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Understanding local accumulation patterns of microplastics in subtidal

sediments is crucial to assess how available such particles are for ingestion

by benthic feeders and to identify the potential pollution sources in the region

upon which is urgent to act. The coastal urban centers of Setúbal and Sesimbra

(Portugal) and themultiple activities taking place at the contiguous Sado estuary

and in the sheltered waters of Professor Luiz Saldanha Marine Park make this a

relevant case study about MPs pollution in the seabed. Here, a short-term

investigation assessed the spatiotemporal distribution, abundance, and

composition of MPs on the nearshore seabed. Sediment samples were

monthly collected from summer 2018 to winter 2019, in six stations. Despite

the differences observed in rainfall between campaigns, no distinct patterns

were detected in the accumulation of MPs throughout the sampled months.

Yet, strong variations occurred among stations. The abundance of MPs in the

Sado estuary (1042.8 ± 430.8 items kg−1) was higher in comparison to all the

stations located along the marine park (52.9 ± 31.9 items kg−1). Fragments

comprised 70% of particles found in estuarine sediments, while fibers were the

predominant type in marine sediments. The majority of MPs collected in the

estuary shared the same size class as the best represented grain size fraction:

0.250–0.500mm. On average, the ratio between the abundance of MPs and

the abundance of meiofauna organisms was higher in the estuary, suggesting

more encounter rates, by both meiofauna and their predators, with MPs. The

distribution of MPs throughout the study area was moderately correlated with

sediment sorting and organic matter content. Also, the distinct mineralogical

content of each station indicates a reduced sediment transit between stations

and consequently a weak exportation of MPs from the estuary. The majority of

the polymers identified by Fourier Transform Infrared Spectroscopy was denser

than seawater. Polyethylene terephthalate represented 41% of the items

analyzed and was mostly assigned to fibers and fiber bundles. Unveiling the

distribution patterns of MPs along this segment of the Portuguese west coast
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enabled to identify a high-risk area where the implementation of preventive

measures is urgent.
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pollution, accumulation, microplastics to meiofauna ratio, granulometry, organic
matter content, rainfall, mineralogical content, sewage discharge

Introduction

Marine sediments are long-term sinks for microplastics

(MPs) (Cozar et al., 2014; Zhang, 2017; Pohl et al., 2020;

Coppock et al., 2021). Though firstly demonstrated by

Thompson et al. (2004), such evidence was actually in

accordance with several previous studies reporting marine

sediments as the ultimate fate of larger plastic debris (Bingel

et al., 1987; Galgani et al., 1995a, 1995b, 2000; Kanehiro et al.,

1995). However, despite this perception, plastic pollution

research has been mostly focused on seawater surface, as

argued by Lusher et al. (2014), van Sebille et al. (2015), Porter

et al. (2018) and Yao et al. (2019). The shift on scientific interest

towards sedimentary matrices was triggered with the growing

understanding about the 100-fold discrepancy between the

estimates of all the plastic waste input in the oceans and the

lower estimates of the global load of floating debris being

reported (Cozar et al., 2014; Eriksen et al., 2014; Lindeque

et al., 2020).

The lack of methodological standardization in pioneer

studies about MPs in the marine substrate compelled the

improvement and development of new extraction protocols

(Rochman et al., 2017) that could prevent, for instance, the

underestimation of high-density polymers (Imhof et al., 2012;

Claessens et al., 2013; Nuelle et al., 2014; Coppock et al., 2017;

Frias et al., 2018; Pagter et al., 2018). The baseline data being

subsequently acquired confirmed that, besides the particles

exceeding seawater density (>1.02 g cm−3), the low-density

MPs would also end up reaching the seafloor (Frias et al.,

2016; Martin et al., 2017; Coppock et al., 2021) as earlier

reported for larger items (Holmström, 1975; Kanehiro et al.,

1995; Hess et al., 1999; Stefatos et al., 1999). Deposition of low

density particles into benthic substrates will depend on

biofouling processes (Holmström, 1975; Pegram and Andrady,

1989; Ye and Andrady, 1991; Andrady, 2011), incorporation into

marine snow (Van Cauwenberghe et al., 2013; Woodall et al.,

2014; Porter et al., 2018) or into fecal pellets (Cole et al., 2016;

Coppock et al., 2019).

Regardless of their density, MPs in the marine environment

may have multiple origins. Besides those resulting from the

fragmentation of larger plastic (Thompson et al., 2004; Ryan

et al., 2009), which strongly occurs at shorelines due to the higher

mechanical abrasion, temperatures, and exposure to UV

radiation (Pegram and Andrady, 1989; Gregory and Andrady,

2005; Barnes et al., 2009; Andrady, 2011); others come from land,

namely through wastewater treatment plants (WWTP) effluents

(Gregory, 1996; Fendall and Sewell, 2009; Browne et al., 2011;

Murphy et al., 2016), sewage discharges, and urban (stormwater)

runoff (Piñon-Colin et al., 2020; Werbowski et al., 2021); other

pathways of plastic transport from land include wind, rivers and

tides (McCormick et al., 2014; Jambeck et al., 2015). Additionaly,

several sea-based activities may also contribute to MPs pollution,

such as fishing, aquaculture, maritime traffic, offshore platforms

and recreational (Andrady, 2011; Jambeck et al., 2015; UNEP,

2016).

The high potential for MPs to accumulate in coastal

sediments is therefore related with both the proximity to the

multiple pollution sources and the propensity of particles to sink,

independently of their polymeric composition. As a

consequence, the interactions of MPs with bottom-dweller

organisms (Graham and Thompson, 2009; Murray and Cowie,

2011; Van Cauwenberghe et al., 2015; Bour et al., 2018), as

meiofauna (Gusmão et al., 2016) and/or their predators (Lusher

et al., 2013; Bellas et al., 2016), end up occuring more frequently

at coastal areas. Furthermore, as both estuarine and coastal

marine sediments are known to accumulate high

concentrations of organic and inorganic pollutants (Castro

and Vale, 1995; Lacorte et al., 2003; Vieira et al., 2021;

Bellanova et al., 2022), the MPs settling in these areas are

expected to be highly associated to such contaminants (Bakir

et al., 2014).

Despite the growing concern regarding the ecotoxicological

risk faced by sediment biota upon MPs ingestion (including

commercial species) and the increase of research about this topic,

the identification of the adverse effects is yet to be fully

accomplished and far from being consensually accepted. In

fact, as argued by several researchers (Rochman and Boxallz,

2014; Lenz et al., 2016; Phuong et al., 2016; Burns and Boxall,

2018), detrimental impacts being reported in experimental

studies have frequently resulted testing conditions which

greatly exceed those considered as environmentally relevant.

Thus, assessing realistic levels of exposure to MPs faced by

biota associated to subtidal sediments (defined as those

permanently submerged and extending from the low tide

mark to about 200 m depth) is critical, particularly in

Portugal, a coastal nation, where studies on this topic are

scarce. So far, the available data about MPs pollution on the

seafloor at Portuguese coastal waters relies on the research

conducted by Frias et al. (2016), about sediments collected in

Algarve, from depths lower than 25 m.

Hence, here we aim to provide baseline data about MPs

accumulation in subtidal sediments from the Portuguese west
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coast, namely from the Professor Luiz Saldanha Marine Park

and the Sado river estuary, where conservation measures with

more than 2 decades aim to protect habitats and species. In

particular, besides investigating if temporal and/or spatial

patterns occur in MPs abundance, distribution, and

composition in this region, we also estimated (to the

authors knowledge, for the first time) the MPs to

meiofauna ratio in each sample. By comparing their

abundances we intended to identify the areas where

meiofauna organisms would face higher risk of exposure to

MPs. In addition, we aimed to assess potential relationships

between MPs abundance and rainfall, sediment organic

matter and granulometric parameters, which might be

usefull in further monitoring studies. Lastly, the analysis of

the mineral content of sediment samples was also conducted

to determine, together with polymers identification, possible

links to potential pollution sources in this region.

Materials and methods

Study area

The study area, comprised by the Sado estuary and the

Professor Luiz Saldanha Marine Park (Figure 1), is subject to

multiple anthropogenic pressures. These have been described

in a preceding study focused onMPs occurring at these surface

waters (Rodrigues et al., 2020), which shares the same

fieldwork period and location as this study. Sediment

samples were thus collected in six sampling campaigns, as

described in the previously mentioned study (between August

2018 and February 2019), at the same six nearshore sampling

stations (located at the 5 m isobaths). The six sampling

campaigns occurred every 30 days (approximately)

whenever the weather conditions allowed. As we had to

ensure a Beaufort wind scale ≤3 to properly collect the

floating MPs with neuston trawls, the scheduling of

sampling campaigns required adjustments which prevented

an entirely consecutive sequence of months.

Sampling methods

Two replicate sediment samples (R1 and R2) were collected

at each station with a Wildco® Petite Ponar benthic grab. This

grab collects sediments from the seabed superficial layer and has

a sample area of ca 15 cm × 15 cm. After retrieving the grab from

the water, its load was laid directly into a stainless-steel tray

(34 cm × 24 cm) and the excess water was discarded. Sediment

was then transferred with a wooden spoon to a 500 ml glass jar,

up to its maximum capacity. Separately, a small aliquot was

collected from one of the replicates for meiofauna analysis, stored

FIGURE 1
Map of the study area (developed in QGIS) with the location of the six sampling stations (black dots) distributed along the coastal area of Setúbal
and Sesimbra, on the Portuguese west coast. The complete information about the map layers as well as the list with the GPS coordinates of each
station are provided at the map source: Rodrigues et al. (2020).
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in a 250 ml glass jar and fixed in 70% ethanol. Sediment samples

(72 in total) were transported in ice coolers and kept frozen

at −20°C until analysis.

Laboratory procedures

MPs extraction and characterization
MPs extraction was carried out at the laboratory, after

thawing samples at room temperature. Approximately 250 g

(wet weight) of each replicate was transferred into Ø150 mm

glass Petri dishes, manually homogenized and placed in the oven

at 60°C for 48 h. The content left in the jars was frozen again until

further analysis.

Three sub-replicates of 50 g each (dry sediment) were

directly weighed in 1 L beakers. In order to remove the

organic matter content, 150 ml of 10% hydrogen peroxide

(Frias et al., 2018) was added to each beaker. The content was

mixed with a glass rod for 1 min and left for 24 h in a fume hood,

at room temperature. Each sub-replicate was subsequently

poured into a 63 μm sieve and rinsed with distilled water.

Then, it was transferred into a Sediment-Microplastic

Isolation device (SMI-unit; designed by Coppock et al., 2017)

where a magnetic stir bar (45 × 8 mm) was previously added. The

SMI-unit was topped up with ZnCl2 solution (1.5 g cm−3; APC

Pure®) until a volume of 700 ml was achieved, and the sediment

was mixed as described in the protocol of Coppock et al. (2017).

All samples were left to settle for 2 h, except for those collected

from st1 (at the estuary) which, due to higher silt/clay fractions,

needed a longer period (20 h).

When the settling period was over, the valve was closed and

the headspace content was vacuum filtered through a glass

microfiber filter placed on the stainless-steel screen support of

the glass filtration base (filter: MFV2 FILTER-LAB 47 mm Ø

with 1 μm pore; filtration base: XX1014732, Millipore). To

recover the MPs eventually left in the internal surface of the

SMI-unit, the top part was rinsed thoroughly with ZnCl2 and

filtered a second time. Finally, the ZnCl2 solution at the bottom

part was also filtered, ensuring the solution reuse in subsequent

samples. Since the solution density could slightly decline with the

continuous use, two batches of ZnCl2 solution were prepared to

ensure a similar MPs extraction efficiency among all samples (5 L

each; one for R1 samples and another for R2 samples). The

extraction of MPs from R2 replicates was only performed after

procedures for R1 group were completed.

Filters from each sub-replicate, were stored individually in

glass Petri dishes and observed under a stereomicroscope

(Leica® S8APO) equipped with a camera (Motic®

MOTICAM 10+). Particles were classified according to

color and type, counted, and measured with the Motic®

Images Plus 3.0 software. Only MPs belonging to the

0.063–5 mm size range were considered, being all

categorized to one of the following size classes:

0.063–0.125 mm, 0.125–0.250 mm, 0.250–0.500 mm,

0.500–1 mm, and 1–5 mm; these size classes were selected

to match the grain size fractions considered in granulometric

analysis. Also, each microplastic was assigned to one of seven

types: fragment, film, fiber, fiber bundles, filament, glitter, and

bead, as described in Table 1 (adapted from Lusher et al.

(2017), Rochman et al. (2019) and Rodrigues et al. (2020)). All

particles similar to shavings (Total = 621) were excluded from

analysis because they were considered to result from the

degradation of the SMI valve made of Polyvinyl chloride

(Nel et al., 2019). Particles selected for polymer

TABLE 1 Definition of each particle type.

Type Definition

Fragment Hard or soft irregular particle

Film Thin and malleable, flimsy particle

Filament Thicker and straighter than fiber

Fiber Thin line, equally thick throughout its entire length, frequently curled

Fiber bundle Several fibers tightly wound together in a knot-like formation

Bead Spherical particle

Glitter Shiny/metalized and flat particle, usually hexagonal

TABLE 2 Number (N) of particles per type and respective amount of
items selected for FTIR.

Type N FTIR

Fragment 1427 76

Film 141 18

Filament 30 16

Fiber 473 36

Fiber bundle 44 15

Bead 120 13

Glitter 118 12

2353 186

Totals are provided in bold.
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identification were isolated in covered concave slides. The

abundance of MPs per sample consisted of the average of

counts from the six sub-replicates of 50 g (3 from R1 and three

from R2), which were then normalized to a constant weight

and reported as items per kg of dry sediment (items kg−1).

Polymer identification
About 8% (186 items; Table 2) of the total of particles was

selected for polymer identification. The selection was conducted

after discarding fibers considered airborne contamination and

was based on the best expert judgment according to similarity,

texture, thickness, and shine. All particles with a 1–5 mm size

range, except for fibers, were analyzed by Fourier Transform

Infrared Spectroscopy in attenuated total reflectance (FTIR-

ATR), using a Perkin Elmer® Spectrum Two spectrometer. For

smaller particles (0.063–1 mm) and fibers, analyses were carried

out on a µ-FTIR spectrometer (Perkin Elmer® Spotlight 200i

Microscope System), with microscope aperture 100 μm ×

100 μm, using a strong Norton-Beer apodization. All spectra

were acquired at room temperature under reflectance mode with

a resolution of 4 cm−1 and 1 cm−1 wavenumber intervals, within

4,000–500 cm−1. The analysis was performed on the sample

surface, sometimes in more than one point, when results were

dubious. A background scan was performed before any analysis

series. Polymer identification relied on a match over 80%

(Pequeno et al., 2021) between the sample and a referenced

database (Primpke et al., 2018). The assignments were confirmed

with the analysis of the polymers characteristic bands (Hummel,

2002; Xiao et al., 2002; Marković et al., 2009; Arshad et al., 2011;

Kausar, 2015; Jung et al., 2018).

Quality assurance and quality control
To assess airborne contamination, control filters (blanks)

were exposed to the air, both during sampling (inside a hanging

open glass jar at the boat deck, one blank per sampling campaign)

and throughout lab work (in Petri dishes, one per replicate).

Thus, all the fibers extracted from samples which were similar to

those found in respective blanks were excluded from results.

Other contamination sources were minimized, both during field

and laboratory work, by using glass, stainless-steel and wooden

materials. At the laboratory, samples were kept covered at all

times, a cotton lab coat and nitrile gloves were always worn and

working surfaces were rinsed before use with Milli-Q water and

ethanol. Moreover, all prepared solutions and rinsing liquids

were filtered before use.

MPs to meiofauna ratios
After staining sediment aliquots with Rose Bengal for 1 h, the

content of each jar was transferred into a 38 μm sieve, in order to

discard the ethanol. Next, from the sediment retrieved on the

sieve, six sub-aliquots of 5 ml were collected with a measuring

spoon. Whereas the average abundance of meiofauna was

quantified in three out of the six sub-aliquots, the other three

allowed the conversion of the 5 ml volume into dry weight. The

former group of sub-aliquots was placed separately into 1 L

beakers and the other group was pre-weighed in Ø100 mm

glass Petri dishes. The meiofauna extraction protocol, adapted

from Somerfield andWarwick (2013), consisted of adding 200 ml

of filtered tap water to each beaker, being their content stirred

and decantated onto a 63 μm sieve. This was repeated 4 times,

except for st1 samples due to the higher silt/clay fraction

(6 times). The meiofauna (size range: 63–500 μm; (Giere,

2009)) retained by the sieve was washed back into a Bogorov

counting chamber and counted under the stereomicroscope with

the support of a hand tally counter. In what concerns the sub-

aliquots kept in Petri dishes, these were placed uncovered in the

oven at 60°C to dry (for ca 12 h) and then weighed; the mean of

the three weight measurements was calculated. Finally, the

abundance of meiofauna in sub-aliquots was extrapolated to a

standard (dry) sediment weight (kg) and expressed as individuals

per kg of dry sediment (ind kg−1), to match the reported units

used for MPs (items kg−1) and to enable the calculation of the

MPs to meiofauna ratio.

Sediment characterization
One replicate per sample was randomly selected to run

granulometry and loss-on-ignition procedures. After

defrosting, approximately 100 g (wet weight) of sediment,

from each sample, was transferred to a Ø150 mm glass Petri

dish, manually homogenized and oven-dried at 105°C for 24 h.

For granulometric analyses (protocol adapted from Pagter

et al. (2018)), 50 g of each sample (dry sediment), was weighed in

1 L beakers, to the nearest 0.01 g. Then, to remove the organic

matter, 200 ml of H2O2 (6%) was added to each beaker. After

manually stirring, samples were left to digest until there was no

sign of reaction (2 days on average; 50 ml of H2O2 were added per

each extra day). Samples were subsequently poured onto a 63 μm

sieve, rinsed with distilled water, and washed back into the 1 L

glass beaker till a volume of 400 ml was obtained. To cause

dispersion and to disaggregate fine-grained particles, 225 ml of a

4.2% Calgon solution (35 g of sodium hexametaphosphate and

7 g of sodium carbonate in 1 L of distilled water (Kaur and

Fanourakis, 2016)) was added to each beaker, stirred and left

overnight. Then, samples were poured again into a 63 μm sieve

and rinsed with distilled water. After that, they were transferred

into a Ø150 mm Petri dish and oven-dried at 105°C for 24 h.

After cooling, each sample was weighed and dry sieved in an

automated column shaker (RETSCH AS 200 basic) through a

series of graduated sieves (2 mm, 1 mm, 0.500 mm, 0.250 mm,

0.125 mm, and 0.063 mm) for 10 min. The weight of the

sediment retained in each sieve was registered. To determine

the weight of the <63 μm fraction (clay and silt fractions

combined), the sum of all weighed fractions was subtracted to

the initial weight of sediment. Finally, the sediment grain size

distribution, mean grain size and sorting, according to Folk and

Ward (1957) geometric graphical measures, was determined
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from weight of the six fractions using the freeware Gradistat®

(Version 9.1). Grain size fractions were classified according to the

Udden-Wentworth grade scale (Udden, 1914;Wentworth, 1922).

To determine the organic matter content of sediment

(Cambardella et al., 2001), three replicates of 1 g per sample

(dry sediment) were weighed to the nearest 0.0001 g and

transferred to labelled and pre-weighed crucibles. These were

placed in a muffle furnace at 450°C for 4 h and, at the end of this

period, moved into a desiccator for 1 h and weighed again. The

organic matter content, expressed as percentage, was calculated

from weight loss on ignition i.e., from the difference between the

sediment weight before and after ignition.

Lastly, approximately 2 g per sample (dry sediment) were

transferred into individual plastic bottles and taken to the

Geobiotec/Aveiro University laboratory facilities to identify

the mineral content of sediment samples. Qualitative and

semi-quantitative mineralogical analyses were carried out by

X-ray diffraction (XRD) using a Philips®/Panalytical X’Pert-

Pro MPD, Kα Cu (λ = 1,5405 Å) radiation. All samples (total

sample) were ground in an agate ring mill to obtain a finer

granulometry and were analyzed on random-oriented powders,

X-ray scanned in the 2° to 40° 2θ interval at 1°2θ/min goniometer

speed. The identification of the different mineral phases followed

the criteria recommended by Schultz (1964), Thorez (1976),

Mellinger (1979), Brindley and Brown (1980) and Pevear and

Mumpton (1989).

Rainfall

Measurements from four meteorological stations (obtained

from SNIRH1) located near the sampling site were considered:

Comporta (23E/01C), Vila Nogueira de Azeitão (22C/02UG),

Águas de Moura (22E/01UG) and Montevil (23F/01UG).

Except for the first sampling campaign (Aug18), the mean

rainfall (mm) assigned to each campaign was based on daily

measurements collected from the four stations, registered

uninterruptedly from the day after the last sampling until

the day before sampling (about 30 days in total). In what

concerns the August 18 campaign, the mean rainfall

calculation has only considered measurements from three

stations, since data from Comporta was completely

unavailable. In addition, the data obtained from those three

meteorological stations was exclusively comprised by

measurements registered during the 10 days which preceded

the August sampling (because it was the only data available).

Still, since the August month of 2018 was extremely dry

(according to The Portuguese Institute for Sea and

Atmosphere; IPMA; (IPMA, 2018)), we may assume that the

missing data would not significantly change the mean rainfall

calculation assigned to this specific campaign.

Statistical analysis

Data was analyzed through non-parametric tests

whenever parametric assumptions (normality by Shapiro-

Wilk test and homogeneity of variances by Levene test)

were not met. Spearman correlations assessed if rainfall,

sediment organic matter, mean grain size and sorting could

interfere with MPs abundances. To evaluate if and how the

previous variables (except for sediment organic matter)

changed temporally (along 6 months) and/or spatially

(among the six stations), Kruskal–Wallis tests were

performed, being post-hoc multiple comparisons followed

with Dunn’s test. The same analysis was conducted with

the MPs to meiofauna ratio and with the Carbonate/

Siliciclastic index. The variance of sediment organic matter

(log (x+1) transformed), among stations and campaigns, was

analyzed by a two-way ANOVA followed by Tukey post-hoc

test for pairwise comparisons. The same test procedure was

applied to assess the variance of meiofauna abundances (log

(x+1) transformed). To analyze if fragments (log (x+1)

transformed) were spatially distributed according to their

mean size, a one-way ANOVA was conducted; the same

test was performed with fibers (though with raw data). All

the previously mentioned tests were performed with TIBCO

Statistica™ 14.0.0 software and the level of significance was set

at a p-value ≤ 0.05.

A univariate permutational analysis of variance

(PERMANOVA), with 999 permutations, was performed to

detect significant differences in MPs abundances, between

stations and campaigns (fixed factors; with six levels each).

Data were square-root transformed and the resemblance

matrix between samples was calculated based on Bray-

Curtis similarities. When differences were statistically

significant, pair-wise comparisons among levels were

analyzed and non-metric Multi-Dimensional Scaling

(nMDS) plots were created. Additionally, whereas a

multivariate PERMANOVA tested the effect of campaigns

and stations in the abundance of each type of MPs in

sediments, another focused on the response of MPs

abundance according to size classes. Subsequently, to

determine which type or size class most contributed to

explain dissimilarities, the similarity percentages routine

(SIMPER; with a cut-off percentage of 90% for low

contributions) was conducted. Similarly, a multivariate

PERMANOVA was applied to assess temporal or spatial

patterns in the granulometric fractions of the sediment

samples. All PERMANOVA analyses were developed in the

Primer six software with the Permanova + add-on (Clarke and

Gorley, 2006; Anderson et al., 2021).1 https://snirh.apambiente.pt/index.php?idMain=
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Results

Presence and abundance of MPs

From the total amount of particles extracted from sediment

samples (4,060), 1,603 (40%) fibers were discarded for being

considered airborne contamination during field and lab work.

Also, 104 particles (belonging to several types) were excluded due

to one of the following FTIR results: non-plastic particle,

inconclusive match, or match under 80%. Therefore, the

assessment of temporal and spatial distribution patterns of

MPs in sediments was based on a total of 2353 particles

(0.063–5 mm size range). Although 80% of this amount were

MPs extracted from estuarine sediments (st1), all samples

contained MPs (Figure 2A). The abundance of MPs in

sediments collected at st1 was 1042.8 ± 430.8 items kg−1

(mean ± SD), whereas in sediments from st2 to st6 was

52.9 ± 31.9 items kg−1 (Figure 2B). The lowest MPs

abundance (23.3 ± 29.3 items kg−1) was observed in Sesimbra

bay (st5) in Feb19 (winter), while the highest (2170 ±

1157.1 items kg−1) was found in Oct18 (autumn), at Setúbal

closest station (st1).

Fourier transformed infrared
spectroscopy (FTIR) analysis

Among the 82 particles confirmed as plastic by FTIR analysis,

a total of 11 polymers, including the Copolymer PP/PE, were

identified (Table 3; Figure 3). Despite the high diversity of

polymers, the majority of particles were identified as PET

(41%), mostly assigned to fibers or fiber bundles (ca 65%;

Figure 4).

Meiofauna abundance and MPs to
meiofauna ratios

Fluctuations in meiofauna abundance were only significant

between stations (F(5,25) = 5.941, p = 0.0009; Figure 5B), being

undoubtedly higher in the estuary (23444.1 ± 16614.9 individuals

kg−1; mean ± SD) than in all the other stations (p < 0.05). The lowest

meiofauna abundance (3411.5 ± 2014.5 individuals kg−1; mean ±

SD) was registered at st6 (the furthest station from the estuary). The

ratio between MPs and meiofauna differed significantly between

stations (H (5) = 13.95, p = .02; Figure 5B), namely between st1 and

st3, but not between campaigns (H (5) = 4.64, p = .46; Figure 5A).

The highest ratio observed in st1 (estuarine sediments) was 0.065, or

one microplastic to 15.3 meiofauna organisms, where bothMPs and

meiofauna abundances reached maximum levels; the average ratio

in st1 was 0.047 ± 0.013 (mean ± SD). The lowest ratio among all

samples was registered in st3 (0.003 or one microplastic to

383.1 meiofauna organisms).

Temporal and spatial distribution patterns
of MPs

In contrast to the absence of significant temporal

variations in MPs abundances among the monthly

campaigns (Pseudo-F = 0.61, P (perm) = 0.823; Figure 5C),

a significant spatial distribution pattern was observed

FIGURE 2
MPs abundance (items kg−1; mean ± SD) per sample. Whereas all samples (n = 36) are depicted in (A), only samples from stations two to 6 (n =
30) are represented in (B).
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(Pseudo-F = 31.22, P (perm) = 0.001; Figure 5D), consisting of

a higher abundance of MPs in estuarine sediments (st1), in

comparison with all the other stations (Figures 6A–D).

SIMPER results show that this dissimilarity (between

st1 and all the other stations) mainly relies on the

predominance and particular accumulation of fragments in

the estuary (43–45% contribution for the differences;

Figure 6C). Furthermore, all the other types, except for

fibers, were also mostly available in the estuary, though

considerably less represented than fragments (Figure 6E).

Conversely, fibers residually contributed (max 8%,

according to SIMPER results) for the mentioned

dissimilarity, as their abundances were similar throughout

the study area (Figure 6C). While fragments predominated in

estuary sediments (st1), fibers were the prevalent type found

in marine sediments (i.e., at all the other five stations;

Figure 6E). Moreover, dissimilarities between stations were

also based on particle size (Figures 6B,D), particularly on MPs

belonging to the 0.250–0.500 mm size class (with 26–27%

contribution to the differences found; Figure 6D). While

MPs accumulated in the estuarine station were mostly

assigned to the 0.250–0.500 mm, followed by the

0.500–1 mm size classes, at the ocean exposed stations, the

majority of MPs belonged to 0.500–1 mm and 1–2 mm size

classes (Figure 6F).

Among fragments collected from the estuary (st1;

representing 70% of MPs in this station), the color green

(34%) was the prevalent one, followed by blue (20%) and

white (13%) (Figure 7A). Regarding fibers (similarly

distributed among the six stations), black was the most

frequent color (17%), followed by transparent (15%) and red

(14%) (Figure 7B).

FIGURE 3
Representative infrared spectra of the 11 identified polymers, with Polyacrylates represented by two items: PMMA and PAN. The image assigned
to each spectrum corresponds to the MPs analyzed. The 12 MPs depicted in this figure belong to the following types: PA and PE - film; PS-S - bead;
PMMA and PVC - glitter; Copolymer PP-PE, PP, PVAc and PUR - fragment; PAN - fiber; PS–filament; PET–fiber bundle.
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Neither fragments (F(5,30) = 2.18, p = 0.08; Figure 8A) nor fibers

(F(5,30) = 1.05, p = 0.41; Figure 8B) showed significant differences in

their mean size among the six stations. Mean size of fragments

(486.8 ± 247.4) was 2.6 times smaller than fibers (1244.1 ± 243.6).

Granulometric parameters and organic
matter content

In what concerns sediment granulometry, significant

differences were observed between stations (Pseudo-F = 13.44, P

(perm) = 0.001; Figure 9A), but not among sampling campaigns

(Pseudo-F = 0.33, P (perm) = 0.95). The prevalence of the

0.125–0.250 mm (fine sand) and 0.250–0.500 mm (medium

sand) grain size fractions in stations 1, 4 and 5 largely

contributed (with a 35 to 51 cumulative percentage range) to

distinguish them from the other three stations. Yet, st4 (located

at the fully protected area of the marine park) significantly differed

from st5 (at Sesimbra bay) due to the lower representation of the

0.500–1 mm (coarse sand) size fraction. Conversely, although

coarse sand was the predominant grain size fraction (Figure 9B)

in stations 2, 3 and 6, the sediments collected from themouth of the

estuary (st2) and from the closest station to Portinho da Arrábida

(st3) were considered distinct due to the significantly higher content

of the 1–2 mm size fraction (very coarse sand) in st2. Lastly, despite

the generally low representation of the fine grain fraction (silt/clay)

in all stations, it was slightly higher in st1. Gradistat® categorized
sediments from stations 1, 4 and 5 as medium sand, and the other

three stations as coarse sand (following the Udden-Wentworth

classification).

Mean grain size (H (5) = 25.40, p < .001), sediment sorting (H

(5) = 25.78, p < .001) and organic matter content (F(5,25) = 5.42 p <
0.05) significantly differed between stations, but not between

campaigns. Whereas mean grain size of both st1 (335.3 ±

131.4 µm; mean ± SD) and st4 (277.3 ± 99.7 µm) was considered

distinct (p < 0.05) from st2 (918.7 ± 84.9 µm), only st4 differed

significantly from st6 (863.2 ± 384.4 µm) (Figure 10A). The poorly

sorted sediments in st1 (2.49 ± 0.28 µm) were significantly different

from the moderately well sorted sediments from station 2 (1.60 ±

0.07 µm) and 3 (1.51 ± 0.19 µm) (p < 0.05; Figure 10B); also,

sediment sorting at st3 was significantly distinct from st5 (1.96 ±

0.21 µm). The organic matter content of sediments at st1 (1.84 ±

0.88%) was significantly higher than st2 and st5 (p < 0.05;

Figure 10C). Conversely, sediments of st2 had significantly lower

organicmatter content (0.57 ± 0.25%) than all the other stations (p<
0.05), except from st5. Significant correlations (positive, though

moderate) were detected between MPs abundances and both

organic matter content (rs (34) = .37, p = .028) and sorting (rs
(34) = .43, p= .009), but no correlationwas detectedwithmean grain

size (rs (34) = -.32, p = .055).

Rainfall

No relationship was observed between mean MPs abundance

and rainfall (rs (4) = .26, p = .623), despite the significant differences

found in rainfall among campaigns (H (5) = 102.50, p < .001;

Figure 10D). Rainfall registered in August 18 and October 18 was

significantly lower than that registered during all the other sampling

campaigns (p < 0.001).

Mineralogical content

The mineral composition of sediment samples mainly

consisted of quartz, calcite, and dolomite. Proportions of

FIGURE 4
Diversity of items identified as PET by FTIR, according to type
of MPs.

TABLE 3 MPs number and relative abundance (%) of each polymer.

Polymer N %

Polyethylene terephthalate (PET) 34 41

Polyethylene (PE) 18 22

Polyacrylate (PANa, PMMAb, others) 9 11

Polypropylene (PP) 8 10

Polystyrene (PS) 5 6

Copolymer PP/PE 2 2

Polyvinyl chloride (PVC) 2 2

Polyurethane (PUR) 1 1

Polyvinyl acetate (PVAc) 1 1

Polyamide (PA) 1 1

Polystyrene sulfonate (PS-S) 1 1

aPolyacrylonitrile.
bPoly (methyl methacrylate).
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aragonite (assumed to have origin in seashells), potassium

feldspars and halite were residual and relatively random, being

therefore not considered for the calculation of the Carbonate/

Siliciclastic index. Mineral proportions changed significantly

among stations (H (5) = 28.11, p = .00; Table 4), but not

between campaigns (H (5) = 0.67, p = .98). The index

calculated for st2 (the lowest, due to the absence of

carbonates) was significantly different from the index obtained

for st4 and st6, where the carbonate proportions were

considerably higher.

Discussion

Abundance of MPs and comparison with
other studies

Evident patterns were identified in the spatial distribution of

MPs in subtidal sediments of the Portuguese west coast. While

the Sado estuarine sediments presented extremely high

abundances of MPs (1042.8 ± 430.8 items kg−1), marine

sediments from the Arrábida Marine Park, in comparison,

accumulated 20-fold less MPs (52.9 ± 31.9 items kg−1). This

conspicuous difference, observed throughout the six monthly

campaigns (as shown in Figure 2A), suggests a pronounced

contribution from (i) the Sado river, which is expected to

transport MPs resulting from the diverse industrial and

artisanal fishing activities taking place in the Setúbal

municipality (ca 123,000 inhabitants; according to INE

Statistics Portugal, 20212), mostly at Sado north margin; (ii)

the sewage and stormwater discharges into the Livramento

stream, which joins the estuary at the st1 location; and (iii)

the effluent of Setúbal WWTP (submarine outfall) located east of

st1. Contrarily to the station located inside the estuary, all the

others–though located at a sheltered coastline from the prevailing

north and north-west winds by the Arrábida mountain chain

(Henriques, 1999)–are ocean exposed. Such marine sediments

are thus expected to face higher turbulence levels which prevent

the accumulation of higher abundances of MPs, as observed

inside the estuary. Our findings corroborate the classification of

FIGURE 5
MPs abundance (items kg−1) (red bar), meiofauna abundance (individuals kg−1) (grey bar) and MPs to meiofauna ratio (black dots), per campaign
(A) and per station (B). MPs abundance (items kg−1; mean ± SD; n = 6) per campaign (C) and per station (D).

2 https://www.ine.pt/scripts/db_censos_2021.html
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estuaries and urban coastal areas as MPs hotspots (Wright et al.,

2013; Maes et al., 2017) and show how urgent is to implement

local preventive measures that engage the different society sectors

into the decrease of MPs inputs in this coastal environment.

Comparatively with other estuaries, the abundance of MPs

found in Sado sediments was only lower than levels reported for

Durban Bay in South Africa (111,933 ± 29,189 items kg−1;

Preston-Whyte et al., 2021). However, it was higher than

Densu delta in Ghana (4.0 ± 0.82 items per 10 g; Blankson

et al., 2022), Warnow in Germany (379 ± 28 items kg−1 at the

S10 station; Enders et al., 2019), Miri in Borneo Island (456.2 ±

33.6 items kg−1 in S5; Liong et al., 2021), Sebou in Morocco

(187 items kg−1 in E1; Haddout et al., 2021) and both Dalio (ca

400 items kg−1; Xu et al., 2020) and Changjiang (where the higher

abundance was ca 150 items kg−1; Peng et al., 2017) in China.

Conversely, the mean abundance of MPs in marine sediments of

the Arrábida coast is at an intermediate position, considering

what has been reported from other marine coastal areas. While

FIGURE 6
Multidimensional scaling plot based on the Bray-Curtis distance between samples of the different stations according to type of MPs (A) and to
MPs size class (B). Spatial variation of mean MPs abundance (items kg−1) per particle type (C) and per size class (D). Relative proportion of particle
types, per station (E). Relative distribution of particles size class, per station (F).
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slightly lower values were found in the Polish zone of the

Southern Baltic Sea (range: 0–27 particles kg−1; Graca et al.,

2017), Algarve coast (10 ± 1 items kg−1; Frias et al., 2016) and

Gdansk Bay (34 ± 10 items kg−1; Zobkov and Esiukova, 2017),

there are reports of higher MPs pollution levels in marine

sediments at the Galway Bay (73 items kg−1; Pagter et al.,

2020), Park of Telaščica bay in Croacia (range: 32.3 ±

20.2 and 377.8 ± 18.8 items kg−1; Blašković et al., 2017),

Belgian coast (91.9 ± 21.9 items kg−1 in BCS Coast (S1–S3);

Claessens et al., 2011), Aeolian Archipelago, Italy (range: 151.0 ±

34.0 and 678.7 ± 345.8 items kg−1; Fastelli et al., 2016) and

Southern North Sea (421 items kg−1; Maes et al., 2017). Even

though it is assumed that local pollution sources and

hydrodynamic conditions differ between the mentioned

regions, such comparisons (only possible due to the

harmonized reporting units) are important to provide the big

picture of the addressed topic.

Distribution patterns according to types
and sizes of MPs

Regarding the representativeness of MPs types, fragments

were by far the most abundant one in the estuarine sediments

(st1), in agreement with findings from other studies (Vianello

et al., 2013; Talley et al., 2020; Haddout et al., 2021; Liong et al.,

2021). Conversely, fibers were less abundant, but consistently

spread throughout the six stations. Here it is important to

highlight the potential for the fiber type to be commonly

underestimated (Rummel et al., 2016) and therefore conceal

serious scenarios, especially in sediments where this type of

MPs is usually better represented (Martin et al., 2017;

Marques Mendes et al., 2021). The considerable number of

fibers discarded in this study (1603) for resembling those

found in airborne contamination controls, may explain the

reduced representation of this type of MPs in our study area.

Even though consisting of a critical precaution step conducted

before data analysis, this discarding process may wrongly exclude

fibers which, despite being coincidently similar to those from

controls, did not result from airborne contamination.

Nevertheless, running this conservative step is preferable than

to absolutely exclude all fibers from reports/studies. An

additional explanation for the reduced number of fibers in

this study was the potential loss of fibers that may have

occurred onboard, during sampling, when the water excess of

each sediment sample was discarded (mentioned in the Sampling

methods section). This step was carried out because we could not

assure this water source: if it was sediment pore water, bottom

seawater adjacent to the sediment surface (“fluff layer”; Queirós

et al., 2019)) or from the water column. Yet, despite such

constraints, fibers were the prevalent type occurring in marine

sediments, i.e. from st2 to st6, as reported elsewhere (Claessens

et al., 2011; Frias et al., 2016; Graca et al., 2017; Martin et al., 2017;

Zobkov and Esiukova, 2017; Pagter et al., 2020). This type of MPs

can thus be considered the most available one for ingestion by

marine benthic foragers occurring in this study area. Lastly,

concerning all the other types of MPs (beads, glitter, films,

filaments, fiber bundles), they were mainly found inside the

estuary, similar to the accumulation pattern described for

fragments.

Possibly, the occurrence of such distribution according to the

type of MPs could be related with the higher surface area to volume

ratio of fibers, in comparison to fragments and other irregular or

voluminous types (Shin and Koch, 2005; Khatmullina and

Isachenko, 2017; Pohl et al., 2020). As a result, due to a slower

sinking process and easy resuspension from seabed, even with weak

FIGURE 7
Color composition of fragments collected at st1 (A) and of fibers collected from the six stations (B). The black and white slice corresponds to a
pool of other colors. The light grey slice in (B) represents transparent fibers.
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currents (Herzke et al., 2021), fibers end up being transported/

deposited further away from their potential source - sewage and/or

WWTP discharges. Although an inefficient retention of fibers was

reported to occur in WWTP (Browne et al., 2011), recent studies

have shown that wastewater treatment processes are indeed highly

efficient (Mason et al., 2016; Murphy et al., 2016; Mintenig et al.,

2017; Conley et al., 2019). However, the authors argue that the

reduced amount of MPs being released per liter in the effluent is still

substantial and, thus, should be considered as a significant source. In

what concerns our study area, besides the sewage discharge located

close to st1, there are two WWTP discharge points, one at each

extremity (depicted in Figure 1), which may be contributing for

fibers ubiquity among all stations. Regarding the marginally higher

amount of fibers observed in st1, it may possibly result from the

weak hydrodynamic conditions occurring at this location,

comparatively with the ocean exposure at the Sesimbra WWTP

outfall (located between st5 and st6), where MPs should easily

disperse. Lastly, such evident spatial distribution patterns, influenced

by MPs type, may be also determining the distribution of MPs

according to their size. This interpretation is not only based on the

absence of significant changes in the mean size of both fragments

and fibers among stations, but also on the distinct size displayed by

these two types of MPs. Fibers mean length was almost 3 times

higher than mean fragments size (strongly related with fibers

elongated shape). We therefore assume that the prevalence of

smaller MPs in st1 (between 0.250 and 1 mm) was due to

fragments high abundance in this station, while the prevalence of

bigger MPs (between 0.500 and 2 mm) in all the other stations,

resulted from fibers predominance.

Granulometric parameters and organic
matter content

According to the granulometric profile of sediments, whereas

stations 1, 4, and 5 could be considered as depositional areas

(relatively protected, low energy environments) due to the

predominance of smaller grain size fractions, the conversely

larger grain size fractions prevailing in stations 2, 3 and 6,

indicate higher energy environments (Kersten and Smedes,

2002). However, despite the potential for MPs to accumulate in

stations 4 and 5, this was only verified in st1. Such strong retention of

MPs inside the estuary may be greatly attributed to its reported slow

flow rate (Vale et al., 1993; Cunha et al., 2007; Biguino et al., 2021)

and to flocculation (Andersen et al., 2021; Laursen et al., 2022). The

typical aggregation of suspended particulate matter in the estuary

water column (Meade, 1972; Eisma, 1986;Manning andDyer, 1999)

enhanced by the mixture between freshwater and seawater, is

suggested to transport MPs from the water surface into the

estuarine sediments due to their incorporation in such flocs

(Andersen et al., 2021; Laursen et al., 2022). Conversely, the

abrupt decrease of MPs abundances at st2 may be eventually

explained by the higher hydrodynamism occurring at the mouth

of the Sado estuary (the interface with the Atlantic Ocean),

preventing MPs entrapment in the sediment. Likewise, MPs at

stations 3–6, may be under permanent resuspension into the

water column, which consequently decrease their availability on

the seabed (Näkki et al., 2019; Shamskhany et al., 2021). An

additional explanation is that, eventually, MPs might get buried

at the submerged ebb-tide delta (Costas et al., 2015) located at the

estuary mouth south margin, preventing the exportation of higher

MPs abundances to the Arrábida coast. However, as sampling in this

study was only conducted at the northmargin, further studies would

be necessary to clarify this possibility.

Nonetheless, if plastic inputs in the ocean continue to increase as

estimates predict (Jambeck et al., 2015; Geyer et al., 2017; Isobe et al.,

2019), it is plausible to expect an increase of MPs accumulation in

areas with potential for deposition, as described for st4 in particular.

Therefore, and considering this station specific location, which is

FIGURE 8
Spatial variation of fragments (µm; mean ± SD) (A) and fibers
(µm; mean ± SD) (B) mean size.

Frontiers in Environmental Science frontiersin.org13

Rodrigues et al. 10.3389/fenvs.2022.998513

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.998513


FIGURE 9
Multidimensional scaling plot based on the Bray-Curtis distance between samples of the different stations according to grain size fractions (A)
and relative distribution of grain size fractions per station (B).

FIGURE 10
Spatial variation of (A)mean grain size (B) sediment sorting and (C) organic matter content. Temporal variation of rainfall (D). Data is provided as
mean ± SD.
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inside the fully protected area of the Arrábida Marine Park, we

suggest its integration in a monitoring plan of MPs pollution, along

with st1, as a preventive measure. Regarding st5, despite its

deposition potential and the extreme proximity to Sesimbra town

(even though it consists of a smaller municipality; ca.

52,000 inhabitants; according to INE Statistics Portugal, 20213),

MPs accumulation was unexpectedly low. Here we hypothesize that

st5 was not close enough to the Sesimbra submarine outfall in order

to capture more realistic data about MPs inputs in this area. As

mentioned before, this outfall, contrarily to the one inside the estuary

(Setúbal WWTP), is located far from the shore, being exposed to

higher hydrodynamic conditions (turbulence) that prevent the

deposition of potentially emitted MPs. Nevertheless, the influence

of Sesimbra WWTP effluent is not completely inexistent,

considering the higher diversity of MPs types in st5, in

comparison to st4 and st6 (Figure 6E), and the before mentioned

absence of significant differences in fibers abundance among the six

stations.

Despite the absence of a correlation between MPs

abundances and sediment grain size, similarly to what was

reported by Alomar et al. (2016), Fastelli et al. (2016),

Blašković et al. (2017) and Coppock et al. (2021), it should be

highlighted that in st1, both the majority of MPs and the

dominant grain size fraction belonged to the 0.250–0.500 mm

range. Further studies are thus needed to confirm such

relationship, which could hence support the use of sediment

grain size as a proxy for MPs size characterization inside the

estuary. In what concerns grain sorting, and contrarily to what is

reported by other studies (Zobkov and Esiukova, 2017), our

findings suggest that this sediment feature may contribute to

infer and identify areas with potential for MPs accumulation. In

fact, sediments at st1 were both the most poorly sorted (i.e., the

less calibrated sediments) and a MPs hotspot. Moreover, though

only to some extent, the higher accumulation/entrapment ofMPs

observed in st1 (in comparison to all the other stations) may have

possibly resulted from its subtly larger fine grain fraction (silt/

clay; Figure 9B) and higher organic matter content (significantly

higher than st2 and st5). These variables were expected to

interfere with MPs accumulation due to the potential of fine

grain fraction and organic matter to provide sediment cohesion

(Shrestha and Blumberg, 2005) and to enhance particle

aggregation (Maes et al., 2017). However, owing to the lack of

stronger relations with these sediment characteristics, our data

suggests that proximity to MPs sources and the local

hydrodynamic conditions (slow flow rate in the estuary and

ocean wave turbulence) are the main variables affecting MPs

accumulation in sediments at our study area.

Meiofauna abundance and MPs to
meiofauna ratios

Despite the unadvised use of grabs as a sampling method for

meiofauna studies due to the bow-wave effects that disturb the

sediment surface prior to sampling (Somerfield and Warwick,

2013), it should be highlighted that the selection of this method -

Petite Ponar grab - was primarily based on MPs as the main

target. Also, as such disturbance could be assumed to similarly

interfere with the calculation of both MPs and meiofauna

abundances, we may consider our MPs to meiofauna ratio

patterns robust. As expected, meiofauna abundance was

higher in st1 than in the other stations. This could be linked

to the higher content of organic matter found inside Sado estuary

(Sandulli et al., 2010), where hydrodynamic conditions are weak

(inferred by the smaller mean grain size and more poorly sorted

sediments). Also, since about 48% of MPs accumulated in the

estuary (Figure 6F) overlap the size range of meiofauna

organisms (between 63 and 500 μm; Giere, 2009), there is a

high potential for MPs to be ingested by meiofauna predators in

st1, either accidentally or intentionally. In what concerns theMPs

to meiofauna ratio, a clear contrast was noticed between st1 and

all the other stations, especially with st3. It reinforces the higher

exposure of benthic feeders in the estuary, an ecosystem known

to provide important habitats and nursery grounds (Beck et al.,

2001; Sheaves et al., 2015) but also known to accumulate high

concentrations of pollutants in sediments, as reported for Sado

(Carvalho et al., 2009; Nunes et al., 2014; Ribeiro et al., 2016). The

conversely lower ratios occurring between st2 and st6, suggesting

fewer interactions, is explained by their low abundances of both

MPs and meiofauna (at st6 in particular), which is potentially

caused by the exposure of these stations to the predominant swell

direction (NW; Mota and Pinto, 2014).

Rainfall

Regarding the assessment of temporal patterns in MPs

abundance, although there was a slight decrease from October

2018 to February 2019, no significant changes were noticed. In

TABLE 4 Average proportion of each mineral and Carbonate/
Siliciclastic index displayed per station. Stations were ordered
from West to East.

Proportion (%) st6 st5 st4 st3 st2 st1

Quartz 65.2 76.8 55.3 74.2 88.6 87.2

Calcite 2.2 4.1 21.8 4.0 0.0 5.3

Dolomite 28.3 3.2 13.5 7.8 0.0 1.1

Other 4.3 16.0 9.4 14.0 11.4 6.5

Carbonate/Siliciclastic index 0.47 0.09 0.64 0.16 0.00 0.07

3 https://www.ine.pt/scripts/db_censos_2021.html
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fact, despite the significantly reduced rainfall observed during

the two first sampling campaigns, no correlation was detected

between rainfall and the monthly abundances of MPs here

reported. This is contrary to the patterns reported by

Rodrigues et al. (2020) regarding surface water samples

collected in the same sampling stations, suggesting that

rainfall (or stormwater runoff) mainly interferes with MPs

abundances on the sea surface, or has at least causes a more

immediate effect at this marine compartment. In fact, when

low-density particles (known to ultimately contribute for the

pool of MPs found in sediments) enter in the marine

environment, they will not sink for several weeks, due to

the lack of biofouling (Ye and Andrady, 1991; Lobelle and

Cunliffe, 2011; Kaiser et al., 2017). Moreover, the lack of such

relation in this study may be also related with an increase of

the current velocity at the Sado estuary from late summer to

February (Vale et al., 1993; Martins et al., 2002; Biguino et al.,

2021) preventing a faster settling of the new MPs inputs in the

system.

Polymer diversity

As observed in a preceding study focused on theMPs floating

at the surface waters from this coastal area, the polymer diversity

here determined was also high (11 different polymers), mirroring

the multiple activities taking place, both on land (domestic,

commercial, industrial and tourism) and at the sea/estuary

(fishing, maritime recreational activities and intense traffic to

shipyards). In fact, 6 of the 11 polymers here identified (PE, PS,

PP, PUR, Copolymer PP/PE and PET) were also detected in the

seawater surface samples, reflecting the widespread of several

polymers in the water column. In addition to the potential links

already suggested by Rodrigues et al. (2020), here others may be

established between the identified polymers and the local

sources/activities. For example, the PVAc may have the

shipyard as a source, as this polymer is used in shipbuilding

(Graca et al., 2017). Others may be released via wastewater as a

result of laundry (Polyacrylates; textile fibers; Browne et al., 2011;

Napper and Thompson, 2016), use of cosmetic and art/craft

products (Polyacrylates and PVC; glitters; Yurtsever, 2019), use

of pharmaceutical products for the treatment of hyperkalemia

(PS-S; Wong et al., 2020; Rahman and Marathi, 2022) or use of

water softening products (PS-S; Saleh, 2009). It should be

highlighted that out of the 11 polymers, seven are denser than

seawater (>1.02 g cm−3), namely PET, Polyacrylates, PVAc, PVC,

PUR, PA and PS-S. Also, as reported elsewhere about other

coastal sediments (Graca et al., 2017; Zheng et al., 2019), the

predominant polymer collected in this study was PET, being

mostly assigned to fibers and fiber bundles. Besides being widely

are known to result from textile laundry (Browne et al., 2011;

Napper and Thompson, 2016), they might also result from the

degradation of fishing gear and maritime equipment (Murray

and Cowie, 2011; Cole, 2016; OSPAR, 2020). The second most

abundant polymer in our sediments was PE, which is in

accordance with other studies (Zheng et al., 2019; Coppock

et al., 2021) and is explained by its multiple applicability, high

demand (PlasticsEurope, 2021) and fast discard (mainly

packaging of consumer goods and single-use items). As

mentioned before, despite these items tendency to float,

biofouling processes will ultimately cause them to sink.

Mineralogical content

Lastly, in addition to the different organic matter contents and

granulometric parameters found in sediments of each station, they

also present distinctmineral compositionwhich stronglymirrors the

sediment sources occurring in the nearby shore. We could assume a

weak transport of sediments along the shoreline or, at least, a strong

influence of local sediment sources in the samples’ mineral

composition. In fact, the higher proportion of carbonates in

st4 and st6 coincided with their proximity to the Arrábida

carbonated cliffs, while the higher siliciclastic (quartz)

proportions found in the other stations are suggested to come

from the adjacent sandy beaches (Figueirinha, st2, Portinho da

Arrábida, st3, and Califórnia, st5) or from the Sado river (st1). The

reduced transit of sediments between stations (throughout the six

sampling campaigns) agrees with the reduced exportation of MPs

from the estuary to the western marine coast, which contributes to

the accumulation of MPs inside the estuary, i.e., in the vicinity of

their emission sources.

Conclusion

The temporal fluctuation of MPs abundance in subtidal

sediments at the Portuguese west coast, between late summer

and winter (August 18 and February 19), was not significant and

revealed no relationship with rainfall. However, a clear spatial

distribution pattern was observed: MPs accumulation was high in

the estuary (hotspot; mostly comprised by fragments) and low in all

the other five stations (mostly represented by fibers). The high

abundance of MPs in the estuary was moderately correlated with its

poorly sorted sediments and with the high organic matter content.

Also, besides possessing the higher silt/clay fraction, the size range of

the majority of MPs inside the estuary was coincident with

sediments most abundant grain size fraction: 0.250–0.500 mm.

The residual exportation ofMP from the estuary is supported by

the distinct mineralogical content of each station, which indicates a

reduced transit of sediment along the coast. Conversely, the similar

abundance of fibers among the six stations is potentially linked to the

higher surface area to volume ratio of this type of MPs and to the

location a WWTP outfall at each extremity of the study area. The

MPs to meiofauna ratio was particularly higher in the estuary (1:

15.3) suggesting a higher exposure level faced by biota. As expected,
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most polymers found in sediment were denser than seawater and

may be linked to local activities.

Understanding patterns and identifying environmental

factors capable of interfering with MPs accumulation in

sediments are critical for the establishment of effective

measures that aim to reduce and prevent plastic inputs to the

marine environment. In marine protected areas, such

information is especially important not only to evaluate their

effectiveness in what concerns the protection of species and

habitats from MPs pollution (Fastelli et al., 2016; Blašković

et al., 2017), but also to adjust their management and/or

monitoring plans accordingly. Therefore, continued research

and local dissemination at awareness campaigns are necessary

to engage citizens and stakeholders to tackle MPs pollution in

this Portuguese coastal region.
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