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The spatial spillover effect of regional green innovation efficiency (GIE) is a

heated issue of academic research; however, it has rarely been discussed from a

network perspective. It is pretty meaningful to clarify its spatial association

network’s evolutionary rules and driving factors. To fill the lack of research, this

study measures the regional GIE in China from 2010 to 2019 using an epsilon-

based metric (EBM) model that considers undesirable outputs. A modified

gravity model and social network analysis (SNA) method are used to analyze

the evolutionary rules and spatial spillover effects of the network structure of

GIE, and a quadratic allocation process (QAP) was employed to identify its

driving factors. The findings reveal that: 1) China’s regional GIE has a geographic

correlation network structure with a low network density (peaking at 0.210 in

2018) and an annually increasing slow trend. 2) The network structure is

relatively loose and has a certain hierarchical gradient, with “dense in the

eastern” and “sparse in the western” characteristics. 3) The eastern provinces

are at the relative center position and play a leading role in the network; the

central, western, and northeastern regions are relatively inferior and play a

fulcrum and conduction role. 4) Spatial adjacency, the differences in

infrastructure, urbanization, and economic development level positively

affect the spatially correlated regional GIE. In contrast, differences in

environmental regulations and differences in science and technology

innovation (STI) have negative effects. Finally, from the perspectives of

national, regional, block, and driving factors, several recommendations are

made to enhance the overall improvement and balanced development of

regional GIE in China.
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1 Introduction

Environmental protection has become one of the significant

obstacles to maintaining sustainable growth in the global

economy (Zhang, Ouyang, Ballesteros-Pérez, Li, & Skitmore,

2021a). The traditional development modes generally come at

the cost of ecological destruction and resource exhaustion.

Evidently, such a growth pattern appears to be inconsistent

with the goal of sustainable growth. Several governments have

begun encouraging various industries to introduce innovative

green technologies in their production processes for the purpose

of reducing energy consumption and pollutant emissions (Yin &

Li, 2018; Gente & Pattanaro, 2019). Green innovation refers to

innovation activities aimed at high-quality economic

development and environmental protection, which decreases

or eliminates the ecological destruction resulting from

economic activities by converting innovative products and

technologies throughout their life cycle (Xie, Huo, & Zou,

2019; Zhang, Kang, Li, Ballesteros-Pérez, & Zuo, 2020). Green

innovation can help to alleviate the constraints of environmental

pollution and resource scarcity and achieve sustainable and

healthy economic development. Achieving sustainable

economic growth requires innovative green technologies to

enhance carbon productivity.

Although China’s economy has grown significantly over the

past 40 years, sustainable development has only recently been

advocated and received widespread notations. The crude

economic growth mode has led to excessive energy

consumption, mainly of coal, oil, natural gas, and other fossil

fuels, hindering the achievement goals of China’s sustainable

economic growth (Fan & Xiao, 2021; Zhou, Yu, Yang, & Shi,

2021). According to the statistics, China’s gross domestic product

(GDP) for 2019 reached 9,908.65 billion yuan, and the

contribution rate of scientific and technological advancement

reached 59.5%. New growth drivers maintained rapid

development, with the value-added of strategic emerging

manufacturing and high-tech manufacturing industries

growing by 8.4% and 8.8%, respectively. However, China’s

environmental problems continue to be serious. According to

the 2019 State of China’s Ecology and Environment Report,

among 337 cities at prefecture level and above, 157 (46.6%)

reached the standard of ambient air quality, while 180 (53.4%)

exceeded the standard; the proportion of acid rain in monitored

precipitation in 469 cities is 33.3%. In the monitoring data of

10,168 national groundwater quality monitoring stations, 14.4%

are types of Ⅰ, Ⅱ, andⅢ, 66.9% are typeⅣ, and 18.8% are type V.

The structure of carbon emissions in China from 2000 to

2019 can be seen in Figure 1. As a new way of sustainable

development, green innovation deeply integrates the two

development principles of green and innovation. It already

becomes the primary tool to achieve ecological civilization

construction, high-quality development, and sustainable

growth in a country or region.

Green innovation efficiency (GIE) is an indicator that measures

the quality of green innovation development level from the input-

output perspective. Its efficiency value is influenced by many factors

of the region it belongs to, such as resource endowment, economic

foundation, regional external environment, and geographical

conditions (Li, Wei, & Wang, 2015; Liu, Shao, Tang, & Lan,

2021). Owing to the inter-regional differences and uneven

distribution of the factors mentioned above, regional GIEs tend

to have “gradient differences” (Zhou et al., 2021;Wang&Ren, 2022).

Furthermore, the spatial association network of green innovation is

integral to the innovation network. Under the mechanism of

regional spatial diffusion and knowledge spillover, the fluid factor

resources such as capital, technology, and management methods

flow and redistribute in a direction conducive to the development of

regional GIE (Giuliani & Bell, 2005; Hoekman, Frenken, & Van

Oort, 2009; Fan&Xiao, 2021). In the process, the high-level and low-

level regions generate polarization and trickle-down effects through

demonstration, collaborative interaction, and peer learning (Li & Fu,

2015), resulting in the formation of spatial association networks of

regional GIE. Current academic researchers have conducted many

studies on the spatial spillover effects of regional GIE, such as spatial-

temporal heterogeneity (Miao, Duan, Zuo, & Wu, 2021; Peng, Yin,

Kuang, Wen, & Kuang, 2021) and spatial clustering characteristics

(Yang & Liu, 2020). However, these studies only examine the spatial

correlation among individual regions, which cannot

comprehensively depict the overall network characteristics.

Moreover, the existing research rarely discusses the spatial

spillover relationship of regional GIE from a network perspective,

as well as the spatial spillover effects and their driving factors. The

current situation is that China’s green production technology and

innovation efficiency are still low. An efficient and well-organized

network of GIE has not yet been formed between regions (Fan &

Xiao, 2021). Furthermore, there are only a few cross-regional green

innovation collaboration activities, and both cross-regional green

technology sharing platforms and joint pollution governance

platforms have not been established (Su & Yu, 2019). Therefore,

under the scenario of the Chinese government’s pursuit of

sustainable development, it is of great theoretical and practical

significance to unveil the evolutionary rules of the spatial

networks for regional GIEs and their driving factors to achieve

the goal of cross-regional collaboration development in China.

The significant contributions of the study can be summarized

in the following. From a network perspective, the main works of

this paper are to investigate the evolutionary rules of the spatial

networks for regional GIE in China and reveal their driving

factors, which offers a novel perspective for the literature on

regional green development. First, the EBM model with

undesirable output is utilized to obtain the regional GIEs and

reveal their evolutionary rules and spatial differences, which

helps to grasp the changing trend of GIE in each province

deeply. Second, the modified gravity model is proposed to

determine the network binary matrix. The SNA method is

utilized to describe the spatial association network’s overall
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and individual features. The network structure characteristics of

regional GIE are presented visually. Finally, the QAP regression

analysis method recognizes the driving factors influencing its

network formation. It can fundamentally avoid the problem of

multiple covariates caused by various independent variables and

provide a more scientific and reasonable analysis.

This study is structured as follows: Section 1 describes the

context of the study; Section 2 reviews the literature; Section 3

explains the methods; Section 4 describes the indication selection

and dataset; Section 5 describes the empirical results, and Section

6 draws conclusions and implications.

2 Literature review

2.1 Green innovation theory

Green innovation has double positive externalities for

economic spillover and environmental spillover (Miao et al.,

2021; Peng et al., 2021). Compared with general innovation,

green innovation is defined as the collection of innovative

activities that generate or modify technologies, processes,

practices, systems, and products, considering the limitations of

environmental performance. It aims to improve environmental

performance, promote the comprehensive utilization of

resources and energy, and ultimately achieve the goals of

improving environmental protection and sustainable social

development (Bartlett & Trifilova, 2010; Fan & Xiao, 2021;

Zhao, Liu, Pan, & Wang, 2021). With the increasingly serious

environmental pollution problems, scholars have started to

conduct research on green innovation, including the GIE

under different scales of measurement (Yang et al., 2019),

spatial distribution heterogeneity (Li et al., 2015; Liu et al.,

2021), spatial aggregation and convergence (Li & Fu, 2015;

Dong, Li, Qin, & Sun, 2021; Zhou et al., 2021), and others

(Wang, Chen, Kang, Li, & Guo, 2018; Li & Du, 2020; Fan &

Xiao, 2021). In the literature on efficiency research, some scholars

have calculated and analyzed the efficiency of green innovation

and its influencing factors in different research objects such as

province (Wu, 2021; Zhao et al., 2021), industry (He, Li, & Cui,

2021) and urban (Zeng, Skare, & Lafont, 2021). In their study on

the efficiency measurement method, many scholars commonly

use the data envelopment analysis (DEA) model, such as Luo,

Miao, Sun, Meng, and Duan (2019)established the Malmquist-

DEA index, and Zhang J. et al. (2021) employed the network

EBMmodel to calculate the GIEs of strategic emerging industries

and construction industry in China, respectively. Fan and Xiao

(2021) adopted the SBM-DDF model, and Zhang et al. (2020)

used the super-SBM model to measure the green economic

efficiency of the 30 Chinese provinces. Lin et al. (2021)

proposed a two-stage DEA with shared and additional inputs

to evaluate the green technology innovation efficiency in Chinese

energy-intensive industries. In the studies on influencing factors,

most researchers believed that environmental regulation (Wu,

Hao, & Ren, 2020), government R&D support (Li & Zeng, 2020),

industrial structure (Dong et al., 2021), marketization (Liu, Gao,

Ma, & Chen, 2020), and international knowledge spillover (Song,

Tao, & Wang, 2015) are the primary factors driving green

innovation. Furthermore, from the innovation factor flow

perspective, Huang and Wang (2020) discussed the growth

effects of the high-speed railway on green innovation in

108 cities of China’s Yangtze River Economic Belt. Zhou et al.

FIGURE 1
The structure of carbon emissions in China from 2000 to 20191.

1 The Data are from China Emission Accounts and Datasets, CEADs
(https://www.ceads.net.cn/).
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(2021) stated that the intensity of R&D funding, environmental

investment intensity, the degree of opening, and government

support had a positive and unique effect on China’s green

innovation development.

2.2 Spatial effects of innovation theory

Scholars of economic geography are inclined to hold the opinion

that innovation is not only affected by its accessible regional

knowledge, institutional environments, social culture,

technological levels, and other factors but is also by the level of

innovation development of neighboring regions (Canils &

Verspagen, 2001). That is to say, innovation has noticeable spatial

effects, and specialization of innovation factors generates relevant

spillover effects (Jaffe & Henderson, 1993; Audretsch & Feldman,

1996). The spatial spillover effect is one of the hot topics in current

regional innovation system research. In the literature on spatial

spillover effects of regional innovation, the researchers have

preliminarily confirmed that geographic proximity between

regions has significantly been correlated (Anselin, Varga, & Acs,

1997). Subsequent studies have been broadened to the impacts of

social and economic factors on spatial correlations, such as

knowledge, institutional, technological, and organizational

proximities (Boschma, 2005; Inoue, Souma, & Tamada, 2007;

Marrocu, Paci, & Usai, 2013). For example, Li and Fu (2015)

revealed the spatial spillover effect of regional innovation at the

urban scale. Liu et al. (2021) found that cognitive proximity,

institutional proximity, geographical proximity, and technological

proximity were all factors promoting the formation of green

innovation networks and that geographical proximity has a

positive moderating effect.

Regarding researchmethods, the existing literature on the spatial

effects of innovation analysis consists of two main groups. The first

group of methods is to measure the regional spatial correlation using

various statistical methods and carry out theoretical elaboration. The

Gini index, Moran’s index, and Theil coefficient are the most widely

utilized indices. For example, Motoyama, Cao, and Appelbaum

(2014) employed the Gini index and global Moran’s index to

examine whether the geographic concentration of

nanotechnology-related patents has persisted over time. Wang,

Zhang, Zheng, and Chang (2021)applied Moran’s index to study

the changing trend of the spatial pattern of regional innovation

output. Xiao, Fan, and Du (2019) adopted the Theil index to analyze

the Chinese regional innovation capability difference and evolution.

The second group of methods is concerned with the analysis of the

spatial effects, including the exploratory spatial data analysis (Tan,

Cheng, Lei, & Zhao, 2017), gravity models (Maggioni, Uberti, &

Usai, 2011), kernel density functions (Liu, 2018), and spatial

econometric models (Li & Fu, 2015; Peng et al., 2021). For

example, Shang, Poon, and Yue (2012) used a spatial

autoregressive model to test China’s innovation growth’s regional

knowledge spillover. ZhangX. et al. (2021) combined the exploratory

spatial data analysis and gravity model to describe the spatial

characteristics of low-carbon energy technology innovation in

China and identify the driving factors. Peng et al. (2021) used the

spatial Durbin model (SDM) to test whether green innovation has a

significant positive spatial spillover effect on economic development

quality. According to the spatial analysis method of geographic

information system (GIS), Pan, Chu, Pan, andWang (2021) adopted

the gravity and potential models to identify the change features of

spatial correlation effect of urban innovation in China. Wu, Hao,

Ren, Yang, and Xie (2021) investigate the relationship between the

internet and China’s green total factor energy efficiency (GTFEE)

using a dynamic SDM, mediation effect model, and threshold panel

model.

2.3 Application of social network analysis
in innovation networks

In the 1960s, sociologist Harison White et al. established the

SNA theory, which uses graph-theoretic techniques to identify

connection modes and considers connections as the basis of

analysis units (Scott, 2011). The SNA approach has been widely

applied in a variety of fields, including economics, management,

sociology, behavioral science, and others. Many scholars have

used the SNA model to discuss innovation networks. Such as,

using patent collaboration data, Cantner and Graf (2006)

depicted the evolution of the German Jena innovator network.

From the standpoint of SNA in three indicators of network

density, network cohesion, and network centrality, Krätke (2010)

investigated the structure and properties of regional knowledge

networks. Senghore, Campos-Nanez, Fomin, and Wasek (2015)

employed the SNA method to test whether three driver elements

in competition, social interaction, and network vitality influence

innovation. Tseng, Lin, Pai, and Tung (2016)used SNA to explore

the relationship between the global semiconductor industry’s

innovation network and innovation capability. SNA was utilized

by Yang and Liu (2020) to define the spatial correlation

properties of low-carbon innovation. In recent years, a unique

research system has been proposed to study the structure of

innovation spatial association networks. Specifically, the spatial

correlation of regional innovation is first estimated using

Granger causality tests or gravity models; then, overall,

individual and cluster characteristics are analyzed using

network density, correlation, centrality, and SNA block

models, and finally, the factors affecting the spatial correlation

of regional innovation are analyzed using a QAP approach (Li

et al., 2015; Yang & Liu, 2020; Fan & Xiao, 2021). The QAP is

based on the permutation of the matrix data by comparing the

lattice values of the matrices and determining the correlation

coefficients while performing non-parametric tests on the

coefficients and is often used to examine the relationship by

using relational data (Barnes, 1954). Owing to the difficulties of

multi-collinearity and autocorrelation that usually exist in
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network data, the QAPmodel does not require the assumption of

independence and normal distribution, and the results are more

robust.

2.4 Brief comments

Previous studies on the spatial spillover of regional GIE are

relatively common, but there still a needs for further

supplementation and improvement.

1) Regarding evaluating regional GIE, the current literature

mainly adopts DEA models and spatial econometric

methods (i.e., the SDM method). These models have a

certain degree of deficiencies. The DEA method tends to

ignore the influence of radial proportional changes or slack

variables, and the SDM method requires presupposition of a

particular form of the production function, which can lead to

the deviation of the efficiency value from the actual value.

2) The existing literature seldom analyzes the spatial association

network structure of regional GIE and its evolution rules from

a network perspective, including the overall characteristics,

individual characteristics, and network clustering.

3) The research on the driving mechanism of the spatial

association network of regional GIE is still weak. The

existing studies have mainly focused on the neighboring

regions without considering the influence of non-

neighboring regions. Moreover, the research method is

confined to the spatial econometric method based on

“attribute data”. The SNA is a network analysis tool that

can perform a global analysis of “relational data”, which can

effectively overcome the limitation of “attribute data” and has

been widely applied in the field of carbon emission (Huo et al.,

2022; Yu et al., 2022). Few studies have applied the SNA

method to the topic of regional GIE.

Therefore, this paper makes improvements to the existing

literature in three aspects. First, the EBMmodel with no expected

output is used to recalculate the regional GIE to solve the

deviation problem in efficiency evaluation. Second, from a

network perspective, the improved gravity model is used to

construct the “relational data,” and the SNA method is

applied to analyze the spatial association network of regional

green innovation and its structure characteristics such as the

overall structure, the individual structure, and the block

situation. Third, based on the “relational data,” the QAP

regression analysis is applied to identify further the

influencing factors of the spatial association network of green

innovation efficiency. These works expand the existing studies on

the spatial spillover effects of regional GIE and provide helpful

policy insights for promoting cross-regional green synergistic

development and realizing regional green and high-quality

development.

3 Methods

3.1 Epsilon-based metric model with
undesirable output

The traditional DEA radial model (represented by CCR

and BCC) ignores the non-radial slack variables, while the

non-radial SBM model lacks the proportion information

between the target value and the actual value (Zhang

J. et al., 2021). The EBM model proposed by Tone and

Tsutsui (2010) introduces the exponent ε to measure the

diversity and interdependence between variables. It has a

more significant advantage in distinguishing the efficient

decision-making unit (DMU). Recently, the EBM model

has been a popular efficiency evaluation method due to the

consideration of bad output factors.

Assume that there areNDUMs that need to be measured.

Each DMU contains m inputs to generate s desirable outputs

with qundesirable outputs. It may be unreasonable for the

traditional DEA model to concentrate only on the hot output

indicators. As Cui, Li, and Wei (2018) pointed out, when

dealing with undesirable outputs, strong disposability makes

more sense than weak disposability. Hence, in this study, the

undesirable outputs are treated as strong disposability.

Therefore, this study adopts the EBM model with

undesirable output, no-oriented and variable return to

scale (VRS) to measure efficiency. The specific formula is

as follows:

E � min
θ − εx∑m

i�1
w−
i s

−
i

xi0

φ + εy∑s
r�1

w+
r s

+
r

yr0
+ εz∑q

p�1
w−
ps

−
p

yp0

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑N

j�1xijλj + s−i � θxi0, i � 1, 2, . . . , m

∑N

j�1yrjλj − s+r � φyr0, r � 1, 2, . . . , s

∑N

j�1bpjλj + s−p � φbp0, p � 1, 2, . . . , q

∑N

j�1λj � 1

λj ≥ 0, s−i , s
+
r , s

−
p ≥ 0

(1)

where E stands for the optimal efficiency value, satisfying

0≤E≤ 1; s−i , s
+
r and s

−
p represent the slack variables of them-th

input, the s-th desirable output and q-th undesirable output,

respectively; w−
i , w

+
r and w−

p denote the relative importance of

the input, the desirable output and undesirable output,

respectively, and satisfy the constrains

∑m
i�1w−

i � 1,∑s
r�1w+

r � 1,∑q
p�1w−

p � 1(w−
i ≥ 0, w+

r ≥ 0, w−
p ≥ 0); εx

denotes the relative importance of the non-radial slacks over

the radial θ, and εy and εz denote the relative importance of

non-radial over the radial φ; λ stands for the relative

importance of the reference decision unit. Parameters

εx, εy, w−
i , w

+
r , andw

−
pneed to be predetermined, these

parameter values are calculated by referring to Tone and

Tsutsui (2010).
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3.2 Gravity model

The social network originates from the concept of sociology.

In a network environment, if there is a correlation between two

nodes in the network, a straight line is drawn to obtain the sum of

the relationships of all nodes. Currently, there are two commonly

used methods to establish connections between nodes. One is the

Granger causality test based on vector auto regression (VAR)

(Wu, Liu, Hsiao, & Huang, 2016), and the other is the gravity

model (Fan & Xiao, 2021). As a classical econometric model, the

VAR model is susceptible to time lag requirements and

unsuitable for cross-section data. As a result, it is unable to

depict evolutionary trends and characteristics of the network. In

contrast, the gravity model introduced by Reilly (1929) for the

first time in population geography can comprehensively consider

the factors of economic and geographical distance and reveal the

evolution characteristics of spatial correlation. With these

considerations, a modified gravity model to measure spatial

correlation is constructed in the following:

Fij � Kij · Ei · Ej

D2
ij/(gi − gj)2, Kij � Ei

Ei + Ej
(2)

Where Fijrepresents the gravity value of GIE between two

provinces (iandj); Kijdenotes gravity coefficient; Ei and

Ejdenote the GIE of any two provinces (iandj), respectively;

Dijdenotes the geographical distance between two provinces

(iandj);gi and gj are GDP per person of two provinces

(iandj), respectively.

According to Eq. 2, Fij is transformed into 0–1 matrix ~Q(i, j)
after binary processing, as follows:

~Q(i, j) �
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, Fij ≥
1
N

∑N

j�1 Fij

0, Fij <
1
N

∑N

j�1 Fij

(3)

where ~Q(i, j) denotes the spatial correlation strength between

two provincesiandj. Obviously, in the network, when ~Q(i, j) � 1,

straight lines can be drawn directly from the provincesiandj.

3.3 Characteristic index of network
structure

3.3.1 Overall network structure characteristics
SNA is a method to accurately quantify the relationships

among members in a complicated and changeable network

structure and analyze the overall network properties among

the nodes (Wang et al., 2018). The overall structural

characteristics of the network are characterized by four

indicators (Scott, 2007): network density, network correlation,

network efficiency, and network hierarchy. The network density

denotes the tightness of network members. The formula is:

D � L

N(N − 1) (4)

where D denotes the network density andD ∈ [0, 1].N(N − 1)
denotes the maximum expected number of network relationships,

and L denotes the actual number of network relationships.

Network correlation degree denotes the degree of interaction

between network members. The formula used is:

C � 1 − 2V
N(N − 1) (5)

where C denotes the network correlation degree, N denotes

the number of network nodes, andV denotes the number of

unreachable point pairs.

Network efficiency indicates the connection efficiency of

members. The formula is:

E � 1 − M

Max(M) (6)

where E denotes the network efficiency, M is the number of

network redundant correlation lines.

Network hierarchy denotes the degree of unsymmetrical

reachability among network members. The formula is:

H � 1 − K

Max(K) (7)

where H is the network hierarchy, K is the number of

symmetric reachable node pairs in the network.

3.3.2 Individual network structure
characteristics

Centrality is an important network characteristic that reflects

the position and strength size of node members in the network.

Centrality includes three indicators of point centrality degree,

closeness centrality degree, and betweenness centrality degree

(Freeman, 1978). The formula is given by:

P � Id + Od

2N − 2
(8)

where P is point centrality,N is the number of network notes,

Od is out-degree, and Id is in-degree.

Closeness centrality degree indicates the degree towhich one node

in the network is independent of the others (out of control). Themore

valuable it is and the closer it is to othermembers, themore possible it

will become a core player in the network. The formula is obtained by:

CC � Bc

N − 1
(9)

where CC is the closeness centrality degree, and Bc is the

shortcut distance between nodes i and j.

Betweenness centrality degree represents a node that

dominates over other nodes. The higher the degree is, the

stronger the domination ability of the node is. Betweenness

centrality BCi is calculated by:
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BCi �
2∑N

j�‘∑N
k�1bjk(i)

(N2 − 3N + 2) , bjk(i) �
gjk(i)
gjk

(10)

Where gjk(i)is the number of shortcuts between nodes j and

k through node i.

3.4 Quadratic allocation process method

QAP is a method to compare the lattice value in a square

matrix, explore the correlation coefficient between two different

matrices according to the relational data, and conduct a non-

parametric test on the correlation coefficient. The formation of the

spatial association network of regional GIE results from spatial

aggregation and diffusion by many social factors. According to the

existing literature, the geographical factor is an important variable

affecting the regional GIE (Liu et al., 2021). Some studies believe

that the infrastructure (Tang, Xu, Hao, Wu, & Xue, 2021),

environmental regulation (Wu et al., 2020), industrial structure

(Zhang, Zhang, Zhang, & Li, 2019), openness (Ren, Hao, & Wu,

2022), urbanization (Zhou&Wang, 2011), economic development

level (Zhang J. et al., 2021), and scientific and technological

innovation (STI) capacity (Miao et al., 2021) have different

directions and intensities of influence on regional GIE.

Therefore, this paper selects the regional spatial adjacency

relationship matrix (Adj) to represent the geographical factor,

and seven factors of the differences in infrastructure (Dif_Infra),

differences in environmental regulation (Dif_Er), differences in

industrial structure (Dif_Indu), differences in external openness

(Dif_Open), urbanization differences (Dif_Urban), differences in

economic development level (Dif_Pgdp), and differences in

science and technology innovation (Dif_Sti) are choosen as the

independent variable to establish the QAP regression model.

According to the above consideration, the QAP model can be

established as follow:

G � f(Adj,Dif Infra,Dif Er,Dif Indu,Dif Open,Dif Urban,Dif Pgdp,Dif Sti)

where G represents the spatial binary matrix of regional GIE by

Eq. 3; Adj denotes spatial adjacency relations; Seven factors of

Dif_Infra, Dif_Er, Dif_Indu, Dif_Open, Dif_Urban, Dif_Pgdp, and

Dif_Sti refer to the difference matrices in infrastructure,

environmental regulations, industrial structure, openness,

urbanization rate, economic development, and STI, respectively.

The variables and data definitions are shown in Table 1.

4 Indication selection and dataset

4.1 Indication selection

An ineffective evaluation system may produce results that

are varied or even contradictory. In order to evaluate GIE

objectively, as was done in previous studies (Johnstone et al.,

2017; Anser, Iqbal, Ahmad, Fatima, & Chaudhry, 2020; Bilan,

Mishchuk, Roshchyk, & Kmecova, 2020; Zhang et al., 2020;

Zhao et al., 2021), the GIE can be considered as the ratio

between the input of innovation activities and its innovation

output, economic output and comprehensive environmental

output under the constraints of “innovation-driven” and

“green development”.

The input indicators include labor input, capital input,

and environmental input. The full-time equivalent of R&D

personnel is selected as labor input, and the internal

expenditure of R&D funds is selected as capital input. It

needs to be particularly stated that internal expenditure of

R&D funds is more objective than the R&D capital stock

indicator. When computing capital stock, it can eliminate

errors caused by differing techniques and depreciation rates.

In addition, the energy consumption of 10,000 Yuan GDP is

employed as environmental input to reflect the consumption

of regional resources.

The output indicators include desirable output and

undesirable output. The desirable output selects innovation

outcomes and economic results, including the number of

authorized patent applications and new product sales revenue.

The number of patent applications authorized demonstrates the

potential of a region’s innovation output and quantitatively

reflects the direct consequences of innovation. New product

sales revenue reflects the economic capacity of regional

innovation output and the economic effect of innovation in

terms of quality. Undesirable output selects environmental

pollutant emissions to measure innovation activities’ damage

to resources and the environment, including industrial pollution

emissions: industrial SO2 emissions, industrial wastewater

emissions, and industrial waste solid emissions. The indicator

system is shown in Table 2.

4.2 Dataset

Due to data availability, this paper selected 30 provinces and

cities in China as research units and network nodes. The research

period is from 2010 to 2019, excluding Tibet, Hong Kong, Macao,

and Taiwan. The input and output indicators data come from the

China Statistical Yearbook of Energy, China Statistical Yearbook

of Science and Technology, China Environmental Statistical

Yearbook, and China Statistical Yearbook. In terms of

geographical distance measurement, the 1:400,000 Chinese

basic geographic information data provided (http://www.ngcc.

cn/ngcc/) was used to calculate the spherical distance between

provincial capitals. The descriptive statistics of the efficiency

evaluation indicators are shown in Table 3. Since the data used

for the QAP analysis are relationship data converted from the

“Attribute to the matrix” data tool in UCINET 6.0 software, it is

impossible to perform descriptive statistics on an analysis

of them.
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5 Results and analysis

This section describes and analyzes the empirical results.

First, the EBM model with undesirable output was adopted to

obtain the GIEs of 30 provinces in China (see Table 4). Then, the

spatial correlation binary matrix is determined by the modified

gravity model, and the spatial association network diagrams of

different years (2010, 2013, 2016, and 2019) were drawn using

Arcgisl0.8 software (see Figure 3). Then, the network structure

characteristics (overall and individual) and the block model are

carried out by the SNA approach. Finally, the driving factors were

identified by the QAP method for the spatial association network

from 2010 to 2019.

5.1 Calculation results of regional green
innovation efficiency in China

Table 4 shows that the average value of GIE from 2010 to

2019 is only 0.574, which is at a middle to lower level and has

much more potential for improvement. The efficiencies of

Beijing, Shanghai, and Zhejiang are equal to 1 per year,

closely related to their leadership in green innovation.

Meanwhile, the efficiencies of the eastern region are always

much greater than that of the northeastern, central, and western

regions, with an average value of 0.782 during the study period.

The potential explanation is that most provinces in the eastern

region belong to the coastal provinces and have unique

geographical superiority in innovation development. The

reasonable allocation of innovation resources can effectively

stimulate regional innovation vitality and put its innovation

development level at the forefront of the country. The eastern

TABLE 1 Variables and data definitions.

Variable Notation Description Definition

Dependent variable G Network relations Spatial binary matrix obtained by the gravity model

Independent variables Adj Spatial adjacency relations The value is 1 if the two provinces are adjacent and 0 if they are not

Dif_Infra Difference in infrastructure Total postal and telecommunication services per unit of GDP difference matrix

Dif_Er Difference in environmental regulations Environmental governance investment quota per unit of GDP difference matrix

Dif_Indu Difference in industrial structure Secondary industry per unit of GDP difference matrix

Dif_Open Difference in openness FDI per unit of GDP difference matrix

Dif_Urban Difference in urbanization rate Urban population as a proportion of total population difference matrix

Dif_Pgdp Difference in economic development GDP per capital difference matrix

Dif_Sti Difference in R&D intensity R&D internal expenditure per unit of GDP difference matrix

TABLE 2 Regional GIE evaluation indication system.

Inputs and outputs Variable Notation Unit

Inputs Full-time equivalent of R&D personnel RD_p people/year

Internal expenditure on R&D funds RD_E 10,000 yuan

Energy consumption per 10,000 Yuan of GDP EC 10,000 yuan/tones standard coal

Desirable outputs Number of patent applications authorized PAA number

New product sales revenue PSR 10,000 yuan

Undesirable outputs Industrial SO2 emissions ISE 10,000 tons

Industrial wastewater emissions IWWE 10,000 tons

Industrial waste solid emissions IWSE 10,000 tons

TABLE 3 Descriptive statistics of the efficiency evaluation indicators.

Indicator Max Min Mean Std.dev

RD_p 803,208 4,008 122,556.50 137,597.10

RD_E 30,984,890 70,204 4,671,973.00 5,525,235

EC 41,390 1,359 14,864.09 8,763.52

PAA 527,390 264 49,325.26 73,531.54

PSR 429,700,648 85,659 4,9,421,718 6,8,941,868

ISE 292.24 0.10 46.79 39.22

IWWE 303,130 547 68,728.95 62,558.13

IWSE 52,037 212 11,534.75 10,001.56
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provinces have effective environmental protection institutions

available. They have more advanced technologies and state-of-

the-art industrial production processes that consume less

energy.

For an in-depth discussion of the regional differences in

efficiency. Figure 2 draws the changing trends of GIE in four

regions of China. This figure shows significant regional

differences in regional GIE in China, showing prominent

unbalanced distribution characteristics. Specifically, the eastern

region has the highest average efficiency. It is the central zone of

green innovation development in China, exhibiting a spatially

differentiated characteristic of zones from eastern > northeast >
central > western zones at the beginning of the period, later

evolving to the zonal difference characteristic of eastern >
central > northeast > western zones at the end of the period.

Then, from 2010 to 2019, the increase in efficiencies in the

eastern region was slow (0.757 in 2010 V.S. 0.782 in 2019). The

northeastern region (0.416 in 2010 V.S. 0.471 in 2019), central

region (0.366 in 2010 V.S. 0.552 in 2019), and western region

(0.360 in 2010 V.S. 0.425 in 2019) have significantly improved

their efficiency. Finally, the regional gap in GIE has been

narrowing year by year. From 2010 to 2019, in the eastern

and central regions, this gap decreased from 0.391 to 0.230; in

the eastern and western regions, it decreased from 0.397 to 0.357,

and in the eastern and northeastern regions decreased from

0.341 to 0.311.

TABLE 4 Evaluation values of GIE in 30 provinces in China from 2010 to 2019.

Region Province 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Eastern Beijing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Tianjin 0.834 1.000 1.000 1.000 1.000 1.000 1.000 0.595 0.717 1.000 0.915

Hebei 0.283 0.294 0.431 0.407 1.011 0.375 0.390 0.464 0.605 0.722 0.498

Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Jiangsu 0.827 1.000 1.000 0.780 0.866 0.793 0.744 0.916 0.796 0.731 0.845

Zhejiang 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Fujian 0.509 0.597 0.555 0.444 0.410 0.552 0.607 0.716 0.697 0.618 0.571

Shandong 0.695 0.655 0.781 0.708 0.681 0.597 0.583 0.632 0.635 0.627 0.659

Guangdong 0.955 0.862 0.829 0.753 0.783 0.851 1.000 1.000 1.000 1.000 0.903

Hainan 0.464 0.415 0.390 0.379 0.323 0.344 0.640 0.409 0.419 0.474 0.426

Northeast Liaoning 0.377 0.406 0.505 0.521 0.482 0.388 0.387 0.444 0.535 0.535 0.458

Jilin 0.676 0.776 0.608 0.466 0.427 0.435 0.621 0.808 0.505 0.805 0.613

Heilongjiang 0.195 0.284 0.333 0.296 0.282 0.304 0.330 0.443 0.476 0.489 0.343

Central Shanxi 0.216 0.229 0.291 0.272 0.236 0.243 0.288 0.411 0.504 0.558 0.325

Anhui 0.523 0.683 0.669 0.574 0.632 0.624 0.695 0.749 1.000 0.977 0.713

Jiangxi 0.284 0.323 0.485 0.490 0.519 0.558 0.722 0.714 0.729 0.837 0.566

Henan 0.324 0.336 0.352 0.465 0.473 0.488 0.460 0.560 0.630 0.530 0.462

Hubei 0.386 0.389 0.466 0.479 0.514 0.517 0.581 0.599 1.000 0.707 0.564

Hunan 0.462 0.588 0.708 0.692 0.775 0.780 0.774 0.698 0.680 0.669 0.683

Western Inner Mongolia 0.218 0.175 0.236 0.205 0.174 0.178 0.199 0.353 0.447 0.513 0.270

Guangxi 0.405 0.443 0.451 0.477 0.437 0.545 0.587 0.689 0.592 0.551 0.518

Chongqing 1.000 1.000 0.860 0.756 0.905 1.000 1.000 0.786 0.653 0.616 0.858

Sichuan 0.503 0.420 0.437 0.438 0.474 0.558 0.600 0.494 0.550 0.488 0.496

Guizhou 0.381 0.394 0.387 0.419 0.528 0.557 0.472 0.508 0.560 0.610 0.482

Yunnan 0.252 0.251 0.271 0.242 0.310 0.341 0.308 0.366 0.412 0.382 0.313

Shaanxi 0.225 0.210 0.187 0.230 0.278 0.337 0.482 0.374 0.433 0.399 0.316

Gansu 0.240 0.305 0.377 0.329 0.347 0.282 0.306 0.411 0.481 0.546 0.362

Qinghai 0.077 0.099 0.085 0.088 0.104 0.233 0.283 0.334 0.593 0.547 0.244

Ningxia 0.316 0.245 0.342 0.400 0.278 0.366 0.322 0.496 0.548 0.473 0.379

Xinjiang 0.341 0.273 0.284 0.318 0.403 0.510 0.465 0.577 0.622 0.631 0.442

National average 0.499 0.522 0.544 0.521 0.555 0.559 0.595 0.618 0.661 0.668 0.574

Eastern 0.757 0.782 0.798 0.747 0.807 0.751 0.797 0.773 0.787 0.817 0.782

Northeast 0.416 0.489 0.482 0.428 0.397 0.376 0.446 0.565 0.505 0.610 0.471

Central 0.366 0.424 0.495 0.495 0.525 0.535 0.587 0.622 0.757 0.713 0.552

Western 0.360 0.347 0.356 0.355 0.385 0.446 0.457 0.490 0.536 0.523 0.425
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5.2 Overall network structure
characteristics

5.2.1 Drawing the spatial association network of
China’s regional green innovation efficiency

To present the overall structural features, the gravity value is

calculated using Eq. 2, and this study obtains the binary

correlation matrices using Eq. 3. Then, the binary correlation

matrices are imported into the ArcGIS 10.8 visualization tool to

display the spatial association network. To reveal its evolution,

spatial association network maps were drawn every 3 years in

2010, 2013, 2016, and 2019 respectively (see Figure 3).

Figure 3 shows that China’s regional GIE networks present

features of “dense in the eastern” and “sparse in the western”,

which exhibits a more complex and multi-threaded spatial

network association. The spatial associations are no longer

restricted to spillover effects on the efficiency of green

innovation in neighboring provinces. However, they are

spatially associated with non-neighboring provinces, which

indicates that a breakthrough from the traditional geospatial

limitation has occurred. In the networks, the correlations of GIE

are significantly higher in Shanghai, Beijing, Zhejiang, Jiangsu,

and Guangdong provinces and cities than in other provinces.

This phenomenon is mainly due to the better infrastructural

conditions for innovation capital and talent in these regions, the

high number of environmental protection institutions, and the

well-developed infrastructure conducive to the exchange and

cooperation of green technologies. In terms of the number of

spatial relations, from 2010 to 2016, the number of relations

remained at about 160. In 2018, the number of relations

increased significantly to 183 (the maximum number of

relations), with Jiangsu, Zhejiang, Inner Mongolia, and Jiangxi

enjoying rising status in the network. In 2019, the number of

relations dropped significantly to 156 (the minimum number of

relations), mainly due to the sharp decline in the number of

relations in Tianjin, Hebei, Liaoning, Jilin, and Heilongjiang,

which was closely related to their GDP decline in 2019. Overall,

China’s regional GIE network presents typical spatial correlation

characteristics with prominent non-equilibrium. It formed a

network structure with Beijing, Tianjin, and Yangtze River

Delta as the core, showing an obvious eastern-intensive

geographical differentiation pattern.

5.2.2 Overall network structure characteristic
The overall structure characteristics of a network are

described with the help of four indicators: network

relationship quantity, network density, network efficiency, and

network hierarchy. UCINET6.0 software calculates the four

indicators to obtain the results, shown in Figure 4.

From Figure 4, the correlation number and network density

of regional GIE in China show an upward trend, while the

network hierarchy and efficiency show a slow downward

trend. Specifically, since 2010, the number of network

relations has grown from 158 in 2010 to 165 in 2012,

stabilized after 2012, and increased rapidly after 2017,

reaching a peak of 0.210 in 2018, suggesting the spatial

fluidity of green innovation factor resources has been growing.

The network density increased slowly from 2010 to 2018

(0.182 in 2010 V.S. 0.210 in 2018). Still, in 2019, it dropped

to 0.180 in some provinces and cities such as Tianjin, Hebei, Jilin,

Heilongjiang, and Liaoning, which is deeply related to the decline

in their economic development level. It should be pointed out

that the number of spatial relations is relatively small during the

observation period. There is still a noticeable gap with the

maximum possible network relationships (30*29), which

indicates that at the provincial level, spatial interaction and

spillover effect of GIE are still weak. There is still more room

for enhancing the inter-provincial synergistic impact of green

innovation development. The overall network hierarchy

fluctuates wildly and presents an oscillating downward trend,

decreasing 31.42% from 0.630 in 2010 to 0.432 in 2019. The

lowest value in 2018 is 0.187, reflecting the gradual disintegration

of the internal network level structure. The network efficiency

slightly declined, from 0.761 in 2010 to 0.759 in 2019, indicating

many spillover channels in the network. Meanwhile, the inter-

provincial transmission and spillover cost of GIE is reduced, and

the stability of the network structure is gradually enhanced.

5.2.3 Individual network structure
Centrality analysis is employed to characterize the structure

of individual networks. The study selected data with the

maximum and the minimum number of network relationships

in 2018 and 2019, respectively. Using the centrality tool in

UCINET 6.0, the values of the three indicators of point

centrality within and out degrees, closeness centrality degree,

and betweenness centrality degree are determined. Table 5

describes the results.

5.2.3.1 Point centrality

The average point centrality degrees in 2018 and 2019 are

32.644 and 29.195, respectively. Six provinces and cities,

including Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, and

FIGURE 2
Changing trends of GIE in four regions of China.
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Guangdong, have higher than the average value; all are located in

Beijing-Tianjin and Yangtze River Delta. These provinces occupy

dominant positions in the network. Furthermore, these provinces

and cities have point-in degrees always more significant than the

average, which are the beneficiary members of the spatial

association network. As for the point-out degrees,

11 provinces and cities, including Jiangxi, Hubei, Hunan,

Guangdong, Guangxi, Hainan, Chongqing, Sichuan, Guizhou,

Yunnan, and Gansu, have point-out degrees always more

significant than the average, which are the overflow members

of the spatial association network. Further exploring the

spillover-benefit relationship, five provinces, including Beijing,

Tianjin, Shanghai, Jiangsu, Zhejiang, and Anhui, have point-in

degrees consistently higher than the point-out degrees. The

number of beneficial relationships in these regions is greater

than the number of spillover relationships. They receive more

spillover from other regions in the correlation network, showing

noticeable beneficial effects. The reason is that these provinces

and cities are situated in well-developed economic regions in

China, with a solid economic foundation and the highest level of

green innovation development and resource allocation.

Especially with the formulation and enforcement of the

unified regional development strategy, the capital, technology,

and management methods conducive to green innovation

FIGURE 3
Spatial association network map of regional GIEs in China.
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development have been spreading to these regions, showing a

strong “siphon effect”.

5.2.3.2 Closeness centrality

The average values of the closeness centrality degree in

2018 and 2019 are 60.597 and 59.668, respectively. Five

provinces and cities, including Beijing, Tianjin, Shanghai,

Jiangsu, and Zhejiang, have closeness centrality degrees

consistently more significant than the average. The findings

show that Beijing-Tianjin and Yangtze River Delta regions can

quickly establish their linkages with other provinces and perform

a leadership role as hub actors in the network. In comparison, the

remaining provinces (except Guangdong province in 2019) have

below-average closeness centrality degrees, denoting that the

other provinces have little network connections and play a

fulcrum and conduction role.

5.2.3.3 Betweenness centrality

The average betweenness centrality degree in 2018 and

2019 are 2.438 and 2.537, respectively, indicating that the

dominant role of central network nodes tended to weaken,

and the network structure was characterized by evident

disequilibrium. The betweenness centrality degrees of five

eastern provinces, including Beijing, Tianjin, Shanghai,

Jiangsu, and Zhejiang, consistently have higher than the

average. These provinces have more control over resources

and elements in the network and have a more vital ability to

facilitate the establishment of connections among other

provinces, acting as “intermediary” and “bridge” roles in the

network. In contrast, western, central, and northeastern

provinces maintain a low betweenness centrality degree. They

have weak control over the spatial correlation of other provinces,

which are easily changed by provinces with higher betweenness

centrality degrees.

5.2.4 Block model analysis
A block model is an analytical tool that divides the role of

each network node to explain network structure features (Su &

Yu, 2019). Role division theory is based on the idea of clustering

and rearranging the initial matrix with the method of cluster

analysis to obtain a structurally coordinated matrix (White,

Boorman, & Breiger, 1976). The role division method divides

the network into four groups of blocks in terms of “net spillover”,

“bidirectional spillover”, “broker”, and “primary beneficial”. Net

spillover block usually involves fewer external relationships

established through relationships with other block members

rather than their own. In contrast, the bidirectional spillover

block receives connections from both external and internal

members. The broker block receives and transmits external

ties but fewer internal, while the primary beneficial block

involves numerous external relationships.

The data for the maximum and the minimum number of

network relationships (2018 and 2019, respectively) are also

selected. The CONCOR tool in UCINET6.0 software set the

concentration standard as 0.2 and the maximum segmentation

depth as 2. Four blocks were generated by this method. The

results are presented in Figure 5 and Table 6.

From Figure 5, in 2018, four provinces and cities, including

Beijing, Tianjin, Jiangsu, and Shanghai, belong to the Block Ⅰ;
three provinces, including Guangdong, Zhejiang, and Fujian,

belong to the Block Ⅱ; eight provinces, including Jilin, Inner

Mongolia, Hebei, Heilongjiang, Shaanxi, Liaoning, Shandong,

and Henan, belong to the Block Ⅲ; 15 provinces and cities,

including Jiangxi, Hunan, Hubei, Anhui, Guangxi, Hainan,

Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,

Xinjiang, Qinghai, Ningxia, belong to the Block Ⅳ. In 2019,

there is no change in the members of Blocks Ⅰ and Ⅱ, and the

number of members of Blocks Ⅲ and Ⅳ changes significantly.

Among them, eight provinces and cities in Gansu, Liaoning,

FIGURE 4
Overall network structure characteristic of four indicators.
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Ningxia, Xinjiang, Qinghai, Shanxi, Shaanxi, and Chongqing

changed from the Block IV to Block III, the membership of

Block IV decreased sharply to only eight provinces and cities, and

the membership of Block III increases steeply to 14 provinces. In

summary, the members of Block Ⅰ and Block Ⅱ are the eastern

economically developed provinces, while the members of Block

Ⅲ are mostly provinces in the northeast and western regions, and

the members of Block Ⅳ are primarily from the central and

western provinces.

Table 6 shows that the total number ofmaximum relations in the

spatial association network of GIE in 2018 is 183. The proportions of

inside and outside block relations are 15.846% and 84.154%,

respectively. In contrast, the total number of minimum relations

in 2019 decreased to 156, and the inside- and outside-block relations

proportion are 11.538% and 88.462%, respectively. The spatial

spillover effect of regional GIE in China is dominated by outside

block spillover. Specifically, in 2018, Block I has 21 sending and

93 receiving relations, respectively. The expected ratio of internal

relations (10.345%) exceeds the actual ratio (9.524%). Block I receives

more relations than it sends and belongs to a “primary beneficial”

block; Block Ⅱ has 17 sending and 31 receiving relations, respectively.
The expected ratio of internal relations (6.897%) exceeds the actual

TABLE 5 Network centrality analysis of spatial correlation of regional green efficiency in China.

Provinces 2018 2019

Point centrality
degree

Closeness
centrality
degree

Betweenness
centrality
degree

Point centrality
degree

Closeness
centrality
degree

Betweenness
centrality
degree

Out In Center Out In Center

Beijing 7 25 86.207 87.879 17.837 4 26 89.655 90.625 26.407

Tianjin 6 23 79.310 82.857 14.276 1 12 41.379 63.043 3.652

Hebei 2 4 13.793 51.786 0.082 2 2 10.345 51.786 0.000

Shanxi 4 3 17.241 54.717 0.573 4 1 13.793 53.704 0.071

Inner
Mongolia

4 1 13.793 51.786 0.082 2 0 6.897 51.786 0.010

Liaoning 4 2 13.793 53.704 0.059 4 0 13.793 53.704 0.071

Jilin 5 1 17.241 54.717 0.059 5 0 17.241 54.717 0.164

Heilongjiang 5 1 17.241 54.717 0.059 4 0 13.793 53.704 0.071

Shanghai 6 24 82.759 85.294 15.460 6 26 89.655 90.625 20.145

Jiangsu 2 21 72.414 78.378 10.289 3 22 75.862 80.556 12.575

Zhejiang 3 17 58.621 67.442 4.862 3 17 58.621 69.048 6.192

Anhui 4 7 27.586 58.000 0.716 4 6 24.138 56.863 0.305

Fujian 6 6 31.034 59.184 0.732 6 6 31.034 59.184 0.808

Jiangxi 8 6 27.586 58.000 0.508 7 6 24.138 56.863 0.305

Shandong 6 3 24.138 56.863 0.936 5 2 17.241 54.717 0.575

Henan 6 3 20.690 55.769 0.226 5 0 17.241 54.717 0.164

Hubei 8 5 34.483 60.417 0.541 7 3 24.138 56.863 0.168

Hunan 8 4 27.586 58.000 0.508 7 3 24.138 56.863 0.305

Guangdong 8 8 34.483 58.000 1.341 8 7 34.483 60.417 1.136

Guangxi 7 2 24.138 56.863 0.432 6 3 24.138 56.863 0.206

Hainan 7 1 24.138 56.863 0.432 7 1 24.138 56.863 0.206

Chongqing 9 4 31.034 59.184 0.357 6 4 24.138 56.863 0.287

Sichuan 7 1 24.138 56.863 0.361 6 1 20.690 55.769 0.216

Guizhou 9 2 31.034 59.184 0.666 7 2 24.138 56.863 0.366

Yunnan 9 2 31.034 59.184 0.666 7 0 24.138 56.863 0.366

Shaanxi 6 1 20.690 55.769 0.136 5 0 17.241 54.717 0.063

Gansu 9 4 31.034 59.184 0.383 8 4 31.034 59.184 0.783

Qinghai 6 1 20.690 55.769 0.136 6 1 20.690 55.769 0.164

Ningxia 6 1 20.690 55.769 0.136 6 1 20.690 55.769 0.164

Xinjiang 6 0 20.690 55.769 0.300 5 0 17.241 54.717 0.164

Average 6.1 6.1 32.644 60.597 2.438 5.2 5.2 29.195 59.668 2.537
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ratio (0.000%). The receiving and the sending relations of Block II

only come from outside the block, acting as a “bridge” and

“intermediary” in the network, and Block II belongs to a “broke”

block; BlockⅢhas 36 sending and 18 receiving relations, respectively.

The expected ratio of internal relations (24.138%) exceeds the actual

ratio (16.667%). The receiving and the sending relations of Block III

occur both inside and outside the block, so it belongs to a

“bidirectional spillover” block; Block Ⅳ has 109 sending and

41 receiving relations, respectively. The expected ratio of internal

relations (48.278%) exceeds the actual ratio (19.266%). There are

significantly more sending relations in Block IV than receiving

relations, and Block IV represents a “net overflow” block. In

contrast, in 2019, the number of internal receiving and sending

relations of Blocks I and Ⅱ remained unchanged, indicating that

Blocks I and Ⅱ tended to be stable. In contrast, in 2019, the number of

receiving and sending relations of Blocks I and Ⅱ remain unchanged,

and the correlation network tends to be stable, consistent with the

depiction in Figure 5 (no change in the members of Blocks I and Ⅱ)).
The number of sending relations in Block Ⅲ increases significantly,

but the number of receiving relations decreases slightly, weakening

the “bidirectional spillover” effect. The number of receiving and

sending relations inside Block Ⅳ decreases significantly, indicating

that the “net spillover” effect is significantly reduced, and the

interaction among the members in Block Ⅳ is diminished.

In order to deeply study the spillover relationship among the

four blocks, this paper calculates the density matrix of each block

and converts it into an image matrix2 (see Table 7), and draws the

simplified spillover effect flow chart of the four blocks (see

Figure 6). The arrow lines and arcs depict the spillover

FIGURE 5
The relations between the four blocks of China’s regional GIE.

TABLE 6 The spillover effect of four blocks of spatial association network of GIE in China.

Block Number of receiving
relations

Number of sending
relations

Expected internal
relations ratio
(%)

Actual internal
relations ratio
(%)

Block role

Inside the
block

Outside the
block

Inside the
block

Outside the
block

Block Ⅰ 2/4 91/82 2/4 19/10 10.345/10.345 9.524/28.571 Primary beneficial

Block Ⅱ 0/0 31/30 0/0 17/17 6.897/6.897 0.000/0.000 Broker

Block Ⅲ 6/8 12/7 6/8 30/59 24.138/44.828 16.667/11.940 Bidirectional spillover

Block Ⅳ 21/6 20/19 21/6 88/52 48.278/27.586 19.266/10.345 Net spillover

Notes: The numerator and denominator represent the data for 2018 and 2019, respectively.

2 The image matrix can be obtained by the following method: When the
density value is higher than the average, the image density is 1; When
the density value is lower than the average, the image density is 0.
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relations within and between the blocks. In 2018, Block I received

the spillover from Blocks II, III, and IV I, indicating that more

innovative resources and energy consumption in economically

developed provinces come from resource-rich provinces. Block II

receives the spillover from Block IV and spillovers to Block IV

and Block I. The bidirectional flow trend of green innovation

resources between the central, western, and part of the eastern

regions strengthens the spillover relations between Block II and

Block IV. Block II performs the role of an “intermediary” in the

network. Block III receives the spillover of block I, indicating that

green innovation resources in eastern provinces can be shared

and enhance the frequency of interaction between the two blocks.

By comparison, in 2019, Block I increased its internal spillover

effect. Still, there is no spillover effect with Block III, which

somewhat reduces the spillover relationship between Block I and

Block III. The spillover effects of other blocks remain consistent

in 2018, and the spillover effects between the blocks generally

tend to be stable.

5.3 Factors affecting the spatial
correlations network

5.3.1 QAP correlation analysis
In this section, the QAP model is performed to conduct the

correlation analysis to explore the spatial correlation matrix of

regional GIE in China and its potential influencing factors from

2010 to 2019. Table 8 shows the correlation analysis results of driving

factors and regional GIE from 2010 to 2019. According to the

correlation analysis results, it can be seen that all variables have

passed the significance level test. The correlation coefficient of Dif_Er

has a significant negative correlation with the spatial correlation of

regional GIE, which reflects that the similarity of environmental

regulation can promote the spatial correlation of regional GIE. The

correlation coefficient of Adj, Dif_Infr, Dif_Indu, Dif_Open,

Dif_Urban, Dif_Pgdp, and Dif_Sti have significant positive

correlations, suggesting that the greater differences in such

variables can strengthen the spatial association network. The

QAP correlation analysis results show significant correlations

among multiple factors, which can solve the multicollinearity

problem among independent variables to a certain extent. In this

study, the inter-provincial differences of eight variables of Adj,

Dif_Infr, Dif_Er Dif_Indu, Dif_Open, Dif_Urban, Dif_Pgdp, and

Dif_Sti were selected for QAP regression analysis with the spatial

intensity of regional GIE.

5.3.2 QAP regression analysis
The QAP regression analysis was performed for the data from

2010 to 2019, year by year, with the following principles:

5,000 random permutations were chosen, and

UCINET6.0 software was used to obtain the spatial correlation

coefficients between the spatial correlation matrix of regional GIE

and driving factors. The results are reported in Table 9. The results

show that the Adj, Dif_Infr, Dif_Urban, and Dif_Pgdp all pass the

significance test (at least 10% statistical level), indicating that these

four variables are the significant factors affecting the spatial

association network strength of regional GIE in China. In Table 9,

Adj-R2 is in the range of 0.312–0.347, all of which have passed the

significance test at the 1% level. The good fitting effect indicates that

the selected driving factor variables can effectively explain the changes

in the spatial connection of GIE in China.

The geographical spatial adjacency (Adj) factor has a positive

regression coefficient at 1% significance test. Geographical

proximity can reduce the costs of transmission and spillover

of green innovation resources between provinces (Liu et al.,

2021), which enhances the frequency of innovation exchange

activities and facilitates the resource flow, as well as the

phenomenon of “club convergence”. This finding is consistent

with the block analysis in Figure 5, where Fujian, Guangdong,

and Zhejiang are clustered into block Ⅱ. Therefore, the closer the
region is, the stronger the correlation of regional GIE and the

more affected it is by the surrounding regions. The standardized

regression coefficients of Dif_Pgdp range from 0.339 to 0.535,

which are significant at the 1% level; the standardized regression

coefficients of Dif_Infr range from 0.047 to 0.092, and those of

Dif_Urban range from 0.095 to 0.192 (except in 2010), all of

which are significant at more than 10% level. It suggests that

when the other factors stay unchanged, Dif_Pgdp, Dif_Infr, and

Dif_Urban significantly affect the strength of this spatial

association network. Specifically, Beijing, Tianjin, Jiangsu, and

TABLE 7 The density matrix and image matrix of spatial association network of GIE in China.

Block Density matrix Image matrix

Block Ⅰ Block Ⅱ Block Ⅲ Block Ⅳ Block Ⅰ Block Ⅱ Block Ⅲ Block Ⅳ

Block Ⅰ 0.167/0.333 0.083/0.083 0.100/0.071 0.375/0.139 0/1 0/0 1/0 0/0

Block Ⅱ 0.333/0.417 0.000/0.000 0.289/0.000 0.000/0.444 1/1 0/0 0/0 1/1

Block Ⅲ 0.875/0.893 0.042/0.167 0.107/0.044 0.008/0.016 1/1 0/0 0/0 0/0

Block Ⅳ 0.983/0.750 0.644/0.815 0.000/0.024 0.100/0.083 1/1 1/1 0/0 0/0

Notes: The numerator and denominator represent the data for 2018 and 2019, respectively.
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Shanghai are the regions with high levels of economic

development. They have the advanced infrastructure, high

urbanization, and convenient information flow, which can

frequently exchange and cooperate with their more different

regions in green innovation activities and strengthen the spatially

associated network of regional GIEs. Consequently, these regions

not only act as “intermediary” and “bridge” roles in the network

(see Table 5) but also benefit from spatial spillover effects (see

FIGURE 6
Simplified spillover effect flow diagram of four blocks.

TABLE 8 QAP correlation analysis results of driving factors and regional GIE (2010–2019).

Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Adj 0.087*** 0.092*** 0.151*** 0.136*** 0.126*** 0.111*** 0.104*** 0.128*** 0.155*** 0.149***

Dif_Infr 0.125*** 0.117*** 0.133*** 0.117*** 0.116*** 0.131*** 0.124*** 0.123*** 0.074*** 0.102***

Dif_Er -0.063** -0.046* -0.085* -0.101** -0.101** -0.094** -0.143*** -0.115** -0.140*** -0.119***

Dif_Indu 0.161** 0.15** 0.152** 0.167 0.133* 0.148** 0.146*** 0.151** 0.143** 0.214**

Dif_Open 0.360*** 0.386*** 0.334*** 0.367 0.366*** 0.362*** 0.410*** 0.328*** 0.301*** 0.262***

Dif_Urban 0.511*** 0.508*** 0.475*** 0.493*** 0.488*** 0.511*** 0.510*** 0.486*** 0.473*** 0.428***

Dif_Pgdp 0.541*** 0.527*** 0.503*** 0.513*** 0.505*** 0.546*** 0.529*** 0.542*** 0.529*** 0.496***

Dif_Sti 0.372*** 0.387*** 0.378*** 0.393*** 0.357*** 0.350*** 0.381*** 0.359*** 0.350*** 0.358***

Note: *, **, *** represent significance at 10% level, 5% level, and 1% level.

TABLE 9 Results of QAP regression analysis (2010–2019).

Variable 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Adj 0.187*** 0.184*** 0.240*** 0.236*** 0.212*** 0.191*** 0.209*** 0.225*** 0.244*** 0.233***

Dif_Infr 0.081** 0.073** 0.092*** 0.076** 0.077** 0.075*** 0.063** 0.066*** 0.047* 0.084***

Dif_Er -0.039 -0.098*** -0.061** -0.041 -0.041* -0.068** -0.005 -0.023 -0.049** -0.038

Dif_Indu 0.016 0.015 0.034 0.034 0.014 0.027 0.048 0.082*** 0.061 0.086***

Dif_Open 0.047 0.072** 0.048 0.081** 0.059* 0.036 0.017 -0.019 -0.039 -0.032

Dif_Urban 0.092 0.139** 0.095* 0.102* 0.158** 0.177** 0.192*** 0.106** 0.134** 0.224***

Dif_Pgdp 0.424*** 0.344*** 0.384*** 0.364*** 0.339*** 0.355*** 0.432*** 0.535*** 0.517*** 0.424***

Dif_Sti 0.037 0.064* 0.044 0.046 0.015 -0.004 -0.081** -0.096*** -0.093** -0.128**

R2 0.339 0.337 0.329 0.336 0.317 0.334 0.350 0.353 0.349 0.319

Adj-R2 0.334 0.332 0.324 0.331 0.312 0.329 0.345 0.347 0.344 0.313

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: Coefficients are standardized regression coefficients.
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Figure 5). After 2016, the standardized regression coefficients of

the Dif_Sti are significantly negative, suggesting that a similar STI

can facilitate strengthening the spatial association network.

Analogous to the study of Liu et al. (2021), China’s regions

with high green technology levels are mainly located in the

eastern region (see Table 4). The smaller the differences in

STI levels in these regions, the more convenient the flow of

innovation factors such as human resources, capital, knowledge,

and technology contributes to strengthening the spatial

association network of regional GIE. Conversely, the greater

the differences in STI levels, such as the gap between eastern

and western regions shown in Figure 2, the existence of

technological barriers will also hinder the development and

expansion of the spatial association network.

Three factors of the Dif_Indu, Dif_Open, and Dif_Er have

passed the significance test only for individual years. Three

driving factors on the spatial association network of Chinese

regional GIE are relatively weak and have stage characteristics.

One possible explanation is that China’s complementary and

misaligned regional industrial division system weakens the

impact of industrial structure differences. In recent years, the

dependence of China’s economic development on foreign trade

has gradually decreased, weakening the impact of the difference

in openness to the outside world. In addition, similar

environmental regulations mean that these regions have

roughly the same degree of environmental pollution and have

similar demands for resource elements needed for green

innovation development, promoting the formation of spatial

correlation relationships of regional GIE. Furthermore,

environmental regulation policies mainly affect industrial

enterprises, and their influence on regions is small, which

weakens the influence of environmental regulation differences

on the spatial association network strength of regional GIE.

According to the above findings, the differences arising from

geographical adjacency factors are inevitable. The local

governments should organize regular communication activities

to share their advanced innovative approach and philosophy to

accomplish some degree of consensus and cooperation. The

relevant government departments in each region should

organize regular exchange activities to share their advanced

innovative methods and ideas in order to reach a certain

degree of consensus on cooperation. In this way, the problems

caused by geographical differences can be overcome to the

greatest extent. By comparison, in the current period,

differences in infrastructure, differences in economic

development, differences in R&D intensity, and differences in

urbanization rates are inherent attributes of each region.

Therefore, regional governments should increase infrastructure

construction, balance local economic development, improve the

intensity of science and technology innovation, adjust the

population structure, and strengthen the excellent office role

of the related departments to facilitate inter-regional exchanges

and cooperation.

6 Conclusion and policy implications

This study aims to examine the spatial spillover effects of

regional GIEs in China from a network perspective. In response

to the current situation of their spatial association networks, themain

works of this article are to analyze the characteristics of their overall

and individual network structures, explore their block clustering and

identify their driving factors. Based on the detailed empirical

evidence in this paper, the following conclusions can be drawn:

1) China’s regional GIE is low (the average value is 0.574) from

2010 to 2019, with much space for promotion. In terms of

spatial distribution, there is a significant non-equilibrium,

gradually showing a zonal divergence over time as the eastern

region > central region > northeastern region > western

region (see Figure 2). At the cross-provincial level, the

efficiency values of Beijing, Shanghai, and Zhejiang in the

eastern region consistently equal 1 per year. In contrast, in the

western region, those of Inner Mongolia, Shanxi, Qinghai,

Anhui, Guizhou, Gansu, Ningxia, and Xinjiang are lower.

2) In terms of the network structure characteristics, during the

research period, the network of GIE at the regional level in

China exceeded the conventional geographic spatial constraints.

It displayed a relatively complicated and cross-threaded network

association (see Figure 3). However, the network association

number is still far from the maximum possible network

relationship number, and the network association structure is

relatively loose. Meanwhile, the spatial association network has a

specific hierarchical gradient, showing the characteristics of

“dense in the eastern” and “sparse in the western”. Hence,

increasing the network density and reducing the network

hierarchy are the critical elements to reaching the green and

sustainable development goals in China’s region. These findings

support Ethier (1998)’s proposal for a new concept of new

regionalism, whose principles advocate regional integration

and coordinated development. Therefore, the joint regional

innovation development strategy offers a new way of

promoting green development via innovation at this stage.

3) The block model analysis shows that the spatial spillover effect of

regional GIE in China is dominated by the spillover outside the

block (see Table 6 and Figure 6). Specifically, provinces and cities

with high GIE (such as Beijing, Tianjin, Jiangsu, and Shanghai)

have no significant impact on the connectivity of other provinces

and cities. Nevertheless, these provinces and cities gain more

significant green innovation linkage benefits from the others with

less outflow of their green innovation factors. By comparison,

other eastern economically developed provinces (e.g., Zhejiang,

Guangdong, and Fujian) have close spatial connections with

other regions in the network and act as “intermediaries” for

factor communication. Furthermore, Due to the over-

exploitation of natural resources (Yang et al., 2019), the

efficiency of green innovation in the northeast region of

China (e.g., Liaoning, Jilin, and Heilongjiang) has been
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stagnant, and the bidirectional spillover effect tends to weaken.

The central and western regions with lower GIE play a net

spillover role in the network. Therefore, more efforts should be

made to focus on green innovation and cleaner production

investment in these provinces.

4) Five driving factors of The Adj, Dif_Infr, Dif_Urban,

Dif_Pgdp, and Dif_Sti are the fundamental factors

influencing the formation of spatial association networks

in each province. Among them, Dif_Infr, Dif_Urban, and

Dif_Pgdp have positive and significant effects, which are

conducive to the formation of a tight spatial association

network, while Dif_Sti has a negative effect, which is not

conducive to strengthening the spatial association network

strength. Three driving factors, Dif_Indu, Dif_Open and

Dif_Er, have less influence on the spatial association network.

Based on the results of the study, the following implications

are made for the future development of regional GIE in China:

1) From the national level perspective, the spatial correlation should

be regarded as a new regional innovation and development

engine. The government should implement several measures.

For example, it is developing and constructing spatial spillover

ties. It is necessary to improve the spatial overflow mechanism

and system of GIE. The inter-provincial spatial connection of

China’s GIE needs to be strengthened.

2) From the regional perspective, local governments should

optimize the green industry structure and pay attention to

win-win cooperation with other provinces. Specifically, the

eastern region should maximize its radiating and driving

effect on other regions. The northeast and western regions,

increase its connection with less developed regions and

balance the receiving and spillover relationship with

provinces and cities to improve the regional GIE

significantly. Meanwhile, the central and western regions

should reduce their own spillover effects as much as

possible and enhance their transmission mechanisms. For

example, they can enhance the investment in green

innovation technology, deepen the reform of the pollution

governance system, and promote regional balance and

coordination, so as to improve the efficiency of green

innovation in China’s regions

3) Emphasis should be placed on reinforcing the linkages of green

innovation resource elements in the four inter-regions,

particularly between the northeast and western regions, and

break the segmentation between regions to promote the

regional joint and collaborative improvement of GIE.

Meanwhile, it further strengthens the inter-provincial green

innovation connection in the eastern region, particularly the

inter-provincial linkage in the north-south direction, and

increases the correlation density in the eastern region.

4) It is necessary to emphasize the role of spatial adjacency

within the green innovation network. Attention is paid to the

coordination and enhancement of GIE between the provinces

with relatively short geographical distances, minor differences

in economic development, and significant technological

innovation differences to promote the overall improvement

of GIE in China. Furthermore, the administrative authorities

should optimize the investment environment, actively

transfer green industries from the eastern region based on

resource carrying and environmental capacity, and form a

green industrial division of labor layout with staggered and

coordinated development.

There are still some deficiencies in this study. First, the

spatial clustering mode of regional GIE and the block

transmission mechanism are still unclear. Subsequently, the

agglomeration type of small groups can be identified by the

cohesive subgroup analysis method of the SNA to reveal the

block interaction pattern of the spatial association network.

Second, this paper only analyzes the spatial association

network of GIE at the regional scale in China. In the

future, we can refine the research scale to explore the

dynamic association relationship and spillover effect of GIE

at different spatial scales. Third, forming a spatial association

network of regional GIE results from the joint action of many

factors. Other factors, such as differences in digitalization

level and financing environment between regions, have not yet

been considered. Further studies are needed to explore other

possible driving factors to grasp more comprehensively the

driving mechanism of the spatial correlation of regional GIE.

In addition, when measuring the regional GIE, the cross-

efficiency method can be considered, and the self-

evaluation and peer-evaluation mechanisms of the cross-

efficiency method can be considered to obtain the efficiency

evaluation matrix. All the above-proposed aspects are

important directions that deserve to be deepened.
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