
MPEFT: A novel task scheduling
method for workflows

Juhua Pu1,2, Qiaolan Meng1,2, Yexuan Chen1 and Hao Sheng1,2*
1State Key Laboratory of Software Development Environment, Beihang University, Beijing, China,
2Beihang Hangzhou Innovation Institute Yuhang, Hangzhou, China

Optimizing the scheduling algorithm is a key problem to improving the service

efficiency of urban heterogeneous computing platforms. In this paper, we

propose a novel list-based scheduling algorithm called Modified Predict

Earliest Finish Time (MPEFT) for heterogeneous computing systems with the

aim to minimize the total execution time. The algorithm consists of two stages:

task prioritization and processor selection. In the task prioritization phase, the

priority of tasks is calculated by time cost of all paths from a task to the exit task.

Compared with the prior works, more accurate task priorities are obtained by

considering not only the critical path but also the non-critical ones. In the

processor selection phase, the processor is allocated for a task according to

whether the computing resources are sufficient to its successive tasks. The

experiments on randomly generated workflows and the workflows from

practical applications show that the MPEFT outperforms other existing list

scheduling algorithms.

KEYWORDS

workflow scheduling, DAG scheduling, list-based scheduling, heterogeneous
platform, random graphs generator

1 Introduction

In recent years, with the acceleration of smart city construction, the smart city’s

computing environment has becomemoremature, and various urban digital services have

emerged quietly. At the same time, the maturity of artificial intelligence algorithms also

provides a powerful tool for data analysis. The rapid development of big data, cloud

computing and artificial intelligence has promoted the development of smart cities.

However, this explosive growth of smart city services presents a higher requirement for

the load capacity and performance of urban computing centers. In addition to expanding

computing resources, how to improve the efficiency and performance of task scheduling is

also a matter of concern (Duan et al., 2020; Li, 2020).

Complex computing in smart cities often consists of multiple tasks. There may be

dependencies between these tasks, and data transmission is usually required. These tasks

with dependencies form a workflow, a directed acyclic graph (DAG) in which nodes

represent the tasks and edges denotes the dependencies. Computing resources are often

composed of machines with a certain degree of heterogeneity, e.g., CPUs and GPUs. An

example workflow of resources vitalization for urban epidemic analysis and prediction is

shown in Figure 1. It contains nine tasks for studying the epidemic situation from

different perspectives. The ultimate objective task relies on three modeling sub-tasks, each

OPEN ACCESS

EDITED BY

Mengchu Zhou,
New Jersey Institute of Technology,
United States

REVIEWED BY

Neeraj Arora,
Vardhaman Mahaveer Open University,
India
Lun Hu,
Xinjiang Technical Institute of Physics
and Chemistry (CAS), China
Quanwang Wu,
Chongqing University, China

*CORRESPONDENCE

Hao Sheng ,
shenghao@buaa.edu.cn

SPECIALTY SECTION

This article was submitted to
Environmental Informatics and Remote
Sensing,
a section of the journal
Frontiers in Environmental Science

RECEIVED 17 July 2022
ACCEPTED 08 December 2022
PUBLISHED 04 January 2023

CITATION

Pu J, Meng Q, Chen Y and Sheng H
(2023), MPEFT: A novel task scheduling
method for workflows.
Front. Environ. Sci. 10:996483.
doi: 10.3389/fenvs.2022.996483

COPYRIGHT

© 2023 Pu, Meng, Chen and Sheng. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Environmental Science frontiersin.org01

TYPE Original Research
PUBLISHED 04 January 2023
DOI 10.3389/fenvs.2022.996483

https://www.frontiersin.org/articles/10.3389/fenvs.2022.996483/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.996483/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.996483&domain=pdf&date_stamp=2023-01-04
mailto:shenghao@buaa.edu.cn
mailto:shenghao@buaa.edu.cn
https://doi.org/10.3389/fenvs.2022.996483
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.996483

of which is performed based on five basic services varying from

partitioning the maps to assessing the track of infectors. For

different types of tasks, specific computation resources are

preferred, e.g., high-performance units such as GPUs and

FPGAs are more suitable for the modeling and prediction

tasks. Scheduling such workflows onto a heterogeneous

computing platform so that their total execution time is

minimum, is crucial for the efficiency and efficacy of the

smart city management (Zheng et al., 2021).

The procedure can be formalized as a celebrated static

scheduling problem, in which all information about the tasks

and computation resources are known in advance, and its goal

is to minimize the total execution time, i.e., the makespan. Due

to its key importance in heterogeneous computing systems, the

task scheduling problem has been widely studied and many

heuristic algorithms were proposed in the literatures. The

heuristic algorithms are mainly divided into three groups:

list-based scheduling (Topcuoglu et al., 2002; Arabnejad and

Barbosa, 2013; Djigal et al., 2019; Madhura et al.,

2021),clustering-based scheduling (Wang and Sinnen, 2018),

and duplication-based scheduling (Sulaiman et al., 2021). List-

based scheduling algorithms have the advantages of low

complexity and high efficiency and are widely studied and

applied in many scenarios. The list-based scheduling

algorithm completes the scheduling through two stages:

calculating task priority and assigning processors in

sequence Topcuoglu et al. (2002). The existing list-based

scheduling algorithms determine the priority of tasks

through the critical path, the longest path in the workflow

from a task to the last task in DAG Zhou et al. (2017). However,

this ignores the impact of other non-critical paths in the DAG,

making tasks on other non-critical paths be inappropriately

scheduled. For example, in Figure 1, the task Patient Trajectory

Data Mining and the task Medical Big Data Analysis may have

the same critical path, but the former should have a higher

priority because there are more tasks to be calculated on the

path from him to the exit task.

In this paper, we propose a new list-based scheduling

algorithm, dubbed Modified Predict Earliest Finish Time

(MPEFT), for scheduling workflows to fully heterogeneous

computing resources with an aim to minimize the makespan.

Compared with the existing list scheduling algorithms

(Topcuoglu et al., 2002; Arabnejad and Barbosa, 2013; Djigal

et al., 2019, 2020; Madhura et al., 2021) that mainly depend on

the critical path, the MPEFT adopts more appropriate features

to schedule the tasks. The novelty of the MPEFT is the

calculation of task priority and the evaluation of critical

paths. MPEFT treats critical paths and non-critical paths

equally when calculating task priority, and determines

priority based on task overhead on all paths. When

allocating computing resources for tasks, MPEFT measures

the impact of critical paths on the makespan and adjusts the

allocation strategy. The impact of critical paths is evaluated by

computing the proportion of their time cost in the whole

execution cost.

Extensive experiments show that the performance of MPEFT

is significantly better than other popular list-based scheduling

algorithms in most scenarios.

FIGURE 1
An workflow example of digital services.

Frontiers in Environmental Science frontiersin.org02

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

2 Background

The scheduling problem studied in this paper is to assign

tasks in a workflow onto computing resources. The DAG

structure and computation cost matrix in Figure 2 illustrate

the details of the example in Figure 1. There are ten tasks and

three heterogeneous processors. The tasks will be scheduled onto

three processors, such that the runtime of the whole workflow,

i.e., the makespan, is minimum.

The computing resource in this paper is the processor set,

which we denote by P = {p1, . . . , pm}. A processor can execute any

task, though the number of its executing tasks at any time can be

only one. A workflow contains multiple tasks with some

dependencies between them.

A workflow can be represented by a directed graph G = (V,

E), where V = {t1, . . . , tn} represents the set of tasks contained in

the workflow and E represents the set of dependencies between

tasks. Each edge ei,j in E indicates a dependency between a tuple

(ti, tj) of tasks, which means that the execution of the task tj
depends on the output or the end state of the task ti. For each edge

ei,j, the task tj cannot start execution unless the task ti has been

performed. We call the task ti the immediate predecessor of the

task tj, and the task tj the immediate successor of the task ti. The

edge ei,j also has a specific weight ci,j, indicating the

communication time that it takes to transfer the result data

from the task ti to the task tj. The ci,j are usually defined as:

ci,j � �L + datai,j
�B

(1)
where �L represents the average startup time of the processor

when the data transfer occurs, �B represents the average transfer

bandwidth over all processors in the computing platform, and

datai,j is the volume of the data required to transfer between the

two tasks. We note that when the two tasks are assigned to the

same processor, the intermediate data does not need to be

transferred and the network communication cost ci,j is

considered to be 0.

In this paper, we denote the computation cost of all tasks on

different processors by the matrix w, in which w (ti, pj) is the

processing time of the task ti on the processor pj. Due to the

heterogeneity, a task may cost unequal computation times on

different processors. For example, in Figure 2, the task t1 takes 14,

16, and nine time units to be executed on p1, p2, and p3,

respectively. In addition, we denote by w*(ti) the minimum

computation cost of the task ti over all processors. For

example, w*(ti) in Figure 2 is 9. To explain the algorithm

formally, we first introduce some standard notations.

Definition 1 (Entry and exit tasks). In a workflow, the entry task

tentry is defined as the task without any predecessor, and similarly,

the exit task texit is defined as the task without any successor.

We assume that there is only one entry task in the DAG

graph. If a workflow contains multiple entry tasks, a predecessor

with zero computational overhead is added ahead of these tasks.

FIGURE 2
A workflow with ten tasks and computation cost matrix on three processors.

Frontiers in Environmental Science frontiersin.org03

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

The same assumption is made for the exit tasks. For example, in

Figure 2, the entry task is t1 and the exit task is t10.

Definition 2 (Successors and predecessors). Given a task ti, we

denote by succ(ti) the set of all immediate successors of ti, and

pred(ti) the set of all immediate predecessors of ti. For example, in

Figure 2, succ(t4) is {t8, t9} and pred(t4) is {t1}.

The goal of workflow scheduling is to compute a scheme that

schedules each task to an appropriate processor such that the

makespan of the entire workflow is minimum.

Definition 3 (Makespan). The makespan of a workflow is defined as

the time when the last task in the workflow has been executed, that is:

makespan � AFT texit(), (2)

where AFT (ti) is the actual finished time of the task ti.

The makespan is unknown unless all tasks have been

scheduled on the processors. Thus, during the scheduling,

some terms are introduced to estimate the actual finished

time of each task. The most general one used in many

literature (Topcuoglu et al., 2002) is the Earliest Finished Time

(EFT). The EFT is defined on the Earliest Start Time (EST), which

is also an estimator but for the actual start time of the tasks.

Finally, more notations used in this paper are shown in Table 1.

Definition 4 (Earliest Start Time (EST)). The Earliest Start Time

EST(ti, pj) represents the earliest time when the task ti can be

executed if ti is assigned to processor pj:

EST ti, pj() � max avail ti, pj(), max
tk∈pred ti()

AFT tk() + ck,i{ }{ }.
(3)

where avail (ti, pj) represents the earliest time that pj can start the

execution of ti and maxtk∈pred(ti){AFT(tk) + ck,i} is the time when

all tasks in pred (ti) are completed and the intermediate data is

transferred to pj.

Definition 5 (Earliest Finished Time (EFT)). The Earliest

Finished Time EFT(ti, pj) represents the earliest finished time of

ti on pj:

EFT ti, pj() � EST ti, pj() + w ti, pj(). (4)

3 Related work

This paper focuses on the static single-objective workflow

scheduling problem with DAG properties under heterogeneous

computing resource platforms. The common objective of the

problem is the makespan of the workflow. Theoretically, this

problem is NP-complete and has not any polynomial algorithm

unless NP = ¶(Houssein et al., 2021). Thus, most of the existing

methods are heuristic and high-efficient.

We can further classify the heuristic algorithms into the

cluster-based (Boeres et al., 2004), the replication-based

(Sulaiman et al., 2021) and the list-based (Topcuoglu et al.,

2002; Arabnejad and Barbosa, 2013; Madhura et al., 2021;

NoorianTalouki et al., 2022), among which the list-based

scheduling algorithms have been widely studied due to their

lower complexity and higher performance. This kind of

algorithm generally consists of two phases: the task priority

sorting and the processor selection. At the task prioritizing

phase, the scheduling algorithm calculates a priority value for

each task and obtains a list based on the priority. It usually takes

into account several characteristics of the workflow, such as the

execution time of tasks on different processors, dependencies

between the tasks, and communication costs, to compute the task

priority. At the processor selection phase, the scheduling

algorithm progressively selects the most suitable processor for

each task by the natural order of the task list. In many algorithms,

the two phases are often tangled, i.e., the processor selection

would depend on the priority of tasks.

We briefly review some list-based algorithms in Table 2. The

critical path plays a certainly important role in the existing list-

based algorithms Topcuoglu et al. (2002); Arabnejad and Barbosa

(2013); Zhou et al. (2017); Djigal et al. (2019). Many metrics, e.g.,

ranku in HEFT, rankd in CPOP, and the OCT in PEFT, are

calculated along some critical path in the workflow. However, we

argue that the impact of the critical path on the final makespan

might be overestimated in these algorithms, when there are some

other paths that have a similar length as the critical one, i.e., such

paths are also vital to the scheduling plan. Especially when the

TABLE 1 Summary of parameters.

Parameter Definition

G the DAG of Workflow

V the set of all tasks of a workflow

E the set of all edges of a workflow

P the set of all processors

pj the jth processor in P

ti the ith task in a workflow

ei,j the edge between ti and tj

pred (ti) the set of immediate predecessor tasks of ti

succ (ti) the set of immediate successor tasks of ti

w (ti, pj) the computation cost of ti on pj

w*(ti) the min computation cost of ti

datai,j the data transfer amount between ti and tj

ci,j the communication cost of ti and tj

avail (ti, pj) the earliest time of executing ti on pj

AFT (ti) the actual finished time of ti

EST (ti, pj) the earliest starting time of ti on pj

EFT (ti, pj) the earliest finished time of ti on pj

Frontiers in Environmental Science frontiersin.org04

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

TABLE 2 Some promising methods for workflow scheduling.

Method Advance Type of algorithm Type of tasks Objectives Complexity

HEFT Topcuoglu et al. (2002) Sort the task list based on
ranku and rankd

list-based single workflow single-objective (makespan) O (v2p)

CPOP Topcuoglu et al. (2002) Reduce makespan by optimizing
critical path

list-based single workflow single-objective (makespan) O (v2p)

PEFT Arabnejad and Barbosa (2013) Predict makespan of critical path
for each task by OCT

list-based single workflow single-objective (makespan) O (v2p)

E-HEFT Hu et al. (2019) Consider makespan and energy
consumption in real-time scenarios

list-based single workflow multi-objective (makespan and energy consumption) O (v2p)

ELSH Wu et al. (2021) Consider the impact of node
communication contention

list-based single workflow single-objective (makespan) O (v4)

ROSA Chen et al. (2018) Combine computing resource
adjustment and scheduling to optimize QoS

list-based multiple workflows multi-objective (makespan and monetary cost) O (v3)

CHP Boeres et al. (2004) Apply clustering heuristic for
homogeneous processors to heterogeneous environment

cluster-based single workflow single-objective (makespan) O (v2p)

HLTSD Sulaiman et al. (2021) Combine duplication-based
and list-based method

duplication-based single workflow single-objective (makespan) O (v2p)

SDHN Li et al. (2021a) Apply NSGA-II to minimize
both makespan and cost

genetic algorithm multiple workflows multi-objective (makespan and monetary cost) O (τn (v2+n))

QL-HEFT Tong et al. (2020b) Calculate task priority
using Q-learning method

RL single workflow single-objective (makespan) -

MCDS Tuli et al. (2021) Optimize scheduling strategies
using Monte Carlo method

RL multiple workflows multi-objective (makespan, energy consumption etc.) -

Fro
n
tie

rs
in

E
n
viro

n
m
e
n
tal

Scie
n
ce

fro
n
tie

rsin
.o
rg

0
5

P
u
e
t
al.

10
.3
3
8
9
/fe

n
vs.2

0
2
2
.9
9
6
4
8
3

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

computation resources are limited, exaggerating the effect of the

critical path on the final makespan would let the algorithm pay

more attention to the critical tasks and the critical processors,

whereas overlooking the substantial cost of the non-critical tasks.

For instance, in Example 2, some paths from the task t1
through its different successors have similar length.

Nevertheless, when allocating the processors for t1, only the

critical path, the path via t2, is considered, which will mislead

the algorithm to selecting the processor p2 for t1, since its

successive critical task t2 has the minimum runtime on p2. A

better scheduling for the task t1 is however p3, as t1 has the

minimum EFT on p3, and the other non-critical but also

important tasks can benefit from the fast computation of t1.

Please refer to Sec 4.4 for more discussions.

Some researches on the scheduling problem utilize more

sophisticated meta-heuristic algorithms to iteratively

optimize the scheduling solution (Li et al., 2021b; Wang

and Zuo, 2021). Though these algorithms might obtain

better performance than the heuristic ones, they usually

suffer from poor efficiency, as the optimization procedure

could be very lengthy. To accelerate the convergence of the

optimal solution, many meta-heuristic algorithms often take

the optimal solution from some heuristic algorithm as a good

initialization (Wu et al., 2019; Pham and Fahringer, 2020; Li

et al., 2021a). The proposed MPEFT could also serve as an

initializer plugged into these meta-heuristic algorithms. Very

Recently, the (deep) reinforcement learning is brought in for

the scheduling problem (Tong et al., 2020b,a; Tuli et al., 2021).

These approaches aim to learn a heuristic scheduling strategy

instead of devising it by hand. The learning procedure

involves in a large amount of evaluation and update of the

current strategy, and thus are inevitably hindered by the same

efficient problem as the meta-heuristic methods.

We briefly summarize some work related to task

scheduling, as shown in Table 2. Methods based on list

scheduling have been extensively studied. And some

researchers try to use meta-heuristic methods and

reinforcement learning methods to solve scheduling

problems in more complex scenarios, at the cost of higher

complexity. For example, in addition to the number of tasks,

the complexity of SDHN Li et al. (2021a) based on genetic

algorithms also needs to consider a large number of

populations n and iterations τ.

4 The proposed algorithm MPEFT

Motivated by the deficiency of existing approaches

analyzed in the section above, we propose a novel list-

based scheduling algorithm, dubbed the Modified Predict

Earliest Finish Time (MPEFT) algorithm, for heterogeneous

computing systems. Before introducing the MPEFT

algorithm, we define some attributes OffspringSet and DCT

used for determining the task priorities, and for selecting

processors for tasks.

Definition 6 (Offspring set). The set OffspringSet(ti) contains all

the direct and indirect successor tasks of ti:

OffspringSet ti() � ⋃tj∈succ ti() OffspringSet tj(), if tiis not an exit task
∅, otherwise

{
(5)

Definition 7 (Direct Calculation Time (DCT)). The Direct

Calculation Time DCT(ti) represents the minimum time

required to perform the task ti and communicate from ti to all

its successors.

DCT ti() � w* ti() + ∑
tj∈succ ti()

ci,j. (6)

4.1 Task prioritizing phase

In MPEFT, we use the summed DCT overall offspring to

prioritize the tasks:

rankAP ti() � DCT ti() + ∑
tj∈OffspringSet ti()

DCT tj(). (7)

Contrary to the task ranks used in the prior works that only

deal with the critical path, rankAP computes the optimal cost

over all paths (AP) from a task to the exit task. More

specifically, the rank rankAP (ti) contains the computation

and communication cost of all subsequent tasks starting from

the task ti to the exit task. The rankAP could provide a more

accurate priority of tasks since it takes into account the cost of

non-critical tasks, which could also contribute a lot to the

value of makespan. The intuition is that in the case where the

number of successors of a task is larger than the number of

processors, and every successor consumes considerable

runtime, the successive tasks cannot be fully paralleled onto

the processors and the earlier execution of the preceded task

could speed up the whole workflow. Even though sometimes

the computation resources are adequate, the processors would

not be always available during the running of the workflow,

and thus the scheduling performance might still benefit from

the proposed rankAP.

Input: A workflow G = (V, E) and the computation cost

matrix w

Output: rankAP of all tasks

1: Compute the DCT for each task in G by (6)

2: rankAP ←{}; OffspringSet ←{} ⊳ Initialize as empty

dictionaries

3: Get the entry task tentry from G

4: CALCURANKFORTASK (tentry) ⊳ Recursively compute

rankAP
5: return rankAP

Frontiers in Environmental Science frontiersin.org06

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

6:

7: function CALCURANKFORTASK (ti)

8: if task ti is exit task then

9: OffspringSet (ti) ←∅
10: else

11: for tj ∈ succ (ti) do

12: if OffspringSet (tj) = ∅ then

13: CALCURANKFORTASK (tj)

14: end if

15:

OffspringSet(ti) ← ∪
tj∈succ(ti)

OffspringSet(tj)
16: end for

17: end if

18:

rankAP(ti) � DCT(ti) +∑tj∈OffspringSet(ti)DCT(tj)
19: end function

Algorithm 1. Task Priority Calculation

When calculating the rankAP, we use the minimum

computation cost w* rather than �w in the prior algorithms. It

is by design and aims to align the task prioritizing with the

processor selection since in the processor selection, the EFT

comprising AFT is utilized, and the w* is a better estimator

for AFT than �w. We elaborate the calculation of rankAP in

Algorithm 1.

4.2 Processor selection phase

The processor selection strategy of MPEFT is built on that of

PEFT. During this phase, the Optimistic Cost Table (OCT) (8) is

first calculated. It is defined recursively and only the entry task

needs to be considered. For the exit task, theOCT (texit, pk) = 0 for

all processors pk ∈ P.

OCT ti, pk() � max
tj∈succ ti()

min
pw∈P

OCT tj, pw() + w tj, pw() + ck,wi,j{ }[]
(8)

where ck,wi,j � ci,j if pw ≠ pk, else ck,wi,j � 0. When calculating the

OCT, we additionally record the immediate successor (critical)

tasks on the critical path, namely the Critical Path Successor

(CPS) table:

CPS ti, pk() � argmax
ti∈succ ti()

min
pw∈P

OCT tj, pw() + w tj, pw() + ck,wi,j{ }[].
(9)

The assignment of tasks is determined by the Modified

Earliest Start Time (MEFT):

MEFT ti, pk() � EFT ti, pk() + OCT ti, pk() × k ti, pk(). (10)

where k (ti, pk) is a rational weight controlling the impact of the

critical path on the processor selection. Every k (ti, pk) is

computed by

k ti, pk() � rankAP CPS ti, pk()()/ ∑
tj∈succ ti()

rankAP tj() + ci,j(), if |succ ti()|> |P| + 1

1, otherwise

⎧⎪⎨⎪⎩
(11)

Note that CPS(ti, pk) ∈ succ (ti), and thus the weight k (ti, pk) ≤ 1.

In other words, the MEFT only diminishes the impact of the

critical path, and will degenerate to PEFT if the cost of the critical

path dominates the whole time of a task and its offspring. When

the number of processors is one larger than the successors of a

TABLE 3 Produced by Processor Selection Phase on the sample DAG in Figure 2

Task rankAP OCT CPS k

p1 p2 p3 p1 p2 p3 p1 p2 p3

t1 332 48 38 53 t2 t2 t2 0.3 0.3 0.3

t2 96 35 19 35 t9 t9 t9 1 1 1

t3 65 28 22 27 t7 t7 t7 1 1 1

t4 106 38 19 36 t9 t9 t9 1 1 1

t5 55 32 19 32 t9 t9 t9 1 1 1

t6 47 23 18 30 t8 t8 t8 1 1 1

t7 31 21 7 16 t10 t10 t10 1 1 1

t8 23 18 7 16 t10 t10 t10 1 1 1

t9 32 20 7 16 t10 t10 t10 1 1 1

t10 7 0 0 0 - - - - - -

Frontiers in Environmental Science frontiersin.org07

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

task, the successors can be paralleled onto multiple processors,

and thus MEFT also adopts the original PEFT.

Recall that rankAP corresponds to the total time over all paths

from a task to the exit task. The k (ti, pk) evaluates the impact of

the critical path by calculating the proportion of the critical path

in the total cost over all paths. The smaller fraction of time the

critical path occupies, the lower impact it will have.

Compared with the existing scheduling algorithms, MEFT

based allocation strategy selects the processor to optimize the cost

of the critical path, only when the critical path is vitally important

to the final makespan. If there are several comparably costly

paths from a task to the exit task, different selections of the

processor might not change the whole time of the offspring tasks

too much. Subsequently, when selecting the processor, the

assignment of a task should pay more attention to the total

time of its ahead tasks, i.e., the EFT of the task. For instance, in

Figure 2, assigning the task t2 to the processor p3 that has the

smallest EFT will produce a better scheduling plan.

4.3 Detailed description of the MPEFT
algorithm

The pseudocode of theMPEFT algorithm is shown inAlgorithm

2. MPEFT will first calculate the OCT, CPS and rankAP values of all

tasks, and then create a ready list with a single entry task. The rankAP
value is processed in the order as described in Algorithm 1. Line four

will take out the task with the highest rankAP value in the current

ready list for processor allocating. Lines 5–12 will select the

appropriate processor for the task. The line six calculates the EFT,

and lines 7–10 calculate k, the importance of the critical successor of

the current task. Line 12 calculatesMEFT for the processor selection.

Line 15 will put the new ready tasks into the ready-list. Repeat the

procedure until all tasks have been executed, and the scheduling plan

and the overall computation cost are obtained.

Input: A workflow G = (V, E) and the computation cost

matrix w

Output: A scheduling plan with its makespan

1: Compute rankAP and OCT CPS table for all tasks

2: Create Empty ready list L and put entry task as

initial task

3: while L is NOT Empty do

4: ti ← the task with highest rankap from L

5: for pj ∈ P do

6: Compute EFT (ti, pj) value using insertion-based

scheduling policy

7: if |succ (ti)| < |P| + 1 then

8: k ← 1

9: else

10: Compute k by (11)

11: end if

12: MEFT (ti, pj) = EFT (ti, pj) + OCT (ti, pj) × k

13: end for

14: Assign task ti to the processor pj that minimize

MEFT of task ti
15: Update L

16: end while

Algorithm 2. The MPEFT Algorithm

In terms of algorithm complexity, we denote by v, e, p the

number of tasks, edges, and processors, respectively. In the task

priority calculation stage, the time complexity of computing rankAP
isO (v2+e), and the computational complexity ofOCT and CPS isO

(p (v+ e)); in the processor allocation stage, the complexity isO (v2p).

TABLE 4 Schedule Produced by the MPEFT Algorithm in Each Iteration on the sample DAG in Figure 2.

Step Ready list Task selected EFT MEFT Processor selected

p1 p2 p3 p1 p2 p3

1 t1 t1 14 36 9 28.3 27.3 24.8 p3

2 t2, t3, t4, t5, t6 t4 31 26 26 69 45 62 p2

3 t2, t3, t5, t6 t2 40 46 27 75 65 62 p3

4 t3, t5, t6 t3 32 39 46 60 61 73 p1

5 t5, t6, t7 t5 44 39 37 76 58 69 p2

6 t6, t9, t7 t6 45 55 36 68 73 66 p3

7 t9, t7, t8 t9 70 55 72 90 62 88 p2

8 t7, t8 t7 39 70 66 60 77 82 p1

9 t8 t8 58 66 67 76 73 83 p2

10 t10 t10 98 73 93 98 73 93 p2

That the bold values indicate some optimal values in the second stage of the algorithm.

Frontiers in Environmental Science frontiersin.org08

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

So the overall complexity is O (v2+e + v2p). In the extremely dense

DAG graph, e is equal to v2, and the overall time complexity is O

(v2p), which is consistent with the HEFT algorithm.

4.4 Case study

We analyze the workflow scheduling example shown in

Example 2 as a case study. In task prioritizing phase, the

rankAP for each task by Eq. 7 is shown in Table 3. The task

priority list is (t1, t4, t2, t3, t5, t6, t9, t7, t8, t10).

Table 3 also shows the calculation results of OCT, CPS and

k respectively. The value of k of the task t1 is .3. It indicates that

the number of direct successor tasks of t1 is more than the

number of current processors, and its critical path occupies

only 30% of the total time cost. When selecting a processor for

task t1, the impact of the critical path is determined according

to its CPS and k.

Table 4 shows the scheduling results of each round in

MPEFT. The comparison of the scheduling scheme of

MPEFT with other list-based scheduling algorithms is shown

in Figure 3. The MPEFT algorithm schedules the task t1 to the

processor p3, while other algorithms except HEFT consider the

processor p2 to be a better choice for t1. However, these

algorithms focusing on optimizing task scheduling on the

longest path starting from t1 to the exit task would not

guarantee global optimization. This is because the

assignment of t1 on p2 will cause a delay of t1 compared to

p3, and its non-critical successor tasks are also affected by the

delay of task t1, which leads to an increased maskpan. In the

MPEFT algorithm, the influence of the critical successor of t1 is

evaluated by the controlling weight k. The value .3 of k

decreases the impact of the critical-path-based metric OCT

on the processor selection, which in turn argues the importance

of the value of EFT. It makes the algorithm select p3 with the

minimum EFT for t1, ensuring the earliest finish of t1 as well as

all its successors. Though the critical path from t1 might take a

longer time to complete, the total time cost of the workflow, the

makespan, in MPEFT is smaller than the prior algorithms.

5 Experiment

In this paper, we compare our MPEFT with other list-

based scheduling algorithms using the metrics the Scheduling

Length Ratio (SLR), the Number of Occurrences of Better

Quality of Solutions (NOBQS), makespan standard deviation

and running time of the algorithms. Since DAGs may have

very different topologies, the SLR is often used to represent the

scheduling efficiency of the algorithm, which is defined as

follows:

SLR � makespan∑ti∈CPminpj∈P w ti, pj()() (12)

where CP is the critical path from the entry to exit task.

FIGURE 3
Schedules of the sample DAG in Figure 2 with (A) HEFT (makespan = 80), (B) CPOP(makespan = 86), (C) PEFT (makespan = 85), (D) IPEFT
(makespan = 95), (E) PPTS (makespan = 80), (F) CROSS(makespan = 93) and (G) MPEFT (makespan = 73).

Frontiers in Environmental Science frontiersin.org09

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

The NOBQS shows the comparison results of the

scheduling schemes of different algorithms on all DAG

graphs in the form of a table, including better, worse and

the same. This paper will compare the MPEFT algorithm with

several baselines, including HEFT (Topcuoglu et al., 2002),

CPOP (Topcuoglu et al., 2002), PEFT (Arabnejad and

Barbosa, 2013), IPEFT (Zhou et al., 2017), PPTS (Djigal

et al., 2019) and CROSS (Madhura et al., 2021).

Makespan standard deviation describes the robustness of

the algorithms. The makespan standard deviation σmakespan is

defined as 13. The smaller the makespan standard deviation,

the stronger the robustness of the algorithm.

σmakespan �

������������������������������
1
Nr

× ∑Nr

i�1
makespani − Avgmakespan()2√√

(13)

All experiments were performed on a computer with a 40-

core Intel(R) Xeon(R) Gold 5218R 2.10 GHz processor and

32 GB of RAM. We use a simulator, which is realized by

Python, to conduct the comparative experiments. The code of

the proposed MPEFT is released on the Website https://github.

com/MengQiaolan/DAG_Scheduling.

5.1 Randomly generated application
graphs

5.1.1 Random graph generator
To comprehensively evaluate the effectiveness of the

algorithm on different graphs, we use a random graph

generator to obtain graphs with different topologies. The

random graph generator generates multiple DAG graphs with

the given input parameters (frs69wq, 2012). Related parameters

are described as follows:

n: the number of computation nodes in the DAG (i.e., tasks in

workflow).

fat: the width of the DAG, the maximum number of tasks that

can be executed concurrently. A small value will lead to a thin

DAG (e.g., chain) with a low task parallelism, while a large

value induces a fat DAG (e.g., fork-join) with a high degree of

parallelism.

density: determines the number of dependencies between

tasks of two consecutive DAG levels.

regular: the regularity of the distribution of tasks between the

different levels of the DAG.

jump: the maximum number of levels spanned by inter-task

communications. This allows to generate DAGs with

execution paths of different lengths.

Regarding the computation cost and data transfer cost, we

specify them by setting the following parameters:

TABLE 5 Parameters used in simulation studies.

Parameter Description Values

n the number of nodes in the DAG [50, 100, 200, 300, 400, 500, 600, 700, 800]

fat the width of the DAG [.1, .4, .8]

density density of the DAG [.2, .8]

regularity the regularity of the distribution of nodes at every level of the DAG [.2, .8]

jump the maximum number of levels spanned by edges in the DAG [2, 5, 8]

ccr the ratio of communication cost to computation cost in DAG [.1, .5, 1, 5, 10, 20]

heterogeneity the heterogeneity factor for processor speeds [.1, .25, .5, 1, 2]

p the number of processors [4, 8, 16, 32]

FIGURE 4
Average SLR for random graphs with respect to DAG size.

Frontiers in Environmental Science frontiersin.org10

Pu et al. 10.3389/fenvs.2022.996483

https://github.com/MengQiaolan/DAG_Scheduling
https://github.com/MengQiaolan/DAG_Scheduling
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

communication-to-computation ratio (ccr): the ratio of the

sum of edge weights to the sum of the task computation cost

in a DAG.

heterogeneity: the heterogeneity factor for processor speeds. A

high heterogeneity value indicates higher heterogeneity and

different computation costs among processors. A low value

indicates that the computation costs on processors for a given

task are almost equal.

The average computation cost of a task ti in a given graph wi

is selected randomly from a uniform distribution with range

[0, 2wDAG], where wDAG is the average computation cost of a

given graph that is obtained randomly. The computation cost of

each task ti on each processor pj is randomly set from the range of

the following equation:

wi × 1 − heterogeneity

2
()≤wi,j ≤wi × 1 + heterogeneity

2
()

(14)

In this experiment, we use the parameter in Table 5 to

generate workflow scheduling scenarios randomly. These

parameters generate a total of 38,880 different parameter

combinations, and for each parameter combination, 10 DAG

graphs are randomly generated, so this part has a capacity of

388,800 DAGs for experiments.

5.1.2 Result
Figure 4 shows the average SLR of all algorithms for

different DAG sizes. The CROSS algorithm performed

worst because of its downward priority calculation

method. The CPOP algorithm performed badly because it

pays too much attention to the critical path. It may work well

in extreme cases where most tasks of workflow are on the

critical path. There is a gap between the performance of

HEFT, PEFT, IPEFT, PPTS and MPEFT, when the number of

tasks is less than 400. When the number of tasks is greater

than 400, the average SLRs of these five algorithms are

FIGURE 5
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for random DAGs.

FIGURE 6
Average SLR as function of fat, density, regularity and jump for random DAGs.

Frontiers in Environmental Science frontiersin.org11

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

however not much different. This may be due to their similar

task priority calculation methods. The MPEFT

algorithm outperforms the other four algorithms in every

task number.

Figure 5 shows the influence of ccr, heterogeneity, and the

number of processors. When the ccr is low, there is no obvious

difference between these algorithms except CPOP. With the

increase in ccr, the MPEFT algorithm begins to show better

performance, and the gap from the baselines becomes more

obvious. This shows that MPEFT is more suitable for scenarios

with large data transmission between tasks since MPEFT

considers all subsequent data transmission costs of the task in

the task prioritization stage.

In contrast, other algorithms ignore the data transmission costs

other than the longest path from the task to the exit task. When the

ccr is low, these costs can be ignored, while as the ccr increases, the

data transmission requirements between tasks become larger, and

the benefits of MPEFT in task sorting will become clear. Similarly,

the performance of MPEFT also improves significantly compared

with other algorithms under different heterogeneities and numbers

of processor conditions.

Figure 6 shows the influence of fat, density, regularity and

jump on the algorithm performance. It can be found that the

structural parameters of the DAG have no obvious impact on the

scheduling performance.

Table 6 shows the NOBQS results. As can be seen, MPEFT

performs better than CPOP, HEFT, PEFT, IPEFT, PPTS and

CROSS on most DAG graphs. Compared to IPEFT, the best-

performing algorithm among other algorithms, MPEFT also

performs worse on only 32% of the DAGs.

5.2 Real-world application graphs

We evaluate the performance of workflows that appear in

some practical applications, including epigenomics,

montage, ligo and cybershake. The workflow for these

applications is presented in Figure 7, and for the details,

TABLE 6 The NOBQS of the Scheduling Algorithms for random DAGs.

MPEFT CPOP HEFT PEFT IPEFT PPTS CROSS Combined (%)

MPEFT better * 81% 62% 63% 45% 55% 73% 63

equal 3% 4% 19% 23% 8% 1% 10

worse 16% 34% 18% 32% 37% 26% 27

CPOP better 16% * 30% 26% 21% 24% 46% 27

equal 3% 2% 2% 3% 2% 1% 2

worse 81% 68% 72% 76% 74% 53% 71

HEFT better 34% 68% * 45% 39% 35% 75% 49

equal 4% 2% 2% 7% 4% 2% 3

worse 62% 30% 53% 54% 61% 23% 48

PEFT Better 18% 72% 53% * 26% 42% 66% 46

equal 19% 2% 2% 18% 10% 1% 9

worse 63% 26% 45% 56% 48% 34% 45

IPEFT Better 32% 76% 54% 56% * 48% 73% 56

equal 23% 3% 7% 18% 9% 1% 10

worse 45% 21% 39% 26% 43% 26% 34

PPTS Better 37% 74% 61% 48% 43% * 74% 56

equal 8% 2% 4% 10% 9% 1% 6

worse 55% 24% 35% 42% 48% 25% 38

CROSS better 26% 53% 23% 34% 26% 25% * 31

equal 1% 1% 2% 1% 1% 1% 1

worse 73% 46% 75% 66% 73% 74% 68

Frontiers in Environmental Science frontiersin.org12

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

FIGURE 7
The structures of four classes of scientific workflow.

FIGURE 8
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Epigenomic Workflows.

Frontiers in Environmental Science frontiersin.org13

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

FIGURE 9
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Cybershake Workflows.

FIGURE 10
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Ligo Workflows.

FIGURE 11
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Montage Workflows.

Frontiers in Environmental Science frontiersin.org14

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

please refer to (Djigal et al., 2020). In the experiment, we

used epigenomics, montage, ligo and cybershake workflows

containing 50, 100, 200 tasks to evaluate the algorithms. And

we also evaluated the performance of our algorithm on

workflows of Gaussian elimination and molecular

dynamics code.

5.2.1 Epigenomic workflow
Figure 7A depicts the structure of an epigenomic workflow

with 20 tasks. Figure 8A shows the average SLR under

different ccr conditions. When ccr <5, the performance of

the five algorithms is relatively close, and the MPEFT

algorithm performs slightly better. However, when ccr is

FIGURE 12
DAG of molecular dynamic code (A) and Gaussian elimination (B).

FIGURE 13
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Molecular Dynamics Workflows.

Frontiers in Environmental Science frontiersin.org15

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

greater than 5, the MPEFT outperforms other algorithms

significantly, especially when ccr is equal to 20. For various

heterogeneities, MPEFT also outperforms other algorithms

and improves significantly when heterogeneity is 2.0. Finally,

MPEFT performs well for different numbers of processors. As

shown in Figure 8C, by analyzing the characteristics of the

Epigenomic workflow, it can be found that there is no critical

path but several paths of the same process. Therefore, the

algorithms such as CPOP, HEFT, etc. Tend to perform worse

under this workflow since they pay more attention to the

critical path. The MPEFT reduces the impact of the critical

path on the allocated processor by calculating the k value and

achieves better results.

5.2.2 Cybershake workflow
In the simulated scheduling of cybershake workflow, our

algorithm outperforms other list scheduling algorithms in

most scenarios, as shown in Figure 9. As can be seen from

Figure 7B, the workflow has no obvious critical path and the

paths are short, so the scheduling performance based on the

critical path is not satisfied. Among them, the performance of

PPTS is close to that of MPEFT. This is because the PCM of

PPTS takes into account the case where the current task and

immediate successor tasks are placed on the same processor.

In a DAG with a flat structure, PCM can optimize the

scheduling strategy. Since there is no obvious critical path,

the processor allocation strategy of MPEFT is similar to that of

HEFT, that is, the successor tasks are not considered when

assigning tasks.

5.2.3 Ligo workflow
In Ligo workflow, MPEFT has better scheduling efficiency,

as shown in Figure 10. The structure of Ligo is shown in

Figure 7C. When scheduling the task represented by the

yellow node in the first row, since there is only one

successor node, MPEFT will schedule based on the critical

path. When scheduling the task represented by the red node in

the third row, since it has many paths to the exit task, MPEFT

will schedule it to the node that can complete the task as soon

as possible, speeding up the execution of all immediate

successor tasks.

5.2.4 Montage workflow
The Montage Workflow is the worst-performing workflow

type for the MPEFT algorithm in our experiments, as shown in

Figure 11. On this Workflow, the performance of the five

algorithms is very close in general except CPOP and CROSS.

Compared with other algorithms, MPEFT only improves by

1%–3% in most scenarios. And MPEFT performs slightly

worse than PPTS. Because tasks in the latter part of this

kind of workflow are connected one by one, which results

in almost no difference in rankAP of predecessors of these

tasks. The same is true for other algorithms. Thus all

algorithms achieve similar results in the task prioritizing

phase.

5.2.5 Molecular dynamics code
Figure 12A depicts the structure of Molecular Dynamic

Code workflow. The experimental results of Molecular

Dynamics Code are shown in Figure 13. MPEFT also

outperforms the other four algorithms in different

parameter environments. As with the previous experimental

results, MPEFT performs better and better with increasing ccr.

when ccr = .1, MPEFT performs very close to HEFT, PEFT,

and IPEFT. But when ccr = 20, the MPEFT performs

significantly better than other algorithms. Figure 13B shows

that the MPEFT algorithm outperforms most algorithms in

different heterogeneity situations. Especially when

heterogeneity = 2.0, compared with HEFT, CPOP, PEFT,

IPEFT, PPTS and CROSS algorithms, there are 13.1%,

FIGURE 14
Average SLR as function of ccr (A), heterogeneity (B) and number of processors (C) for Gaussian Elimination Workflows.

Frontiers in Environmental Science frontiersin.org16

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

23.6%, 1.9%, 7.0%, 4.8% and 11.8% improvements,

respectively. Under the condition of a different number of

processors, the performance of the MPEFT algorithm is

slightly better than other algorithms. These result shows

that MPEFT still performs well even when the workflow

structure is chaotic and irregular.

5.2.6 Gaussian elimination
Figure 12B gives the graph of Gaussian Elimination

workflow for the special case of m = 4, where m is the

dimension of the matrix. On the Gaussian Elimination

workflow, our algorithm also does not perform

particularly well. As shown in Figure 14, only when the

ccr is 10 and 20, the MPEFT algorithm has obvious

advantages. Under most other conditions, the MPEFT

algorithm only outperforms the CPOP algorithm. By

analyzing the structural characteristics of Gaussian

Elimination workflow, we believe that this is due to the

particularity of the critical path of this type of workflow.

In the Gaussian Elimination workflow, its critical path is very

clear and important. However, since there are many other

paths from the entry task to the exit task, the cost is not much

lower than the critical path. The MPEFT algorithm may

incorrectly estimate the importance of the critical path

due to the influence of other paths.

5.3 Comparison of robustness

We carried out experiments on the makespan standard

deviation of the algorithms on four scientific workflows under

number of tasks, and the results are shown in Table 7. CPOP

algorithm has the worst robustness because it relies heavily on

critical paths of workflows. HEFT and CROSS did not perform

well on montage workflows. The second half of the montage

workflow is a single chain structure as shown in Figure 7 (d),

TABLE 7 Experimental results in terms of makespan standard deviation on real-world workflows.

Algorithm Cybershake (×104) Epigenomics (×106) Ligo (×105) Montage (×103)

50 100 200 50 100 200 50 100 200 50 100 200

HEFT 2.126 3.325 4.427 2.090 2.445 8.333 3.478 3.550 4.394 8.458 10.89 18.43

CPOP 2.454 3.687 5.552 3.045 4.738 10.543 3.505 3.879 5.121 8.238 10.90 18.94

PEFT 2.148 3.360 4.248 2.160 2.454 8.232 3.492 3.580 4.397 7.886 9.393 16.12

IPEFT 2.170 3.365 4.257 2.228 2.498 7.958 3.410 3.299 4.191 7.898 9.348 16.11

PPTS 2.172 3.351 4.225 2.161 2.395 8.034 3.521 3.657 4.426 7.897 9.351 15.99

CROSS 2.182 3.320 4.199 2.097 2.303 8.225 3.398 3.410 4.22 8.293 10.52 17.76

MPEFT 2.156 3.354 4.233 2.137 2.466 6.643 3.400 3.295 4.03 7.910 9.365 16.08

That the bold values indicate the best results of the experiments.

TABLE 8 Experimental Results in Terms of Average Running Time (in usec) on Real-World Workflows.

Algorithm Cybershake Epigenomics Ligo Montage

50 100 200 50 100 200 50 100 200 50 100 200

HEFT 445 969 1,458 427 1,046 1,622 484 1,057 1,502 498 1,163 1,694

CPOP 473 1,058 1,540 466 1,083 1,545 496 1,047 1,506 552 1,305 1803

PEFT 555 1,185 1783 520 1,237 1711 581 1,235 1772 596 1,360 2072

IPEFT 645 1,409 2063 656 1,419 2091 723 1,473 1952 774 1,523 2,164

PPTS 560 1,208 1725 539 1,238 1738 577 1,189 1,578 673 1,471 1971

CROSS 509 1,034 1,501 489 1,187 1,687 524 1,103 1,561 589 1,270 1872

MPEFT 616 1,320 1818 693 1,410 1962 1,045 2035 2,624 809 1,641 2,204

That the bold values indicate the best results of the experiments.

Frontiers in Environmental Science frontiersin.org17

Pu et al. 10.3389/fenvs.2022.996483

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

that is, the critical path is determined. HEFT and CROSS lack

consideration of critical path, resulting in poor performance.

PEFT, IPEFT, PPTS and MPEFT have similar makespan

standard deviations in most scenarios. And on epigenomics

workflows, MPEFT has an obvious advantage when the

number of tasks is large.

5.4 Comparison of running times

The average running time of the algorithm for the number

of four scientific workflow tasks is shown in Table 8. HEFT,

CPOP, and CROSS perform similarly in performance. Because

they do not consider different processors when calculating

priorities, the performance at this stage is better than other

algorithms. The other four algorithms have similar

performance because they calculate priority based on the

processor.

6 Conclusion

This paper proposes a new list-based static scheduling

algorithm based on a heterogeneous platform, MPEFT. First,

MPEFT will sort all tasks in the workflow based on priority,

which is determined by the cost of all offspring of the task. Then,

MPEFT will allocate the sorted tasks to the corresponding

processors in turn based on the number of processors, the

number of successors, and the priority of successors.

Compared with the current list scheduling algorithm based on

the critical path, MPEFT solves the problem that excessive

attention to the critical path leads to reduced scheduling

efficiency. Experiments on SLR and NOBQS show that

MPEFT performs well in terms of makespan compared with

other list-based scheduling algorithms. And through makespan

standard deviation and running time experiments, MPEFT also

has good robustness and operational efficiency.

The current optimization objective of MPEFT is limited to

makespan. Our one future research is to expand MPEFT into a

multi-objective optimization algorithm, such as optimization for

resource utilization.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

The authors would like to thank the reviewers for their

helpful comments.

Funding

This work is supported by the National Key R&D Program of

China (2021YFB2104800) and the National Science Foundation

of China (62177002).

Acknowledgments

The authors would like to thank the anonymous reviewers for

their helpful comments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Arabnejad, H., and Barbosa, J. G. (2013). List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE Trans. Parallel
Distributed Syst. 25, 682–694.

Boeres, C., Filho, J. V., and Rebello, V. E. F. (2004). “A cluster-based
strategy for scheduling task on heterogeneous processors,” in 16th
symposium on computer architecture and high performance computing
(IEEE), 214–221.

Chen, H., Zhu, X., Liu, G., and Pedrycz, W. (2018). Uncertainty-aware online
scheduling for real-time workflows in cloud service environment. IEEE Trans. Serv.
Comput. 14, 1167–1178. doi:10.1109/tsc.2018.2866421

Djigal, H., Feng, J., Lu, J., and Ge, J. (2020). Ippts: An efficient algorithm for
scientific workflow scheduling in heterogeneous computing systems. IEEE
Trans. Parallel Distributed Syst. 32, 1057–1071. doi:10.1109/tpds.2020.
3041829

Djigal, H., Feng, J., and Lu, J. (2019). Task scheduling for heterogeneous
computing using a predict cost matrix. In Proceedings of the 48th International
Conference on Parallel Processing: Workshops, 1–10.

Duan, Q., Quynh, N. V., Abdullah, H. M., Almalaq, A., Do, T. D., Abdelkader, S.
M., et al. (2020). Optimal scheduling and management of a smart city within the
safe framework. IEEE Access 8, 161847–161861. doi:10.1109/access.2020.3021196

Frontiers in Environmental Science frontiersin.org18

Pu et al. 10.3389/fenvs.2022.996483

https://doi.org/10.1109/tsc.2018.2866421
https://doi.org/10.1109/tpds.2020.3041829
https://doi.org/10.1109/tpds.2020.3041829
https://doi.org/10.1109/access.2020.3021196
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

frs69wq (2012). Daggen: A synthetic task graph generator. Available at: https://
github.com/frs69wq/daggen (Accessed December 18, 2022).

Houssein, E. H., Gad, A. G., Wazery, Y. M., and Suganthan, P. N. (2021). Task
scheduling in cloud computing based on meta-heuristics: Review, taxonomy, open
challenges, and future trends. Swarm Evol. Comput. 62, 100841. doi:10.1016/j.
swevo.2021.100841

Hu, B., Cao, Z., and Zhou, M. (2019). Scheduling real-time parallel applications in
cloud to minimize energy consumption. IEEE Trans. Cloud Comput. 10, 662–674.
doi:10.1109/tcc.2019.2956498

Li, H.,Wang, B., Yuan, Y., Zhou,M., Fan, Y., and Xia, Y. (2021a). Scoring and dynamic
hierarchy-based nsga-ii for multiobjective workflow scheduling in the cloud. IEEE Trans.
Automation Sci. Eng. 19, 982–993. doi:10.1109/tase.2021.3054501

Li, H., Wang, D., Zhou, M., Fan, Y., and Xia, Y. (2021b). Multi-swarm co-
evolution based hybrid intelligent optimization for bi-objective multi-workflow
scheduling in the cloud. IEEE Trans. Parallel Distributed Syst. 33, 2183–2197.
doi:10.1109/tpds.2021.3122428

Li, J. (2020). Resource optimization scheduling and allocation for hierarchical
distributed cloud service system in smart city. Future Gener. Comput. Syst. 107,
247–256. doi:10.1016/j.future.2019.12.040

Madhura, R., Elizabeth, B. L., and Uthariaraj, V. R. (2021). An improved list-
based task scheduling algorithm for fog computing environment. Computing 103,
1353–1389. doi:10.1007/s00607-021-00935-9

NoorianTalouki, R., Shirvani, M. H., and Motameni, H. (2022). A heuristic-based
task scheduling algorithm for scientific workflows in heterogeneous cloud
computing platforms. J. King Saud University-Computer Inf. Sci. 34, 4902–4913.
doi:10.1016/j.jksuci.2021.05.011

Pham, T.-P., and Fahringer, T. (2020). Evolutionary multi-objective workflow
scheduling for volatile resources in the cloud. IEEE Trans. Cloud Comput. 10,
1780–1791. doi:10.1109/tcc.2020.2993250

Sulaiman, M., Halim, Z., Waqas, M., and Aydın, D. (2021). A hybrid list-based
task scheduling scheme for heterogeneous computing. J. Supercomput. 77,
10252–10288. doi:10.1007/s11227-021-03685-9

Tong, Z., Chen, H., Deng, X., Li, K., and Li, K. (2020a). A scheduling scheme in
the cloud computing environment using deep q-learning. Inf. Sci. 512, 1170–1191.
doi:10.1016/j.ins.2019.10.035

Tong, Z., Deng, X., Chen, H., Mei, J., and Liu, H. (2020b). Ql-heft: A novel
machine learning scheduling scheme base on cloud computing
environment. Neural Comput. Appl. 32, 5553–5570. doi:10.1007/s00521-
019-04118-8

Topcuoglu, H., Hariri, S., and Wu, M.-Y. (2002). Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. parallel
distributed Syst. 13, 260–274. doi:10.1109/71.993206

Tuli, S., Casale, G., and Jennings, N. R. (2021). Mcds: Ai augmented workflow
scheduling in mobile edge cloud computing systems. IEEE Trans. Parallel
Distributed Syst. 33, 1–2807. doi:10.1109/tpds.2021.3135907

Wang, H., and Sinnen, O. (2018). List-scheduling versus cluster-scheduling.
IEEE Trans. Parallel Distributed Syst. 29, 1736–1749. doi:10.1109/tpds.2018.
2808959

Wang, Y., and Zuo, X. (2021). An effective cloud workflow scheduling approach
combining pso and idle time slot-aware rules. IEEE/CAA J. Automatica Sinica 8,
1079–1094. doi:10.1109/jas.2021.1003982

Wu, Q., Zhou, M., and Wen, J. (2021). Endpoint communication contention-
aware cloud workflow scheduling. IEEE Trans. Automation Sci. Eng. 19, 1137–1150.
doi:10.1109/tase.2020.3046673

Wu, Q., Zhou, M., Zhu, Q., Xia, Y., and Wen, J. (2019). Moels: Multiobjective
evolutionary list scheduling for cloud workflows. IEEE Trans. Automation Sci. Eng.
17, 166–176. doi:10.1109/tase.2019.2918691

Zheng, X., Li, M., and Guo, J. (2021). Task scheduling using edge
computing system in smart city. Int. J. Commun. Syst. 34, e4422. doi:10.
1002/dac.4422

Zhou, N., Qi, D., Wang, X., Zheng, Z., and Lin, W. (2017). A list scheduling
algorithm for heterogeneous systems based on a critical node cost table and
pessimistic cost table. Concurrency Comput. Pract. Exp. 29, e3944. doi:10.1002/
cpe.3944

Frontiers in Environmental Science frontiersin.org19

Pu et al. 10.3389/fenvs.2022.996483

https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1016/j.swevo.2021.100841
https://doi.org/10.1109/tcc.2019.2956498
https://doi.org/10.1109/tase.2021.3054501
https://doi.org/10.1109/tpds.2021.3122428
https://doi.org/10.1016/j.future.2019.12.040
https://doi.org/10.1007/s00607-021-00935-9
https://doi.org/10.1016/j.jksuci.2021.05.011
https://doi.org/10.1109/tcc.2020.2993250
https://doi.org/10.1007/s11227-021-03685-9
https://doi.org/10.1016/j.ins.2019.10.035
https://doi.org/10.1007/s00521-019-04118-8
https://doi.org/10.1007/s00521-019-04118-8
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/tpds.2021.3135907
https://doi.org/10.1109/tpds.2018.2808959
https://doi.org/10.1109/tpds.2018.2808959
https://doi.org/10.1109/jas.2021.1003982
https://doi.org/10.1109/tase.2020.3046673
https://doi.org/10.1109/tase.2019.2918691
https://doi.org/10.1002/dac.4422
https://doi.org/10.1002/dac.4422
https://doi.org/10.1002/cpe.3944
https://doi.org/10.1002/cpe.3944
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.996483

	MPEFT: A novel task scheduling method for workflows
	1 Introduction
	2 Background
	3 Related work
	4 The proposed algorithm MPEFT
	4.1 Task prioritizing phase
	4.2 Processor selection phase
	4.3 Detailed description of the MPEFT algorithm
	4.4 Case study

	5 Experiment
	5.1 Randomly generated application graphs
	5.1.1 Random graph generator
	5.1.2 Result

	5.2 Real-world application graphs
	5.2.1 Epigenomic workflow
	5.2.2 Cybershake workflow
	5.2.3 Ligo workflow
	5.2.4 Montage workflow
	5.2.5 Molecular dynamics code
	5.2.6 Gaussian elimination

	5.3 Comparison of robustness
	5.4 Comparison of running times

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

