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As a typical form of land degradation, karst rocky desertification seriously restricts

the development of the regional social economy and seriously threatens the

living environment of residents. Fractional vegetation cover (fVC) and bare rock

fraction (fBR) are important indicators to identify and evaluate rocky

desertification. However, it is a great challenge to obtain fVC and fBR due to

the complex terrain and fragmentation of karst rocky desertification areas. In this

study, comparisons between Sentinel-2A Multispectral Instrument (Sentinel-2),

Landsat-8Operational Land Imager (Landsat-8), andGF-6Wide Field View (GF-6)

sensors for retrieving fVC and fBR are presented. Themultiple endmember spectral

mixture analysis (MESMA) and measured spectral dates were used to overcome

the limitations of Spectral mixture analysis (SMA). Subsequently, fVC and fBR were

validated using root mean square error (RMSE), mean absolute error (MAE), and

coefficient of determination (R2). The results showed that: 1) Sentinel-2

performed best in estimating fVC and obtained the highest accuracy (R2 =

0.6259, root mean square error = 0.1568, mean absolute error = 0.1215),

followed by GF-6 and Landsat 8; in the extraction of the fBR, the performance

was relatively the same, and the implementation of Sentinel-2 was also the best

(R2 = 0.4911, root mean square error = 0.0714, mean absolute error = 0.0539),

followed by GF-6 and Landsat 8. 2) Sentinel-2 images have higher resolution, the

narrowest band range, and the most significant number of bands, which can

better extract information about fVC and fBR in rocky desertification areas. 3) For

the three optical sensors, the spatial resolution of the images ismore important to

extract the information of fVC and fBR in the rocky desertification areas. 4) In

general, the extraction accuracy of fBR is not as good as that of fVC. The

complicated ecological and geological environment of decertified areas has

more influence on the effect of extraction of the fBR. 5) The Sentinel-2

achieves high accuracy for both fVC and fBR under different-level application

scenarios. It thus has great potential for application in rocky desertification

information extraction.
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1 Introduction

Rocky desertification is one of China’s three major land

degradation issues (Yue et al., 2011a). It is also the primary

ecological problem in karst areas, restricting regional social and

economic development and seriously threatening the living

conditions of residents (Wang and Li, 2007). The poverty-stricken

population is concentrated in China’s karst rocky desertification areas,

and the contradiction betweenman and land is very prominent. Long-

term unreasonable land use in resource development and economic

development has resulted in intense soil erosion, vegetation

degradation, and large areas of exposed bedrock (Wang et al.,

2004). Studies have shown that fVC and fBR are highly correlated

with rocky desertification (Li andWu, 2015). FVC and fBR are not only

important indicators of karst rocky desertification but also essential

elements for investigating, researching, and assessing karst rocky

desertification. (Yue et al., 2013).

The remote sensing technology has substantial capability to

estimate fVC and fBR accurately. Rocky desertification areas,

however, often experience a high degree of landscape

heterogeneity, surface fragmentation, staggered ground object

distribution, and highly severe mixed-pixel effects in remote

sensing images, making this work challenging (Yue et al., 2011a).

Xiong et al. (2013) used the vegetation index (NDVI), the complete

spectral index of rocky desertification (KRDSI) and the lignin-

cellulose absorption index (LCA). The results show that

Hyperion hyperspectral images can retrieve vegetation

information more efficiently. However, the accuracy of fBR
information extraction is low since the different spectral

characteristics and erosion degrees of different carbonate rocks.

Xia et al. (2006) proposed the concept of a “vegetation line” based on

the vector space analysis of the multidimensional spectrum. This

study normalized the distances of the rocky desertification image

elements to “vegetation lines” in the multidimensional vector space

with different degrees of desertification and achieved objective and

stable results on the degree of rocky desertification. Based on the

spectral absorption characteristics, the Karst Rocky Desertification

Synthesis Index (KRDSI) was developed by Yue et al. (2011b), which

can directly extract the remote sensing evaluation factors of rocky

desertification. However, the accuracy of extracting fBR is low. Pei

et al. (2018) first proposed a new karst bare-rock index (KBRI),

which can effectively distinguish exposed bedrock from other typical

strata. Nevertheless, the rocky desertification evaluation index

includes a variety of characteristics. It is challenging to analyze

rocky desertification effectively through vegetation or rock

information alone. In studying karst rocky desertification

information extraction, we must consider fVC and fBR. However,

the same object with different spectrums and different objects with

the same spectrum make this work challenging.

From a mechanistic point of view, the essence of rocky

desertification information extraction is mixed pixel

decomposition (Xia et al., 2006). The SMA method assumes

that the endmembers are spatially and temporally invariant, so

it cannot explain natural materials’ typical temporal and spatial-

spectral variability. (Roberts et al., 1992; Somers et al., 2011). The

MESAM method takes complete account of the variability of

endmembers, allows the number and type of endmembers to

vary on a per-pixel basis, and selects different combinations of

endmembers to extend SMA (Roberts et al., 1998). The MESAM

method overcomes the SMA limit for all pixels modelled by the

same endmember. Quintano et al. (2017) accurately mapped burn

severity in Mediterranean countries using the MESMA method.

Based on the MESMA method, Mudereri et al. (2021) used

Sentinel-2 data to estimate and map weed abundance in

African ecosystems in a wide-area landscape with high accuracy.

With the development of space remote sensing technology,

the spatial, spectral and temporal resolution of remote sensing

satellites has been increased, and multi-source remote sensing

data has been continuously enriched, providing a reliable data

source for monitoring and evaluating karst rocky

desertification. Therefore, we selected three major in-orbit

multispectral satellites with varying spatial and spectral

resolutions, Sentinel-2, GF-6, and Landsat 8. We thoroughly

compared each performance with fVC and fBR estimation using

MESMA. This study aims to bring new insights for comparing

fVC and fBR retrieval of Sentinel-2, GF-6, and Landsat 8 in karst

rocky desertification areas. Furthermore, the study provides

technical support and scientific data reference for monitoring,

evaluating and managing rocky desertification in southwest

China.

2 Materials and methods

2.1 Study area

The study area is in Puding County, Anshun City, Guizhou

Province, located in the west-central part of Guizhou Province

(Figure 1), between longitude 105°27′49″-105°58′51″ east and

latitude 16°26′36″-26°31′42″ north (Liu et al., 2011). It is located

in the hinterland of central Guizhou. The altitude is between

1,042 and 1,846 m. The terrain is high in the south and north and

low in the middle, tilting from the south and north to the Sancha

River Valley. The topography of Puding County is mainly hilly

and mountainous, showing a staggered distribution of platform,

mountain, and basin Bazi. Karst landforms dominate the county,

and developing karst landforms is typical. The karst area

accounts for 84.27% of the county’s total area, with complete
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evolution types, noticeable regional differences, and serious rocky

desertification. Puding County is under a pleasant climate, a

subtropical plateau monsoon, a humid climate, and a mild

climate throughout the year. The average temperature is 15.1°C;

the average annual precipitation is 1,378.2°mm; the annual average

sunshine time is 1,164.9 h; and the frost-free period is 301°days

(Chen et al., 2005). The soil is mainly limestone soil developed from

limestone. Due to developing karst, river water leakage in a

limestone area is severe. Because of the wide distribution and

development of karst landforms in the study area (Qin et al.,

2014), the fragile ecosystem, and the typical rocky desertification

area in the Yunnan-Guizhou Plateau, it was chosen as the

experimental area of this study (Figure 2).

2.2 Satellite data and preprocess

2.2.1 Sentinel-2
The Sentinel-2 optical data contains three red edge bands

sensitive to vegetation identification. Images of Sentinel-2, a Level-

1C product used in the study, have been downloaded from the

Sentinels Science Data Center (https://scihub.copernicus.eu/). The

Sen2Cor tool was used for atmospheric correction and topographic

correction. Our study used only 10 m and 20 m bands (https://

gisgeography.com/sentinel-2-bands-combinations/).

2.2.2 GF-6
The GF-6 satellite is China’s first multispectral remote

sensing satellite with a red-edge band equipped with a high-

resolution camera and a wide-range camera. The GF-6 data

(http://sasclouds.com/chinese/satellite/chinese/gf6) and its

calibration coefficients can be provided and queried from the

website of the China Center for Resources Satellite Data and

Application (http://www.cresda.com/). The GF-6 data needed

radiometric correction, atmospheric correction, and orthophoto

correction, and the GF-6 data were topographically normalized

using the C-correct methods (Teillet et al., 1982) with the help of

the GDEM V2 DEM provided by the United States Geological

Survey (USGS) (https://earthexplorer.usgs.gov/).

2.2.3 Landsat 8
Landsat 8 data (https://www.usgs.gov/landsat-missions/

landsat-8) was provided by the USGS. Landsat 8 data are

LandsatCollection2 products and require only conversion of

scale factors.

The GF-6 and Landsat 8 data were co-registered with the

Sentinel-2 data with a registration error of fewer than 0.5 pixels.

Finally, the vector files of the study area were used to mask the

three remote sensing image data.

2.3 Field survey data

2.3.1 Validation data
According to the vegetation phenological characteristics of

the study area, the research team carried out a field investigation

and obtained more detailed fVC, fBR, and measured data such as

the spectrum of typical ground objects in Puding County,

Anshun City, Guizhou Province from February 28 to

15 March 2022. Based on road accessibility and rocky

desertification typicality, we photographed 61 typical areas

with drones. The survey route and unmanned aerial vehicle

(UAV) flight area distribution are shown in Figure 3.

After the drone data was processed by DJJ Terra software, the

validation information of fVC and fBR was obtained through

random forest classification. Taking the center point of the

remote sensing image pixel as the benchmark, the UAV

classification result within 1.5 times the image resolution is

used as the verification data for the corresponding pixel to

reduce the error of data registration (Sentinel-2 corresponds to

FIGURE 1
Schematic diagram of the study area.
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coverage within 30m, GF-6 corresponds to coverage within 24m,

and Landsat 8 corresponds to coverage within 45 m). Finally, we

obtained 285 samples as validation data for estimating fVC and fBR.

2.3.2 Measured spectral data
All spectrums were made under cloud-free conditions. Given

the abundance of highly variable green vegetation (GV), bare

rock (BR), bare soil (BS) and nonphotosynthetic vegetation

(NPV) in Puding County, their spectral properties were

thoroughly investigated to acquire the most generalizable

endmember dataset. Spectra were collected with an SVC HR-

1024i full-range (350–2500 nm) spectroradiometer. All

measurements were collected within 2 hours of local solar

noon on clear sky days. The sensor was held 1 m above the

top of the target object surface in a vertically downward position.

The spectroradiometer was calibrated to a white reference target

ahead of each measurement. The field-measured spectral library

is shown in Figure 4.

Based on the spectral response function of the satellite sensor,

the field spectra were resampled to the satellite image bands (Eq.

1), where Ri is the simulated reflectance, fi (λ) is the spectral

response function at λ wavelength band ith, r(λ) is the field

observed reflectance at λ wavelength, and λmin and λmax

represents the bandwidth of the band ith.

Ri �
∫λmax

λmin
fi(λ)r(λ)dλ

∫λmax

λmin
fi(λ)dλ

(1)

The spectral data collected in the field needs to be resampled

from three data sources so that the center wavelength and the

number of bands corresponding to the endmember database data

are consistent with the center wavelength and the number of

bands of the image to be unmixed.

2.4 Methods

Three commonly used multi-spectral sensors were

compared to retrieve the fVC and fBR in karst rocky

FIGURE 2
Photos of Karst Rocky Desertification Landscape in Puding County. (A) Farmland rocky desertification landscape. (B) Rocky desertification
landscape under the forest (C) Rocky desertification landscape on the hillside (D) Rocky desertification landscape on top of a mountain.
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desertification regions by employing the MESMA model,

with an emphasis on the implications of additional

spectral bands, various spatial resolutions, and

appropriate endmember identification. Field spectra data

for GV, BR, BS and NPV were collected to provide

endmember spectra. The UAV classification images were

FIGURE 3
Survey route and UAV flight area distribution map.

FIGURE 4
Field measured spectral library. (A) GV; (B) BR; (C) NPV; (D) BS.
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used to collect field-measured data for fVC and fBR, which

were then used as a validation dataset for assessing the

performance of different models. The flowchart of this

study is shown in Figure 5.

2.4.1 Selection of optimal endmembers
IES (Iterative Endmember Selection) (Schaaf et al., 2011;

Roth et al., 2012) was used to identify the subset of spectral

libraries that provided the best class separation based on the

RMSE-based kappa coefficient by removing redundant spectra,

reducing the size of a given spectral library. The method

iteratively adds and removes endmembers from the subset

until the kappa coefficient no longer improves.

EAR (Endmember Average RMSE) allows each spectrum

in a class to model all other spectra using a linear SMA and

then selects the spectrum with the smallest root mean square

error as the endmember. EARs are more sensitive to spectral

differences (Dennison and Roberts, 2003). The formula for

calculating EAR is:

EARai,a �
∑n

j�1RMSEai,aj

n − 1
(2)

where a represents a type of endmember, n represents the

number of endmembers in this type of endmember set, ai is a

spectral curve in this type of endmember, and the spectrum is

represented by the smallest EAR that can best represent this type

of endmember.

MASA (Minimum Average Spectral Angle) (Dennison et al.,

2004) is similar to the EAR in that it aims to select the spectrum

with the best average fit in the class. The best MASA candidates

yield the lowest average spectral angle. MASA is more sensitive to

spectral differences in dark objects. The spectral angular distance

formula is

θi,j � cos−1( 〈ai, aj〉����ai���� · ����aj����) (3)

where ai, aj represent two spectral vectors, θi,j represents the

spectral angular distance between ai and aj. According to the

spectral angular distance formula in Eq. 1, the MASA formula is

MASAi �
∑n

j�1θi,j
n − 1

(4)

MASAi is the average value of the spectral angle of the

spectrum i in a certain category to simulate other spectra of

its category. The spectrum with the smallest MASA was selected

as the candidate endmember spectrum for this class.

CoB (Count-based endmember selection) was first proposed

by Roberts et al. (2003). The number of spectra that have been

modelled overall for the class is stored in the metric in_CoB. And

FIGURE 5
Workflow diagram of methodology and analysis process.
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the highest in_CoB value is chosen as the best model. The total

number of spectra modelled outside the class is reserved in the

metric out_CoB., and high values indicate severe confusion

between classes (Clark, 2005). CoBI is the ratio of in_CoB to

out_CoB, with the denominator multiplied by the number of

spectra within the class. Therefore, high CoBI and high in_CoB

represent a wise choice. A high CoBI and moderately low in_CoB

might also be a good candidate since it captures the uniqueness of

class member, even if it is underrepresented in the library. Low

values of CoBI are acceptable only when paired with high

in_CoB.

AMUSES (Automated Multiple Signal Classification and

Spectral Separability Based Endmember Selection Technique)

adopted a spectral separability measure to control better the

entire process (Degerickx et al., 2017). The method first

applies brightness normalization to the original spectral

library and images to reduce the effect of brightness during

endmember selection (Wu, 2004). The distance from each

library spectrum to the image is computed using MUSIC

(Iordache et al., 2013).

Finally, visual inspection of spectral shape and overlap

between classes across the entire spectrum allowed for the

evaluation of class separability. We calculated the union of the

endmembers selected by the IES, EAR, CoB, MASA, and AMUSE

methods, to enhance the diversity and representativeness of the

endmember library.

In this study, four endmember libraries were used: GV, BR,

NPV and BS, in combination to obtain relatively accurate estimates

of fVC and fBR. As shown in Table 1, herbs, shrubs, trees, and

farmland crops are all represented in the vegetation endmember

library. The BR endmember library is derived from field-measured

BR from multiple sites. The NPV endmember library includes

members of the following types: nonphotosynthetic herbaceous

plants, Pteridium Aquilinum from field measurements, and

nonphotosynthetic corn stover from agricultural fields. The BS

endmember spectral is derived from field-measured BS from

multiple sites.

2.4.2 Unmixing
The MESMA is an extension of linear spectral unmixing that

requires a more extensive spectral library than SMA to better

handle the effects of endmembers variability in the abundance

estimation step (Roberts et al., 1998). MESMA overcomes the

limitations of SMA by requiring models to satisfy minimum fit,

score, and residual constraints while simultaneously testing

multiple models for each image pixel. The MESMA procedure

can be summarized as follows: 1) The traditional SMA was used to

estimate the fVC and fBR for each of the three remote sensing data

based on the endmember library obtained by the above methods;

2) for each pixel in the remote sensing image, try all types of

endmember combinations; 3) the model with the best fit, i.e., the

model with the lowest RMSE in reconstructing the original pixels

(Roberts et al., 1998).

Similar to Roberts and Quattrochi (2012) and Powell and

Roberts, 2008, we used the following selection criteria: minimum

and maximum permissible scores −0.05 and 1.05, respectively;

maximum permissible shade score of 0.8; and maximum

allowable RMSE score of 0.025. When multiple models meet

the criteria, the model with the lowest RMSE is chosen.

Therefore, we used MESMA (Crabbé et al., 2020) to

decompose Sentinel-2, GF-6, and Landsat8 images into four

endmembers: GV, BR and NPV-BS and shade.

2.4.3 Accuracy evaluation
To quantitatively evaluate the accuracy of model

decomposition, several metrics are introduced in this paper,

including root mean square error (RMSE), mean absolute

error (MAE), and coefficient of determination (R2). These

evaluation metrics are widely used in model evaluation

research, and their mathematical expressions are as follows:

TABLE 1 Optimal endmembers libraries.

Spectral library Endmember Number of endmembers

Sentinel-2 GF-6 Landsat 8

GV Irrigated crops 2 3 2

Green shrub 1 2 3

Green herb 1 2 2

Green trees 9 5 5

BR Bare Rock 10 12 14

NP herb 2 2 2

NPV NP Pteridium aquilinum 3 4 3

NP corn stalk 3 1 2

BS Bare soil 4 3 3

Note: NP: nonphotosynthetic.
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RMSE � ⎛⎝∑n
j�1(yi − ŷi)2

n
⎞⎠

1
2

(5)

MAE � 1
n
∑n

i�1
∣∣∣∣yi − ŷi

∣∣∣∣ (6)

R2 � (∑n
j�1(ŷi − ŷ)(yi − �y))2

∑n
j�1(ŷi − ŷ)2 × ∑n

j�1(yi − �y)2 (7)

where n is the total number of samples; yi and ŷi represent

observations and estimates, respectively; �y and ŷ represent mean

observations and mean estimates, respectively. When the RMSE and

MAE are low and R2 is high, the model decomposition effect is better.

3 Results

3.1 Endmember library characteristics

Spectral libraries were established using field-measured

spectra. Specifically, we measured the following spectra in the

field: GV, BR, BS and NPV. All spectra were resampled into the

bands of Sentinel-2, GF-6 and Landsat 8, respectively, before use.

We found it difficult to distinguish between BS and NPV spectral

after resampling into the Sentinel-2, GF-6 and Landsat 8 bands.

Therefore, following Li et al. (2016) and Okin et al. (2013), we

combined NPV and BS endmember into a spectral library to

reduce the errors in the spectral fitting. In this study, NPV and BS

were combined into NPV-BS.

As shown in Figure 6, in the visible and near-infrared

spectrum, a “peak and valley” in the green and near-infrared

bands and a “valley” in the red band can be observed for Sentinel-

2 and Landsat 8, which have typical spectral features of healthy

vegetation. Compared to Sentinel-2, GF-6 and Landsat 8, has

lower peaks and troughs in green and red bands due to its

broadband range, which limits its ability to capture the spectral

characteristics of terrestrial objects to some degree. Sentinel-2

exhibits a distinct and delicate variation characteristic in the

visible near-red band. This capability improves Sentinel-2’s

ability to detect vegetation and offers excellent potential for

vegetation-type refinement. In the vegetation spectral profiles

of Sentinel-2, GF-6 and Landsat 8, although exhibiting some

degree of difference in vegetation spectral characteristics, the red-

edge image phenomenon is apparent and differs significantly

from the spectral profiles of BR and NPV-BS. Therefore, the GV

can be distinguished from the BR and NPV-BS. In the

wavelength range of the three sensors, the reflectance of BR is

usually higher in all wavelength bands and shows an increasing

trend in the band range of both Sentinel-2 and Landsat 8. There is

a weak trough in the red band of Sentinel-2 and Landsat 8 and a

decreasing trend after reaching an extreme value near 1.6 μm.

FIGURE 6
Endmember spectra of GV, BR and NPV-BS were used in MESMA.
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However, GF-6 is no longer available after the NIR band, and BR

in the GF-6 band range exhibit a monotonic increasing trend but

with a low slope. At the same time, the sensor could not capture

the acceptable variation characteristics of BR in the visible and

near-infrared wavelength bands due to the broad wavelength

range of GF-6. The reflectance of NPV may be higher or lower

than that of BS due to the influence of NPV type, humidity, and

degree of decomposition (Ji et al., 2020). Therefore, it is

sometimes difficult to distinguish between NPV and BS. In

Figure 6, the NPV-BS-spectrogram shows the conclusion

FIGURE 7
fVC and fBR estimation based on Sentinel-2, GF-6, and Landsat 8. (A) fVC of Sentinel-2; (B) fBR of Sentinel-2 and, (C) fVC of GF-6, (D) fBR of
Sentinel-2; (E) fVC of Landsat eight and, (F) fBR of Landsat 8.
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above. The endmember spectra in the wavelength range of the

three sensors can effectively distinguish among VC, BR, and

NPV-BS depending on the characteristics of different

endmember types. In any case, selecting the best endmember

combination is crucial for spectral separation (Li et al., 2016).

Figure 6 depicts the characteristics and spatial variations of the

endmember spectra from Sentinel-2, GF-6, and Landsat 8. In

terms of the internal variability of endmembers, the spectra of

GV, BR and NPV-BS have a certain degree of variability, which is

consistent with the high landscape heterogeneity in rocky

desertification areas.

3.2 Fraction estimation

Figure 7 shows the final fVC and fBR images obtained in the

study area. To the naked eye, the spatial distribution of fVC and

fBR in Puding County are well congruent with the early 2022 field

observations. To assess the fVC and fBR, R2, RMSE, andMAEwere

calculated. Table 2 shows the validation accuracy results.

For the estimation of fVC, Sentinel-2 has the highest R
2 value

of 0.6259, the lowest RMSE of 0.1568, and MAE of 0.1215,

according to the evaluation metrics. Although we avoided the

unmixing error by resampling the 10 m band to 20 m from the

10 m and 20 m band data of Sentinel-2, we still discovered that

Sentinel-2 fVC images include more delicate texture information.

Sentinel-2 has three red-edge bands. As shown in Figure 6, these

three red-edge bands are situated close to the junction of the NIR

band and red light at the beginning, peak and end of the rapidly

changing region of the vegetation spectrum. Moreover, the band

range of Sentinel-2 is the narrowest and more targeted.

Therefore, Sentinel-2 has the highest fVC extraction accuracy,

followed by GF-6 coming in second. GF-6 has two red edge bands

and one yellow border band, with the two red border bands being

close to the positions of RE-1 and RE-2 of Sentinel-2 and having

the highest resolution (16 m); however, because of its broadband

range, GF-6 has a slightly lower estimation accuracy for fVC than

Sentinel-2. Landsat 8 has no red-edge bands and relatively low

resolution, which significantly reduces the estimation accuracy

of fVC.

In a comprehensive comparison, Sentinel-2 has the highest

estimation accuracy of vegetation cover; Landsat 8 has a lower

estimation accuracy. Moreover, it is evident from the analysis

that the resolution of satellite images plays a more critical role in

estimating vegetation cover in karst rocky desertification areas.

In the field survey, fBR was at most about 30% where we could

reach and probably higher where we could not reach. The fBR
estimates for the study area based on Sentinel-2, GF-6, and

Landsat 8 data are all within 0.5.

For fBR estimation, Sentinel-2 has the highest R2 value and the

lowest MAE value regarding evaluation metrics. Although the

RMSE value of Sentinel-2 is slightly higher than that of GF-6,

considering the evaluation metrics and the validation scatter plot,

Sentinel-2 has the highest extraction accuracy. Figure 6 shows that

the reflectance of BR increases with an increasing wavelength

outside the NIR band, while the reflectance of vegetation

decreases. The shortwave infrared (SWIR) band is preferable for

identifying BR andminerals. Though theGF-6 lacks these bands and

information, it still has superior accuracy to Landsat 8. So, we

understood that the deciding factors are not featured bands sensitive

to BR. The desired feature information can be extracted if the feature

information has a sufficient degree of difference in the image bands.

For example, the BR endmember library of GF-6 has no unique

trend variation in its band range. However, enough discriminative

difference with the GV andNPV-BS endmember libraries allows for

relative accuracy of fBR extraction by GF-6.

The distribution of estimated and measured values in

Figure 8 shows that the dispersion of estimated and measured

values tends to decrease with increasing fBR for Sentinel-2, GF-6,

and Landsat 8. It may be because a lower fBR is more likely to

receive interference from topography and other features,

resulting in higher uncertainty in the estimated values.

3.3 Different application scenarios

This study counted the information extraction accuracy of

three sensors under different vegetation cover levels and explored

different sensor data application scenarios.

As seen in Table 3, at the fVC level of 0–0.2, the extraction

accuracy of Sentinel-2 is the highest, followed by Landsat 8, and

the extraction accuracy of GF-6 is the lowest; at the fVC level of

0.2–0.4, the extraction accuracy of Sentinel-2 is the highest,

followed by GF-6, and the extraction accuracy of Landsat 8 is

the lowest; at the fVC level of 0.4–0.6, the extraction accuracy of

Sentinel-2 is the highest, followed by GF-6, and the extraction

accuracy of Landsat 8 is the lowest; at the fVC level of 0.6–0.8, the

extraction accuracy of GF-6 is the highest, followed by Sentinel-2,

and the extraction accuracy of Landsat 8 is the lowest; at the fVC
level of 0.8–1.0, the extraction accuracy of Sentinel-2 is the

highest, followed by GF-6, and the extraction accuracy of

Landsat 8 is the lowest.

As seen in Table 4, at the fBR level of 0–0.1, the extraction

accuracy of Sentinel-2 is the highest, followed by Landsat 8, and

the extraction accuracy of GF-6 is the lowest; at the fBR level of

TABLE 2 Accuracy verification.

GV BR

R2 RMSE MAE R2 RMSE MAE

Sentinel-2 0.6259 0.1568 0.1215 0.4911 0.0714 0.0539

GF-6 0.5748 0.1616 0.1225 0.4686 0.0689 0.0575

TM 0.5513 0.1765 0.1280 0.4468 0.0765 0.0606
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FIGURE 8
fVC and fBR estimation accuracy validation against field samples. (A) fVC of Sentinel-2, (B) fBR of Sentinel-2, (C) fVC of GF-6, (D) fBR of GF-6, (E) fVC
of Landsat 8, (F) fBR of Landsat 8.
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0.1–0.2, the extraction accuracy of Sentinel-2 is the highest,

followed by GF-6, and the extraction accuracy of Landsat 8 is

the lowest; at the fBR level of 0.2–0.3, the extraction accuracy of

Sentinel-2 is the highest, f followed by GF-6, and the extraction

accuracy of Landsat 8 is the lowest; at the fBR level of 0.3–0.4, the

extraction accuracy of Sentinel-2 is the highest, followed by GF-6,

and the extraction accuracy of Landsat 8 is the lowest.

Through experimental comparison and analysis, Sentinel-2

obtains high information extraction accuracy in all level scenes.

At the fVC 0–0.1 and fBR 0–0.1 levels, the information extraction

accuracy of GF-6 is lower than that of Landsat 8. This may be

because the target information is weaker and more likely to receive

the influence of other characteristic radiation, reflection, and other

factors. GF-6 has a wide range of bands and no sensitive bands of

BR, leading to a weaker accuracy in extracting weak information.

With the improvement of fVC and fBR levels, the extraction accuracy

of GF-6 has been improved to some extent.

Through the comparison of the study, Sentinel-2 achieves

high accuracy for both fVC and fBR under different level

application scenarios. It thus has great potential for

application in rocky desertification information extraction.

3.4 Spatial distribution characteristics

The spatial distribution characteristics of fVC and fBR were

analyzed using the most accurate Sentinel-2 estimation results.

Figures 9, 10 show the spatial distribution of fVC and fBR obtained

in the study area. The spatial distribution of fVC and fBR in Puding

County is consistent with field observations at the beginning

of 2022.

Puding County is naturally divided into the north and

south parts of the Sancha River Valley. Figure 9 shows that the

areas with high fVC are mainly distributed in the northern part

of the Sancha River Valley, with the best fVC in the

northeastern part. The fVC is higher in the higher elevation

areas south of the Three Forks River; the fVC is lower in the

western area and the lowest in the southern area. Through the

analysis, we can see that the economic development is weaker,

and the vegetation is better protected in places with higher

altitudes, more restricted topography and relatively poor

transportation conditions.

PudingCounty is naturally divided into the north and south parts

of the Sancha River Valley. Figure 9 shows that areas with high fVC are

mainly distributed in the northern part of the Sancha River Valley.

And fVC in the southern area is relatively low. Overall, vegetation is

better protected in areas with higher elevations, complex topography,

and relatively poor transportation conditions. In contrast, in areas

where cities and villages are concentrated, the area has gentle terrain,

convenient transportation, a relatively concentrated population, and

high intensity of land use, resulting in lower fVC.

Puding County is a typical rocky desertification study area.

BR are common throughout the county. As depicted in

Figure 10, most of the BR areas are on steep slopes and

TABLE 3 Comparison of different levels of fVC estimation errors.

FVC
level

Sentinel-2 GF-6 Landsat 8

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

0.0–0.2 0.1195 0.1028 0.0854 0.1016 0.1215 0.0966 0.1109 0.1117 0.0814

0.2–0.44 0.2721 0.1294 0.1013 0.2216 0.1296 0.1036 0.2673 0.1512 0.1087

0.4–0.6 0.1641 0.1721 0.1317 0.1586 0.2021 0.1582 0.1279 0.2129 0.1714

0.6–0.8 0.1067 0.1587 0.1322 0.1113 0.1422 0.1126 0.1035 0.1555 0.1291

0.8–1.0 0.2458 0.2208 0.1931 0.2206 0.2255 0.1843 0.1916 0.02297 0.1981

TABLE 4 Comparison of different levels of fBR estimation errors.

FBR
level

Sentinel-2 G6 Landsat 8

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

0.0–0.1 0.0184 0.0051 0.0335 0.1779 0.0729 0.0575 0.1866 0.0758 0.0572

0.1–0.2 0.0155 0.0709 0.0555 0.0226 0.0744 0.0618 0.0006 0.0826 0.0704

0.2–0.3 0.2100 0.0553 0.0446 0.0595 0.0595 0.0487 0.2495 0.0694 0.0522

0.3–0.4 0.4890 0.05896 0.0473 0.4863 0.0613 0.0499 0.2657 0.0121 0.0022
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around cultivated land. Combined with the knowledge of local

exemplary BR in the field survey, severe BR is closely related to

human production activities. The main exposed areas of

natural BR are usually located on steeply broken surfaces,

and projected surfaces are usually covered with ferns and

mosses.

FIGURE 9
Spatial distribution map of fVC based on Sentinel-2. (*1 true-color, *2 stand false-color, *3 fVC)
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FIGURE 10
Spatial distribution map of fBR based on Sentinel-2. (*1 true-color, *2 stand false-color, *3 fBR)
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4 Discussion

Due to the high surface complexity, broken features, and high

spatiotemporal heterogeneity of the karst area in southwest China,

remote sensing images often contain mixed pixels and the same

object having a discrete spectrum. Rocky desertification as a

significant ecological problem has been perplexing this region.

How to accurately characterize fVC and fBR in this region is a

difficult point. The traditional linear spectral unmixingmethod for

the inversion of typical ground abundance cannot meet

experimental accuracy. It can be challenging to obtain the

critical indicators for evaluating karst rocky desertification. As a

result, in this work, the results of fVC and fBR estimates from

Sentinel-2, GF-6, and Landsat 8 satellite data were compared using

the MESMA method to explore better decomposition strategies

and more suitable data sources.

(1) Endmember selection is crucial for successfully applying

mixed pixel decomposition technology. The endmember

library’s size, accuracy, and decomposition efficiency will

be directly affected by the selected approach, which will be

varied. Each pixel in the MESMA method needs to be

unmixed with various endmember models to find the best

endmember model. Hence, MESMA requires much time.

Considering the particularity of high surface complexity,

fragmentation, and high spatiotemporal heterogeneity in

karst rocky desertification areas, we sacrifice the

computational efficiency of the model to a certain extent

and join the endmembers selected by IES, EAR, CoB, MASA,

and AMUSE methods to participate in the final mixed

decomposition. The union of the endmembers selected by

the above methods is used to enhance the richness and

diversity of the spectral library.

(2) In this study, the Sentinel-2 data and Landsat 8 data were

taken on 13 January 2021, while the GF-6 data were taken

on 15 January 2021. The seasonal variation in the data can

be ignored. However, the establishment of the verification

data in the experiment comes from the first 10 days of

March 2022, which is distinct from the experimental data.

The BR spectrum remains relatively stable, while the

vegetation spectrum may vary seasonally. Several

reasons may lead to errors, such as image registration

errors, ensemble errors or coverage too low to be detected,

and substantial spectral similarity between different

features. Additionally, the topography of the study area

varies greatly, and the shadows of tall features such as

mountains will also affect the accuracy and comparability

of information extraction.

(3) In this paper, although the MESMA algorithm considers the

endmember variability in spectral unmixing, which increases

the accuracy of abundance inversion to some extent, the spatial

information is not considered in the spectral unmixing analysis.

In practice, the study of regional features cannot be viewed as a

single pixel, only considering that the spectral information is

one-sided, and the spatial continuity problem needs to be

considered. Future research will be discussed in depth on

how to add spatial information to the MESMA.

(4) Although GF-6 does not have the SWIR band, which is

sensitive to BR and minerals, it still has better accuracy for

fBR estimating. Therefore, we believe that even if there are no

sensitive bands, the required feature information can still be

extracted during the feature information extraction process,

given that the bands of the feature information in the image

can be distinguished to a certain extent.

(5) The spatial distribution of fVC and fBR in the study area is related

to the extent of human economic activity. To a certain extent, the

constraint of topography and rivers hinders human production

activities and positively protects vegetation, and improves rocky

desertification. And we will quantify them in future studies.

5 Conclusion

Based on Sentinel-2, GF-6, and Landsat 8 data, the MESMA

method was applied to extract fVC and fBR from the karst rocky

desertification areas in Puding County, Guizhou Province,

China. FVC and fBR were validated using RMSE, MAE, and R2.

The results showed that: 1) Sentinel-2 images have higher

resolution, the narrowest band range, and the most significant

number of bands when compared to GF-6 and Landsat 8,

allowing for better information extraction of FVC and fBR in

rocky desertification areas. 2) The comparison results of GF-6

and Landsat 8 prove the importance of spatial resolution for

estimating fBR in rocky desertification areas. The sensitivity to BR

sensitive feature bands is not a decisive factor. The required fBR
information can still be extracted if the feature information has a

sufficient degree of difference in the image bands. 3) The

accuracy of fBR extraction is inferior to fVC, mainly related to

the complex geological ecology of rocky desertification areas. The

scattered distribution of BR makes this work challenging, and so

does the spectral variability between different types of carbonate

rocks and within the same category. 4) The Sentinel-2 achieves

high accuracy for both fVC and fBR under different level

application scenarios. It thus has great potential for

application in rocky desertification information extraction. 5)

TheMESMAmethod, to some extent, overcomes the problems of

high heterogeneity, surface fragmentation, and highly severe

pixel mixing effects in remote sensing images of rocky

desertification areas and achieves accurate fVC and fBR
information.
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