spatial distribution of the varying shades of grey denoting

backscatter intensity (Haralick et al., 1973). Three features

were calculated using a grey-level co-occurrence matrix via

the R package ‘GLCM’ (Zvoleff, 2020): contrast (local

variation), homogeneity (closeness of distribution), and

entropy (randomness) (Haralick et al., 1973). These features

were selected for their common application in previous

studies of similar systems (Blondel and Sichi, 2009; Samsudin

and Hasan, 2017; Shang et al., 2021).

Terrain features were calculated across a range of spatial

scales (i.e. using moving-windows of varying sizes), as no single

scale can account for all ecological processes of a benthic

ecosystem (Dolan, 2012; Lecours et al., 2015). All features

(except for BPI) were derived using a 3x3-cell window, with

TABLE 1 Acquisition information for multibeam echosounder (MBES) and ground-truth (GT) surveys.

Site Survey period—MBES MBES survey
area (km2)

Survey period—gt Number of
sites

Camera system

Rushoon June—July 2019 39 August 2019 44 FDR-X300

D’Argent Bay December, February 2018 and April 2019 43 July—August 2019 48

Burin May 2019 24 July 2020 50 Deep Trekker DTPod

St. Lawrence July—August 2020 37 August 2020 50
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additional scales obtained using the “calculate-average” approach

(Dolan and Lucieer, 2014; Misiuk et al., 2021), by focal averaging

using increasing window sizes (13 × 13-and 35 × 35-cell

windows; Table 2). BPI layers were calculated by setting the

outer and inner radii (in cells) of an annulus (ring-shape) and

calculating themean elevation value of all cells within the analysis

neighborhood (Walbridge et al., 2018). BPI was calculated using

the Benthic Terrain Modeler Toolbox, with outer and inner radii

of 60 and 3, 150 and 45, 260 and 13, 630 and 195, 700 and 35, and

1750 and 525 cells.

Benthic biota

Ground-truthing sites (n = 192) across all four survey areas

were selected using a Generalized Random Tessellation Stratified

(GRTS) survey design (Supplementary Table S1) (Stevens and

Olsen, 2004), stratified by bathymetry and backscatter. For the St.

Lawrence sites, MBES data were unavailable prior to ground-

truthing, and bathymetry was interpolated from depth soundings

on a nautical chart (e.g. Great St. Lawrence Harbour, Marine

Chart CA4642_2). Ground-truthing consisted of underwater

video with two systems: a Sony FDR-X3,000 Action Cam

(1920 × 1,080 pixels, 60 frames/sec), contained in a Deep Blue

Abysso waterproof housing, paired with two 3,500 lumen neutral

white light Cree LED bulbs and two green lasers spaced 10 cm

apart; and a Deep Trekker DTPod (1920 × 1,080 pixels,

30 frames/sec) with an integrated light and two red lasers

spaced 2.5 cm apart. For both systems, a live video feed was

used to adjust the height of camera above the seabed. Boat

positioning at the start and end of each transect was obtained

using the onboard Garmin GPS 16x; the midpoint of each

transect was used to extract point-wise data from terrain features.

Two-minutes of continuous video were annotated using the

Monterey Bay Aquarium Research Institute’s (MBARI) Video

Annotation and Reference System (VARS) (Schlining and Stout,

2006). The presence or absence of Agarum clathratum and non-

geniculate coralline algae (CCA) were recorded. Because of

varying coverage across different ground-truthing sites, CCA

were divided into three classes: full coverage, partial coverage,

and absent. The full-coverage class was assigned when most of

the seafloor was covered by CCA. Partial coverage was given

when at least half of the substrate was covered. If little to no CCA

was present, the site was marked as absent. Because abundance of

TABLE 2 Multiscale environmental features calculated at each site.

Feature Scale (m) Unit Software Software source

Bathymetry (m) - meters - -

Slope 15, 45, 175 degrees TASSE Lecours, (2015)

Eastness 15, 45, 175 unitless TASSE Lecours, (2015)

Northness 15, 45, 175 unitless TASSE Lecours, (2015)

RDMV 15, 45, 175 unitless TASSE Lecours, (2015)

SD 15, 45, 175 meters TASSE Lecours, (2015)

Fine BPI 15, 45, 175 meters BTM Wright et al. (2012)

Broad BPI 15, 45, 175 meters BTM Wright et al. (2012)

VRM 15, 45, 175 unitless BTM Wright et al. (2012)

Backscatter - Value (dB) -

Contrast 15, 45, 175 unitless GLCM Zvoleff (2020)

Entropy 15, 45, 175 unitless GLCM Zvoleff (2020)

Homogeneity 15, 45, 175 unitless GLCM Zvoleff (2020)

Distance to Coast (km) 5 meters ‘Euclidean Distance’

Bedrock (%) % ImageJ

Boulder (%) % ImageJ

Gravel (%) % ImageJ

Fine sediment (%) % ImageJ

Red Algae (%) % ImageJ

Agarum clathratum (%) % ImageJ

Saccharina latissima (%) % ImageJ
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S. droebachiensismay influence macroalgae distributions, counts

at each site were included as a possible predictor variable.

All epifauna larger than 2 cm were counted and identified to

the lowest possible taxonomic level, using expert knowledge and

published species guides (Gosner, 1979; Harvey-Clark, 1997;

Martinez and Martinez, 2003; Fox et al., 2014; Salvo et al.,

2018). When species identification was not feasible, a

morphotype approach was employed (Howell et al., 2019).

The total number of individual species/morphotypes per

transect was calculated and converted to densities by

estimating the total area recorded for each transect. Using the

Blender v.2.8.2, 12 frames at 10 s intervals were extracted and the

distance between lasers was measured and used to calculate

transect width with ImageJ. This was averaged and multiplied

by the total length of the transect. Species/morphotypes that had

an abundance of <5 individuals across all ground-truthing sites

were removed to reduce the influence of low-abundance species.

The dominant assemblages for ground-truthing sites

with <5 faunal counts could not be characterized (De la

Torriente et al., 2018); these sites were removed prior to analysis.

The species matrix was Hellinger transformed to reduce the

importance of larger epifaunal abundances (Legendre and

Gallagher, 2001; Borcard et al., 2011). Faunal assemblages

were clustered using the average hierarchical clustering

method ‘Unweighted Pair-Group Method using arithmetic

Averages’ (UPGMA) (Sokal and Michener, 1958), with

hierarchical relationships plotted as a dendrogram. The

UPGMA approach is fast, simple, and may even outperform

other clustering algorithms (Kreft and Jetz, 2010). Dissimilarity

values between two branches of the derived dendrogram

(i.e., “fusion levels”) were plotted to determine the optimal

number of faunal assemblages. Silhouette widths were

additionally calculated and plotted for each fusion level,

providing a metric for distinguishing assemblages. Silhouette

widths range from -1 to 1, with one representing assemblages

that are clearly distinguished (Borcard et al., 2011). Once faunal

assemblages were identified, the characteristic species or

morphotypes of each assemblage were identified using an

IndVal procedure (Legendre, 2013). A species accumulation

curve was developed for each assemblage to identify if species

richness was effectively captured (Ugland et al., 2003; Bevilacqua

et al., 2018).

Model development

For both the assemblages and for each marine algae taxa

model, a Boruta Feature Selection (Kurse and Rudnicki, 2010)

algorithm was run separately to include terrain features

grouped by scale (window of analysis: 3 × 3, 13 × 13, 35 ×

35 cells) in order to reduce the number of candidate terrain

features and promote model parsimony and support

performance (Nemani et al., 2021). Important variables are

identified by the Boruta wrapper as it compares the importance

of a variable with a randomly shuffled version containing the

same distribution of values (i.e., “shadow features”). A variable

is deemed important if it consistently contributes more to the

model than its shadow variable. Degenhardt et al., 2019 found

that the Boruta algorithm generally outperformed other

selection methods, and previous successful applications can

be found in Li et al., 2016, Diesing and Thorsnes, (2017) and

Nemani et al., 2021. Variables identified as “important” or

“tentative” were selected for model training here. Variables

were further dropped that had absolute correlation values

exceeding 0.7, as determined using the R function ‘corrplot’

(Wei, 2013). In these cases, the variable with the lower impact

on model accuracy was dropped.

Separate multiclass classification Random Forest (RF) and

Light Gradient Boosting Machine (LightGBM) models were

developed for the epifaunal dataset, the A. clathratum dataset,

and the CCA dataset. Each model was trained with 2/3 of the

samples, which included a proportional representation of

classes (i.e. presence and absence of A. clathratum or

epifaunal assemblage). The remaining 1/3 was reserved to

test model performance. Model accuracy was assessed using

the test data by computing a confusion matrix of predicted and

observed classes (Congalton, 1991), from which overall

accuracy and Cohen’s kappa were derived. Overall accuracy

is the number of accurately predicted classifications divided by

the total number of observations. The kappa statistic

incorporates the chance of random agreement between

observed and predicted classes based on their prevalence

(Cohen, 1960; Allouche et al., 2006). Both the RF and

LightGBM models were run with and without fine-scale

(<1 m) substrate % coverage to understand the importance

of fine-scale features in explaining spatial patterns. Using both

the RF and LightGBM models and the environmental data

layers, full-coverage predictive maps were developed for the

distribution of epifaunal assemblages, presence/absence of A.

clathratum, and for the absence/partial/full coverage of CCA.

Since substrate % coverage features were not spatially

continuous, full-coverage predictions were based on the

terrain feature-only models.

RF is a well-established ensemble machine-learning

algorithm that builds a ‘forest’ of classification trees from

which predictions are obtained through majority voting. It

employs ‘bagging’, where the data are repeatedly bootstrapped

to train different classification trees (Quinlan, 1986), which are

uncorrelated. Additionally, each tree split uses a random subset

of variables, instead of the entire set. RF models were trained

using the R package ‘randomForest’ (Liaw and Weiner, 2002),

with the default number of variables included in each split

(‘mtry’) retained for each model. Random Forest has been

used successfully for predictive models with limited sample

sizes similar to the number of observations in this study

(Stephens and Diesing, 2014; Robert et al., 2015; McLaren
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TABLE 3 Parameters selected for LightGBM model tuning.

Parameter Description Range tested

‘objective’ Sets the model as regression or classification ‘multi_class’ *

‘metric’ How the model performance is evaluated ‘multi_error’ *

‘num_class’ Number of classes predicted number of faunal assemblages*

‘is_unbalance’ Algorithm automatically balances weights of classes TRUE, FALSE

‘force_col_wise’ Manages model instability when there is a large number of columns (features) TRUE, FALSE

‘max_depth’ Controls the maximum distance between a tree’s root node and each leaf node 10, 20, 40, 80

‘num_leaves’ Maximum number of leaves for each learner; manages complexity; adjust with ‘max_depth’ (2 m̂ax_depth)

‘learning_rate’ Boosting learning rate 0.05, 0.1, 0.25, 0.5

‘num_iterations’ Number of trees to build; with larger values, adjust with smaller ‘learning_rate’ 100, 200, 300, 400

‘feature_fraction’ Sets % of features selected as a subset for each iteration (tree) 0.8, 0.9, 0.95

‘lambda_l1’ L1 regularization 0.2, 0.4

‘lambda_l2’ L2 regularization 0.2, 0.4

‘min_gain_to_split’ Sets the minimum improvement value when evaluating gains at a split 0.2, 0.4

‘early_stopping_rounds’ Stops training when validation metric does not improve; adjust with ‘num_iterations’ 10% of ‘num_iterations’

* Core features that do not change during any model iteration.

TABLE 4 Indicator species by IndVal analysis of faunal assemblages.

Name n sites Indicator
morphotype/species

Species present Unique to
this cluster

Images*

OPH 64 Ophiuroidea spp. 51 8

Porifera sp.5

Hydrozoa sp.1

SDR 21 Strongylocentrotus droebachiensis 20 none

Stauromedusae sp.2

MIX 26 Hormathia sp.1 42 1

Cerianthidae sp.3

Cnidaria sp.1 Sagittidae sp.1

EPA 8 Echinarachnius parma 15 1

Pseudopleuronectes americanus

n indicates the number of ground-truthing sites identified as containing each assemblage.
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et al., 2019; Misiuk et al., 2019; Ilich et al., 2021; Janowski et al.,

2021).

LightGBM is a relatively recent Gradient Boosting Decision

Tree algorithm (Ke et al., 2017). Unlike RF, LightGBM uses

‘boosting’ rather than ‘bagging’ to enhance performance.

Boosting is another ensemble method in which classification

trees are grown on the residuals from previous trees (Vaghela

et al., 2009; Schapire and Freund, 2013). Tree growth and

learning rate are controlled by a suite of tunable parameters

(Table 3). The parameters recommended in the LightGBM

release 3.2.1.99 guide (Zhang et al., 2012) were chosen to tune

the model.

A variable importance plot was derived for each model,

ranking variables based on their predictive importance. The

RF model used Gini Importance, which measures the total

decrease in node impurity by calculating the sum over the

number of splits including a variables, across all trees

(Friedman et al., 2001). LightGBM implements a gain-based

method that is similar to the Gini Importance used by RF

(Lundberg et al., 2020), but excludes unimportant features.

Univariate partial dependence plots were derived from the

best-performing model to visualize the relationship between

an individual variable and a faunal assemblage or marine

algae (Marini et al., 2015; Vassallo et al., 2018).

By comparing model accuracy and ranked variable

importance, preliminary modelling using the derived terrain

features suggested that important variables may be missing.

Substrate heterogeneity information extracted from videos of

the seafloor was tested to improve model performance. Substrate

observations were obtained from the underwater video collected

for biological analysis (described below). An image was extracted

every 10 s from each video using Blender v.2.8.2 and images were

imported to ImageJ (Image processing and analysis in Java). A

50-square grid was superimposed on each image and each square

FIGURE 2
Images of the substrate classes identified during video annotation: (A) bedrock, (B) boulder, (C) gravel mix, (D) fine-sediment (sand), (E) fine-
sediment (mud), (F) filamentous red algae (excluding coralline algae), (G) Agarum clathratum, and (H) sugar kelp (Saccharina latissima). Distance
between lasers was 10 cm for the Sony FDR-X300 camera and 2.5 cm for the Deep Trekker DTPod.
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was labelled as one of seven classes: bedrock, boulder, gravel-mix,

fine sediment (including both mud and sand), red algae

(excluding coralligenous algae), Agarum clathratum, and

Saccharina latissima (Figure 2). Following Connell et al., 2014,

red algae can be qualitatively categorized as turfs (i.e. loosely to

densely aggregated filamentous algae <15 cm tall and covering an

area greater than 1 m2). Biogenic substrates were included

because observing the sediment underneath was often not

possible and algae presence is likely to influence the presence

of other epifauna. The number of occurrences of each class was

divided by the total number of grids for a ground-truth site,

yielding fine-scale (<1 m) percent cover for each substrate class.

Results

Epifaunal assemblages

Of the 192 ground-truthing sites collected, 117 fulfilled the

criteria for assemblage identification. One site (Rushoon-53)

exhibited two distinct epifaunal assemblages and substrate

types, and was split into two, producing 118 total samples.

From these, a total of 12,096 individuals were counted and

55 taxa were identified (Supplementary Table S2), 14 of which

(25.5%) were identified to species level. The brittle star

morphotype ‘Ophiuroidea spp.’ had the highest overall

abundance (6,693 individuals; 55.5% of all counts), followed

by ‘Hormathia sp.1’ (1,631 individuals; 13.5%),

Strongylocentrotus droebachiensis (766 individuals; 6.3%), and

Echinarachnius parma (627 individuals; 5.2%). Porifera had the

highest taxa diversity with 14 morphotypes. Echinodermata was

FIGURE 3
Dendrogram of the four dominant epifaunal assemblages identified at sites across the west coast of Placentia Bay. Illustrations by J. Mackin-
McLaughlin.

FIGURE 4
A species accumulation curve was developed for each faunal
assemblage and for the summation of species observed across all
sites included in analysis (in black).
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second in taxa diversity (7 morphotypes; six species), followed by

Cnidaria (8 morphotypes; two species).

Four epifaunal assemblages were identified (Figure 3;

Table 4). Sixty-four of 119 sites (53.8%) were identified as

OPH, typified by ‘Ophiuroidea spp.‘, ‘Porifera sp.5’, and

‘Hydrozoa sp.1’. OPH contained the highest taxa richness

(51 taxa: 39 morphotypes, 12 species), as well as the most

taxa unique to a single assemblage (8 taxa). SDR represented

21 sites (17.6%) and contained 13 morphotypes and seven

species, with S. droebachiensis and ‘Stauromedusae sp.2’ as

the typifying taxa. MIX was found at 26 sites (21.8%) and

had the second highest taxa richness, with 30 morphotypes and

12 species. It was typified by ‘Hormathia sp.1’, ‘Cerianthidae

sp.3’, ‘Cnidaria sp.1’, and ‘Sagittidae sp.1’. EPA was the rarest

assemblage, with only eight representative sites (6.7%). EPA

had the lowest taxa richness, with only eight morphotypes and

seven species, and was typified by E. parma and

Pseudopleuronectes americanus, with the former unique to

this assemblage. While OPH exhibited the highest taxa

richness, species accumulation curves indicate that the

species/morphotypes richness of SDR, MIX, and EPA are

underrepresented (Figure 4). Greater surveying effort could

reveal additional species/morphotypes for each assemblage.

However, this lack of plateau may also be the result of

removing species with <5 occurrences across all ground-

truthing sites.

Model performance and predicted
distribution

Following the Boruta algorithm and assessment of

collinearity, 18 variables were included in the epifaunal

models, 18 in the A. clathratum models, and 24 in the CCA

models. Without fine-scale substrate % features, the RF model

accuracy was 61.0% (kappa = 0.31) and the LightGBM model

accuracy was 68.3% (kappa = 0.47). With the addition of fine-

scale substrate features, the epifaunal RF test accuracy increased

to 78.1% (kappa = 0.62), and the LightGBM model accuracy

increased to of 78.1% (kappa = 0.62). Both the RF and LightGBM

models overestimated the occurrence of OPH, and as a result, a

large number of SDR and MIX observations were incorrectly

classified as OPH. This is evidenced in the RF and LightGBM

predictive maps, where OPH was predicted to cover the majority

of each survey area, excluding Rushoon (Figure 5). RF, however,

included a greater coverage of SDR along the coastal side of

D’Argent Bay and of MIX along the interior of St. Lawrence.

LightGBM underestimated the coverage of both SDR andMIX in

D’Argent Bay and St. Lawrence, respectively, even though

ground-truthing sites assigned as those assemblages were

observed. RF correctly identified all EPA observations while

LightGBM was unable to correctly predict any of the EPA sites.

Only ground-truthing sites within the observed depth range

for each marine algae were included. For A. clathratum model

FIGURE 5
Predicted spatial coverage of the identified four assemblages by the 1) Random Forest and 2) Light Gradient Boosting Machine models across
the four target survey areas: (A) Rushoon, (B) D’Argent Bay, (C) Burin, and (D) St. Lawrence.
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development, 115 sites at a depth range of 15–66 m were

included. A. clathratum was present at 60 of 115 ground-truth

sites, the majority of which occurred in Burin (25 of 60 sites;

41.7%). A. clathratum was present at over 50% of sites in all

survey areas except for St. Lawrence. Model performance without

fine-scale substrate % features was 82.1% (kappa = 0.64) for the

RF model and 87.2% (kappa = 0.74) for the LightGBM model.

Maps derived from these models predicted a majority coverage of

A. clathratum across Burin, though a patchwork of absences is

predicted by LightGBM in the interior of Burin’s extent.

Differences in predicted A. clathratum extent is apparent in

Rushoon and St. Lawrence. The greatest discrepancies were

observed in D’Argent Bay though, with very little coverage

predicted by LightGBM compared to RF (Figure 6).

132 sites were included in the CCAmodel at a depth range of

15–78 m. For CCA, 42 sites had full coverage (31.8%) and 31 sites

had partial coverage (23.5%). Rushoon had the highest number

of ground-truthing sites with full coverage off CCA (15 of 27).

Aside from one instance of full coverage, the northeastern coast

of St. Lawrence was characterized by partial coverage of CCA.

Few absences of CCA were observed in D’Argent Bay (7 out of

36 sites) and Burin (11 out of 45 sites). When models were

developed without fine-scale substrate % coverage, the CCA RF

model had an accuracy of 68.9% (kappa = 0.49) and the

LightGBM model had an accuracy of 68.9% (kappa = 0.51).

Predictive maps derived from these differed in the concentration

of absences, with LightGBM predicting an underestimation

across all four survey areas of both partial and full coverage

(Figure 7).

The accuracy of all marine algae models was increased with

the introduction of fine-scale substrate % coverage features. The

A. clathratum RF and LightGBM model accuracies increased to

89.7% (kappa = 0.80) and 92.3% (kappa = 0.85), respectively and

both the CCA RF and LightGBM accuracies increased to 82.2%

(kappa = 0.72).

Species-Environment relationships

Depth was the most important variable for explaining the

distribution of epifaunal assemblages, according to the RF

model (Figure 8). OPH and MIX were associated with

deeper portions of the surveyed areas, while SDR and EPA

were generally observed at depths shallower than 50 m.

Relationships between EPA and the five most important

variables appeared opposite to those observed for the other

assemblages (according to the best-preforming RF model)

(Figure 9). EPA was the only assemblage that was more

prevalent with increased coverage of fine sediment and flat

terrain. Assemblages SDR, MIX, and OPH appeared more

FIGURE 6
Predicted absence (white) and presence (green) of Agarum clathratum by the 1) Random Forest and 2) Light Gradient BoostingMachinemodels
across the four target survey areas: (A) Rushoon, (B) D’Argent Bay, (C) Burin, and (D) St. Lawrence. No predictions were developed where black is
seen, as depth exceeded the range established in A. clathratum model development.
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prevalent at areas of rugged and boulder terrain, according to

models. EPA was most prevalent within 2 km of the coast, with

decreasing occurrence with greater distance. Unlike SDR and

MIX, OPH was most prominent at sites closer to shore, but also

occurred at the furthest offshore sites that were sampled.

Fine-scale substrate % coverage was identified as being even

more important than depth to explain the spatial patterns of both

A. clathratum and CCA models (Figure 8). Specifically, the

presence of even low % coverage of fine sediment influences

the presence of both A. clathratum and CCA. The predicted

presence of either marine algae was higher with increasing

coverage of harder substrates, including both boulder (%) and

gravel (%) coverage (Figure 10).

According to both RF and LightGBM models, bathymetry

was the second most important variable influencing the

distribution of A. clathratum, with the majority of

occurrences constrained to depths of 15–48 m. Bathymetry

appeared less important for predicting CCA distribution in

the RFmodel, and was not included at all in the CCA LightGBM

model. The model suggested that softer sediments were more

influential than harder substrate in determining the presence of

A. clathratum (Figure 10). For CCA models, partial and full

coverage were associated with higher backscatter values, while

sites with absences were characterized by lower backscatter

(Figure 11).

Discussion

The west coast of Placentia Bay hosts a diverse and

heterogeneous collection of benthic invertebrates, with

prominent populations of A. clathratum and substantial CCA

coverage. Fine-scale (<1 m) substrate features appear highly

important for explaining observed spatial patterns.

Performance improved in all cases when substrate features

were included in the models, yet ultimately, these variables

could not be used for continuous spatial prediction due to

their discontinuous coverage. This highlights the importance

of fine-scale substrate as a benthic habitat driver. Nonetheless,

the models developed in this study provide valuable insight into

the species-environment relationships driving the distribution of

the heterogeneous benthic biota found in Placentia Bay–a

necessary step in establishing a baseline for monitoring

changes over time.

Depth has often been identified as an important variable in

explaining benthic biota distribution (Bekkby et al., 2009;

Gorman et al., 2013; Neves et al., 2014; Schückel et al.,

2015; Bekkby et al., 2019). However, depth is likely acting

as a proxy for other co-varying and harder to characterize

variables, such as light availability, temperature, salinity, wave

action, or ice scouring (Elith and Leathwick, 2009; Sandman

et al., 2013). For example, in the case of the spatial distribution

FIGURE 7
Predicted absence (white), partial coverage (light purple), and full coverage (dark purple) of non-geniculate crustose coralline algae (CCA) by the
1) RandomForest and 2) Light Gradient BoostingMachinemodels across the four target survey areas: (A)Rushoon, (B)D’Argent Bay, (C)Burin, and (D)
St. Lawrence. No predictions were developed where black is seen, as depth exceeded the range established in CCA model development.
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of A. clathratum and CCA within Placentia Bay, depth likely

acts as a proxy for light attenuation. A. clathratum extends to

greater depths than most kelp species due to its shade-

tolerance (Krause-Jensen et al., 2019), with an observed

depth limit in this study of up to 66 m, consistent with

findings along coastal Greenland (Krause-Jensen et al.,

2019). CCA are even more tolerant of low-light conditions

due to their low photosynthetic capacity (Littler et al., 1985;

Roberts et al., 2002; Nelson, 2009). CCA are found within

most coastal habitats (Littler et al., 1985), including Antarctica

(Zaneveld and Sanford, 1965; Schwarz et al., 2005; Castellan

et al., 2021), and are observed at depths greater than any other

local marine algae species (McConnaughey and Whelan,

1997). This may explain the exclusion of bathymetry from

the CCA LightGBM model. Dean et al., 2015 observed a

similar pattern with coralline algae along the Great Barrier

Reef, where depth had little effect on their distribution

compared to physical features.

FIGURE 8
Order of variable importance as determined by the Random Forest (RF) and Light Gradient Boosting Machine (LightGBM) for the epifaunal,
Agarum clathratum, and non-geniculate crustose coralline algae (CCA).
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In the case of EPA, shallower depths may be associated with a

greater abundance of food for the typifying species E. parma,

such as benthic diatoms, which are known to migrate to

shallowed depths as they grow older and larger (Cabanac and

Himmelman, 1996; Cabanac and Himmelman, 1998). In

contrast, OPH and MIX were found across most of the depth

range surveyed. The dominant epifauna of these assemblages

included porifera and cnidarians, with dense ophiuroid beds in

OPH and abundant Hormathia sp.1 aggregations in MIX. As

these epifauna rely on filter- and suspension-feeding techniques,

their survival may depend on food transport from the euphotic

zone (Maldonado et al., 2017). Food transport may be

constrained by both hydrography and depth in coastal

environments (Grebmeier and Barry, 1991; Graf, 1992;

Piepenburg, 2005; Sswat et al., 2015).

Mean current circulation in Placentia Bay is

counterclockwise, with currents entering on the eastern coast

and exiting on the west (Ma et al., 2012). The west coast is

therefore subject to upwelling currents that may be beneficial to

filter- and suspension feeders (Ma et al., 2012), such as the

porifera and cnidarians (i.e.Hormathia sp.1) observed within the

OPH and MIX assemblages. Sponge aggregations (Hogg et al.,

2010) andHormathia digitata (Dunlop et al., 2020) are known to

associate with strong, nutrient-enriched currents delivering a

constant food supply–though the current strength in these small

embayments is strongly influenced by the complex bathymetry

and shoreline (Largier, 2020). A. clathratum and CCA were

found on westward-facing substrate in line with Placentia

Bay’s south westerly currents [Supplementary Figures S2,3].

Kelp beds are well-adapted to environments of moderate wave

exposure (Gorman et al., 2013; Bekkby et al., 2019), as wave

action boosts nutrient supply and uptake, ensures continuous

light exposure (Hurd et al., 1996; Hepburn et al., 2007; Bekkby

et al., 2019), and reduce survivability of epiphytes (Strand and

Weisner, 1996). However, at exposed areas such as St. Lawrence,

which may experience excessive wave action, growth may be

inhibited due to abrasions or transport (Marrack, 1999; Sañé

et al., 2016).

With the exception of EPA, hard substrates were associated

with suitable habitat for all epifaunal assemblages, A.

clathratum, and CCA. Fine sediments and sedimentation

may reduce habitat suitability for these sessile organisms by

inhibiting feeding strategies. Large kelps such as A. clathratum

additionally require a stable foundation for holdfast attachment

to endure currents and storm surge (Morrison et al., 2009;

Watanabe et al., 2014; Masteller et al., 2015). In contrast, E.

parma would preferentially inhabit coarse sand areas (Stanley

and James, 1971; Sisson et al., 2002), enabling filtering where

coarse sand traps particulate matter for consumption without

excess fouling (Bland et al., 2019), and burying to avoid

predation (Manderson et al., 1999; Pappal et al., 2012) and

damaging storm surge (O’Neill, 1978). Distance from the coast

may act as a surrogate for sedimentation rate (Stephens and

Diesing, 2015; Misiuk et al., 2018). In the case of CCA, growth

occurs only on hard substrate (Connell, 2005; Gagnon et al.,

2012, Jørgensbye and Halfar, 2017), with fine sediment

additionally reducing light availability for photosynthesis

(Konar and Iken, 2005; Jørgensbye and Halfar, 2017).

FIGURE 9
Univariate partial dependence plots derived from the Random Forest classification model for the top five most important explanatory
environmental features explaining the distribution of individual epifaunal assemblages. The ‘yhat’ axis refers to the value of partial dependence
function. The partial response of the epifaunal assemblages to all features is provided in Supplementary Figure S1.
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Smaller grain sizes, like gravel, are more likely to be reworked in

a dynamic environment, limiting consistent light exposure and

increasing physical damage and making it more difficult for

CCA to establish growth due to abrasion (Foster, 2001;

Hetzinger et al., 2006).

Removal of fine-scale substrate features from the RF models

produced a substantial drop in predictive accuracy (~25%).

Owing to the highly heterogeneous nature of the seafloor in

Placentia Bay, the ability to capture increased structural

complexity can allow for the identification of potential

‘keystone structures’, (i.e. structures that directly bolster

species richness) (Tews et al., 2004). For example, ‘Hormathia

sp.1’ was often seen attached to the sporadic boulders scattered

across the silt-covered seafloor in the deep channels within

Rushoon. Drop stones resulting from glacial retreat (Shaw

et al., 2011) have been shown to increase diversity of more

homogeneous sediment dominated areas (Meyer et al., 2016).

This fine-scale feature cannot currently be captured by acoustic

surveying techniques such as MBES, but new methods such as

synthetic apertures sonar may provide this capability (Gini et al.,

2021).

Increased physical habitat complexity has previously been

linked to increases in abundance and diversity (Barry and

Dayton, 1991; Bracewell et al., 2018). In coastal environments,

rocky shores play a critical role in structuring coastal benthic

communities (Menge, 1982; Underwood and Denley, 1984).

Within Placentia Bay, boulder and gravel fields occur along

the offshore extent of D’Argent Bay and Burin and along the

shoreline of Rushoon and St. Lawrence. These fields may provide

a level of stability and topographical diversity that could increase

structural availability for sessile invertebrates (MacArthur and

Wilson, 1967; Liversage and Chapman, 2018; Franz et al., 2021),

such as the sponges and anemones observed in Rushoon and St.

Lawrence. These areas were found to be associated with a higher

presence of arcto-boreal species, such as the different

morphotypes of porifera and anthozoan as well as species of

echinoderms and crustaceans. 1,064 individuals from

25 morphotypes of the Phylum Porifera were recorded in

these areas, further increasing habitat complexity by acting as

biogenic substrate for associated fauna (Buhl-Mortensen et al.,

2017; Hogg et al., 2010, Maldonado et al., 2017). Those areas may

represent rocky reefs–an ecologically important habitat

FIGURE 10
Partial dependence plots derived from the Random Forest classification model for the most important explanatory environmental features
describing the distribution of Agarum clathratum. The ‘yhat’ axis refers to the value of partial dependence function. The partial response of A.
clathratum to all features is provided in Supplementary Figure S2.
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characterized as a subtidal natural hard substrate, which has been

linked to increased biodiversity (Taylor, 1998; Kostylev et al.,

2005; Wahl, 2009).

Rocky reefs from temperate to Arctic environments are often

covered with canopy-forming kelp species. Likely, the dense

coverage of A. clathratum observed in the subtidal would also

contribute to increased epifaunal richness (Blain and Gagnon,

2014; Teagle et al., 2017). Fewer species were observed than

expected in the SDR assemblage, but this may have resulted from

limited visibility of the seafloor due to obstruction by A.

clathratum blades.

Few other brown kelp species were observed during ground-

truthingan exception being two sites in Rushoon fully covered by

the sugar kelp S. latissima. A. clathratum was often found to co-

exist with red algae though. The potential for increased coverage

by red algae is an example of an observable change made possible

by comparing to the baseline established in this study. As

compared to kelp beds, low-lying red algae turfs are a fast-

growing and stress-tolerant opportunistic group (Airoldi, 1998;

Filbee-Dexter and Wernberg, 2018), and high turnover rates

allow them to succeed kelp forests that have been weakened by

thermal stress (Scheibling and Gagnon, 2006; Filbee-Dexter et al.,

2016; Wernberg et al., 2019). Kelp is more susceptible to stress

due to ocean warming and increased storm activity, concurrent

with cyclical herbivorous pressure by S. droebachiensis (Filbee-

Dexter and Wernberg, 2018). Once it supersedes kelp, red algae

turfs cover the substrate, preventing kelp from resettling and

inducing phase shifts to environments with reduced oxygen and

increased sediment accumulation (Gorgula and Connell, 2004),

further negatively impacting settlement of kelp spores (Norton

and Fetter, 1981; Gorman and Connell, 2009; Connell and

Russell, 2010). Kelp is susceptible to stress due to ocean

warming and increased storm activity, concurrent with

cyclical herbivorous pressure by S. droebachiensis. No

observations of turf-dominated areas show shifting back to

kelp (Filbee-Dexter and Wernberg, 2018).

The performances of the RF algorithm, which is well-established

in the field of benthic habitat mapping, and the newer LightGBM

FIGURE 11
Univariate partial dependence plots derived from the Random Forest classification model for the most important explanatory environmental
features describing the distribution of non-geniculate crustose coralline algae (CCA). The ‘yhat’ axis refers to the value of partial dependence
function. The partial response of absence, partial coverage, and full coverage of CCA to all features is provided in Supplementary Figure S3.
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were comparable considering only model accuracy and variable

importance estimates. However, disagreements occurred over the

predictions of the rarer assemblages, especially when both model

types were used to develop predictive maps. LightGBM is a powerful

modelling technique, but it was developed to manage large datasets

(e.g., 1,00,000 s of observations) (Ke et al., 2017). Sample sizes of this

magnitude are uncommon in marine ecology [Benkendorf and

Hawkins, 2020; Luan et al., 2020]. The small sample size in this

study likely resulted in overfitting of the LightGBM models,

apparent, for example, in the prediction of CCA absences.

Ground-truthing samples indicated extensive full and partial

coverage of CCA in D’Argent Bay and Burin; however,

LightGBM predicted very sparse CCA coverage for most of the

areas.

LightGBM advertises faster training speed, low memory usage

(Ke et al., 2017; McCarty et al., 2020), and in-depth control over

boosting and model learning via tunable parameters. The latter

point, though, requires the user to be confident in their

understanding of each parameter. In contrast, RF has only two

parameters that generally require manipulation, and even appears

quite robust to these in practice, making it a more user-friendly

algorithm (Brieman, 2001; Liaw and Weiner, 2002). RF has

demonstrated repeated success in benthic habitat mapping

studies comparing techniques (Lucieer et al., 2013; Robert et al.,

2015; Rooper et al., 2017;Misiuk et al., 2019; Pillay et al., 2020; Shang

et al., 2021). However, RF may be biased towards computational

efficiency in favor of accuracy (Fernandez-Delgado et al., 2011;

Wainberg et al., 2016). The comparison carried out here supports

the continued use of RF as a modelling technique that can perform

well with the limited amount of data that is common in marine

studies. It will be of great interest to determine whether the newer

LightGBM algorithm shows better performance with larger datasets.

The subtidal zone of western Placentia Bay is host to a diverse

and heterogeneous benthic environment that supports multiple

ecosystem services. The baseline information provided by this

study provides information necessary to monitor potential

changes in biodiversity and ecosystem function within the

Placentia Bay EBSA. The communities of OPH and MIX are

notable for their epifaunal diversity, comprising structure-

forming sessile invertebrates. Biogenic structural heterogeneity

is often linked to increased biodiversity (Buhl-Mortensen et al.,

2010; Thomsen et al., 2010; Lefcheck et al., 2017; Kazanidis et al.,

2021), which may support ecosystem health. Coastal townships

of Placentia Bay also rely on the health of this benthic ecosystem,

which support local livelihoods, but which may be threatened

under increased anthropogenic activity (e.g. aquaculture, oil

shipping) and shifts in ocean temperature and pH (Doney

et al., 2009). Proactive management action may mitigate

potential detrimental changes brought on by these stressors.

Conclusion

The predictive maps developed in this study indicate a

heterogenous benthic ecosystem in the western part of the

Placentia Bay EBSA, composed of habitat-forming biotasuch

as marine algae and sessile invertebrates including porifera

and anemones. This contributes substantiallyto baseline

understanding of marine epifaunal distributions and

richness in a subtidal area of recognized ecological and

socio-economic importance. Concurrent with predictive

geospatial modelling, investigation of fine-scale (<1 m)

substrate characteristics highlight their importance as

benthic habitat drivers. All models tested here performed

better with the addition of discrete fine-scale substrate

observations compared to the use of spatially continuous

acoustic backscatter proxies. The LightGBM models had

higher accuracies, but often demonstrated signs of

overfitting as compared with the predictive maps derived

from the RF models. The fundamental knowledge derived

from these models provide information that is critically

needed for monitoring the health of the Placentia Bay

EBSA over time.
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