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Long-term lake surface water temperature (LSWT) products are valuable for

understanding the responses of lake ecosystems to climate warming and for

proposing suitable policies to protect lake ecosystems. Here, using Landsat

satellite data and various in situ data, we documented 36 years (1986–2021) of

spatiotemporal variations in LSWT in LakeQiandaohu, a subtropical deep-water

lake in China, and explored the potential driving factors of these variations. We

validated the performances of the practical single-channel (PSC) algorithm, the

generalized single-channel algorithm and the Landsat Level 2 land surface

temperature product on Lake Qiandaohu with long-term in situ buoy data.

Overall, the PSC algorithm had the best performance, with a mean absolute

percent error (MAPE) of 7.5% and root mean square difference (RMSE) of 1.7°C.

With 36 years of Landsat data and the PSC algorithm, the spatiotemporal

variations in LSWT were constructed. The Landsat-derived 36-year mean

LSWT in Lake Qiandaohu ranged from 18.2 to 23.1°C, with a mean value of

20.2°C. The northeast and southwest subsegments had the minimum (19.7°C)

andmaximum (20.6°C) mean LSWT values, respectively. The spatial variations in

LSWT could be explained in part by the water depth. From 1986 to 2021, a

significant warming trendwas observed in LakeQiandaohu, with awarming rate

of 0.07°C/year. The warming rate of Lake Qiandaohu was faster than that of the

local air temperature (warming rate = 0.04°C/year). The LSWT warming in Lake

Qiandaohu can mainly be attributed to the warming air temperatures. Lake

warming has increased the thermal stability in Lake Qiandaohu and has had

negative impact on the lake ecosystem. Our work highlights the importance of

using satellite data to understand the responses of lake ecosystems to climate

change.
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1 Introduction

The Lake surface water temperature (LSWT), a critical lake

physical variable, is an indicator of climate change (Adrian et al.,

2009; Woolway et al., 2020) and can provide insight into water

quality (Yang et al., 2018), lake thermal structures (O’Reilly et al.,

2003; Coats et al., 2006; Kraemer et al., 2015) and lake ecosystem

processes (Verburg et al., 2003; Winslow et al., 2017). In the

context of global warming, LSWTs have warmed in many lakes

and reservoirs over the past several decades (Schneider and

Hook, 2010; O’Reilly Catherine et al., 2015). For example, the

summertime LSWT in Lake Superior increased by 2.5°C from

1979 to 2006 (Austin and Colman, 2007). Lake Baikal has

experienced LSWT warming over the past 60 years and the

LSWT has increased by 1.21°C since 1946 (Hampton et al.,

2008). The LSWT in Lake Tahoe increased from1970 to

2002 at an average rate of 0.015°C/year (Coats et al., 2006).

Lake warming may promote cyanobacterial growth (Huisman

et al., 2018), deteriorate the water quality (Yang et al., 2018),

increase the strength and duration of thermal stratification

(Arhonditsis et al., 2004; Zhang Y. et al., 2014) and reduce the

oxygen content in the water column (Elçi, 2008).

To understand the impacts of climate change on lakes,

protect the water quality and propose effective lake

management measures, it is crucial to accurately monitor

LSWTs, characterize spatiotemporal LSWT variation, and

identify the potential driving forces of LSWTs. In situ LSWT

measurements mainly come from ship-based and buoy

monitoring data, which can provide accurate LSWT data but

tend to have spatial representative limitations. In addition, long-

term historic in situ LSWT data are rare. Satellite-inferred LSWT

data have the ability to retrospectively examine spatiotemporal

variations in LSWT with fine spatial and temporal resolutions.

Thus, LSWTs have been remotely estimated from different

satellite data using various LSWT retrieval algorithms (Becker

and Daw, 2005; Schneider et al., 2009; Yang K. et al., 2019; Liu

et al., 2019; Najwa et al., 2019; Xie et al., 2022). Among the

various satellite data available, Landsat-series data have

advantages in long-term data availability and fine spatial

resolutions. Thus, Landsat data are suitable for documenting

long-term LSWT variations. Besides, the Landsat land surface

temperature product derived from Landsat series data has

provided by the United States Geological Survey (USGS) in

recent years. The Landsat land surface products are widely

used to monitoring physical environment and natural

resources, and are considered as a useful land surface

temperature product (Duan et al., 2021).

On the other hand, many LSWT remote estimating

algorithms, including the radiative transfer equation (RTE)

algorithm (Coll et al., 2012), the generalized single-channel

(GSC) algorithm (Jiménez-Muñoz and Sobrino, 2003;

Jimenez-Munoz et al., 2009), the practical single-channel

(PSC) algorithm (Wang et al., 2019), the mono-window

(MW) algorithm (Qin et al., 2001) and the split window (SW)

algorithm (Jimenez-Munoz and Sobrino, 2008), have been widely

used to extract LSWTs from satellite imagery (Debnath et al.,

2018; Najwa et al., 2019; Vanhellemont, 2020). The RTE

algorithm retrieves LSWTs from a single thermal infrared

band using a radiative transfer model with inputs of

atmospheric profiles. However, accurately estimating

atmospheric profiles is difficult for certain study areas at

specific times (Li et al., 2013). Similarly, the difficulty in using

the MW algorithm is accurately estimating the atmospheric

transmittance and mean atmospheric temperature (Sobrino

et al., 2004). To reduce the dependency on atmospheric

parameters, the SW algorithm was developed. The SW

algorithm retrieves LSWTs from two thermal infrared bands

and does not require that any atmospheric parameters are input.

Unfortunately, the SW algorithm is not suited to Landsat-series

data because 1) the Landsat 4, 5 and 7 satellites only have one

thermal infrared band and 2) the thermal infrared band 11 in

Landsat 8 is affected by stray light and is not recommended for

LSWT retrievals (Montanaro et al., 2014). Compared to the RTE,

MW and SW algorithms, the GSC and PSC algorithms are more

practical for remotely estimating LSWTs (Wang et al., 2019). For

the GSC and PSC algorithms, only one atmospheric parameter,

the atmospheric water vapor content, is needed as an input, and

this parameter can be easily obtained from various open-source

products.

The long-term temporal LSWT variations and its

influencing factors vary among different lakes (O’Reilly

Catherine et al., 2015). Previous studies have focused mainly

on midlatitude oligotrophic and eutrophic lakes (Coats et al.,

2006; Austin and Colman, 2007; Hampton et al., 2008; Najwa

et al., 2019). However, few studies have revealed the

spatiotemporal variations in the LSWT and related factors in

subtropical, oligotrophic-to-mesotrophic human-made lakes.

Thus, it is necessary to explore the spatiotemporal variations in

the LSWT and related influencing factors in subtropical,

oligotrophic-to-mesotrophic human-made lakes. Lake

Qiandaohu is a subtropical, oligotrophic-to-mesotrophic,

artificial lake (Li et al., 2020). In addition to the flood

control and hydropower generation functions provided by

this lake, Lake Qiandaohu is an important drinking water

source, fish-farming site and tourism attraction (Li et al.,

2020). Thus, Lake Qiandaohu plays a crucial role in regional

aquatic ecology protection and social and economic

development. However, Lake Qiandaohu has encountered
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several aquatic environmental problems in recent years (Zhang

Y. et al., 2014; Li et al., 2020). Given that the LSWT is a sentinel

of lake ecosystems, it is important to investigate the

spatiotemporal variations in the LSWT and in the related

influencing factors in Lake Qiandaohu.

The aims of our study are to 1) evaluate the performances of

the GSC algorithm, PSC algorithm and the Landsat land surface

temperature product in retrieving LSWTs on Lake Qiandaohu; 2)

retrospectively examine the spatiotemporal variations in LSWT

from 1986 to 2021 with Landsat satellite data; 3) analyze the

potential influencing factors of the spatiotemporal LSWT

variations and 4) discuss the implications of LSWT variations

on the thermal structure of the lake.

2 Data and methods

2.1 Study area

The largest artificial freshwater lake in East China (water

area = 580 km2, water volume = 178.4 × 108 m3), Lake Qiandaohu

(118°35′E-119°15′E, 29°20′N-29°50′N), is deep, monomictic, and

oligotrophic-to-mesotrophic lake that, as a centralized drinking

water source, supplies drinking water to more than 15 million

people (Figure 1) (Li et al., 2020). Lake Qiandaohu has many

small tributaries and more than 1,000 small islands distributed

throughout the lake. As an artificial lake built in 1959, Lake

Qiandaohu contains three types of water zones, including the

riverine zone, transition zone and lacustrine zone (Li et al., 2017).

The riverine zone has three lake segments, including the

northwest segment (NW), northeast segment (NE) and

southwest segment (SW) (Figure 1). The transition zone and

lacustrine zone are the central segment (C) and southeast

segment (SE), respectively (Figure 1).

Over the past several decades, the climate and land use

conditions in Lake Qiandaohu and its catchment have

experienced significant changes (Li et al., 2020). The local air

temperatures displayed an increasing trend from 1960 to 2016 at

an increasing rate of 0.13°C/decade (Li et al., 2020). The

Qiandaohu catchment has a basin area of 11452.5 km2, and

approximately 80% of this area is covered by forests and

grasslands (Li et al., 2020). The impervious land area in the

Qiandaohu catchment has displayed a rapidly increasing trend

over the past several decades (Li et al., 2020). Huangshan city,

located in the upstream region of the Qiandaohu catchment, had

a population of 148.85 × 104 people and a gross domestic product

(GDP) of 850.4 × 102 million Chinese yuan (CNY) in 2020 and is

a famous tourism attraction. Chun’an County, where Lake

Qiandaohu is located, had a population of 45.62 × 104 people

and a GDP of 240.62 × 102 CNY in 2020. Huangshan city and

Chun’an County account for approximately 92% of the area of

the Qiandaohu catchment and contribute more than 90% of the

GDP of the Qiandaohu catchment.

2.2 In situ LSWT data

There are 14 buoys deployed in Lake Qiandaohu and these

buoys cover the whole lake and different water types (Figure 1).

At each buoy station, a YSI EXO2 7-channel multiparameter

sonde (YSI Inc., Yellow Springs, OH) was equipped and used to

measure the water temperature; the water temperature at a depth

of 0.5 m below the water surface was used to validate various

Landsat-derived LSWT products (Liu et al., 2015; Najwa et al.,

FIGURE 1
Location and land cover and land use types of the Qiandaohu catchment (A) and the spatial distributions of buoys andmeteorological station in
Lake Qiandaohu (B).
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2019). The temporal resolution of the water temperature

measurements of the four buoys was 4 hours, and the

measuring times were 00:00, 04:00, 08:00, 12:00, 16:00 and 20:

00 every day. The other ten buoys measured the water

temperature every half hour. LSWT data were collected from

1 February 2016, to 31 October 2020. Thus, the in situ LSWT data

measured at 10:30 and 12:00 were considered quasi-synchronous

LSWT data because the overpass time of the Landsat satellite over

Lake Qiandaohu was approximately at 10:30 a.m. local time. A

total of 220 in situ LSWT data were matched with cloud-free

Landsat images.

2.3 Landsat series data collection and
preprocessing

A 36-year Landsat dataset (1986–2021), including Landsat 5,

7 and 8 collection 1 Level 1 Tier 1 raw data, was collected to

document the spatiotemporal variations in LSWT. A total of

1,061 Landsat images were obtained from Google Earth Engine

(GEE). The spatial resolution of the thermal infrared band in

Landsat series data is approximately 100 m, but these data were

resampled herein to 30 m. Landsat Level 1 Tier 1 data are

intercalibrated across different sensors and are suitable for

long-term pixel-level analyses (Li et al., 2020). All the Landsat

images were visually checked; 181 Landsat images were totally

covered by clouds, and 880 valid Landsat images were used to

remotely estimate the LSWTs. The temporal distribution of the

utilized Landsat images is displayed in Supplementary Figure S1.

Three preprocessing procedures were conducted on the

Landsat-series imageries, including cloud masking, radiometric

calibration and water-land boundary masking. Pixels containing

clouds or cloud shadows were masked with the Fmask algorithm

(Zhu and Woodcock, 2012). The Landsat-series data was

radiometrically calibrated with the GEE function ee.

Algorithms.Landsat.calibratedRadiance. The retrieved LSWTs

could exhibit relatively large uncertainties in the boundary

region of Lake Qiandaohu due to the effect of mixed water-

land pixels. Thus, one pixel at the water-land boundary was

masked to reduce the uncertainties in the remote LSWT

estimations (Li et al., 2022). The Landsat-series data

preprocessing was performed in the GEE platform. Landsat

7 Enhanced Thematic Mapper Plus data affected by stripes

were not used to retrieval LSWT to reduce uncertainties.

2.4 LSWT retrieval algorithms and landsat
land surface temperature product

We selected the PSC algorithm (Wang et al., 2019), GSC

algorithm (Jiménez-Muñoz and Sobrino, 2003; Jimenez-Munoz

et al., 2009; Jiménez-Muñoz et al., 2014) and Landsat land surface

temperature product to retrieve LSWTs and evaluate the

performances of these algorithms over Lake Qiandaohu.

For the PSC algorithm, LSWTs were calculated using the

following two equations:

LSWT �
c2
λ

ln( c1
λ5B(LSWT) + 1) (1)

B(LSWT) � a0 + a1w + (a2 + a3w + a4w
2) 1
ε
+ (a5 + a6w + a7w

2) 1
ε
Lsen

(2)

where λ is the effective wavelength, B (LSWT) is the radiance of

Planck corresponding to LSWT, c1 and c2 are 1.19104 ×

108 W. μm4•m−2•sr−1 and 1.43877 × 104 μm K., respectively, ε

is the water surface emissivity with ε = 0.9926 (Vanhellemont,

2020), w is the atmospheric water vapor content and Lsen is the

at-sensor radiance. In our study, λ is the effective wavelength of

Landsat 5 Band 6, Landsat 7 Band 6 and Landsat 8 Band 10. The

ai values (i = 0, 1, . . . , 7) corresponding to Landsat 5, 7 and 8 were

taken from Wang et al. (2019).

For the GSC algorithm, LSWTs were calculated using the

following four equations:

LSWT � γ(1
ε
(φ1Lsen + φ2) + φ3) + δ (3)

γ ≈
λT2

sen

c2Lsen

(4)

δ ≈ Tsen − λT2
sen

c2
(5)

Tsen � K2

ln(K1

Lsen
+ 1) (6)

where λ is the effective wavelength, Lsen is the at-sensor radiance,

Tsen is the at-sensor brightness temperature, ε is the water surface

emissivity, c2 = 1.43877 × 104 μm K., K1 and K2 are two constant

values obtained from the Landsat metadata files, and φi (i = 1, 2,

3) is an atmospheric function that can be modeled with the

atmospheric water vapor content using a second-order

polynomial. The equation used to calculate φi (i = 1, 2, 3)

from the atmospheric water vapor content is displayed below:

⎡⎢⎢⎢⎢⎢⎣φ1

φ2

φ3

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎣ c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣w
2

w
1

⎤⎥⎥⎥⎥⎥⎦ (7)

where cij (i = 1, 2, 3; j = 1, 2, 3) are constant values taken from

Jimenez-Munoz et al. (2009) and Jiménez-Muñoz et al. (2014)

and w is the atmospheric water vapor content. Here, the

atmospheric water vapor content data were obtained from the

water vapor dataset provided in National Centers for

Environmental Prediction/National Center for Atmospheric

Research Reanalysis Data from the GEE platform. The values

of λ and ε were same to that used in the PSC algorithm.
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In recent years, the USGS has provided a Landsat land

surface temperature product in the Landsat collection 2 level

2 Tier 1 data. These Landsat land surface temperature products

have been validated in many regions around the world and have

achieved well-accepted performances (Malakar et al., 2018; Duan

et al., 2021). Landsat-based LSWT data were derived from the

PSC algorithm, the GSC algorithm and the Landsat land surface

temperature product in the GEE platform.

2.5 Auxiliary data

To analyze the potential factors influencing the long-term

spatiotemporal variations in LSWT identified on Lake

Qiandaohu, meteorological data, socioeconomic data and

land-cover data were collected. Meteorological data measured

at the Chun’an meteorological station (119°01′E, 29°37′N),
including daily mean air temperature (°C), rainfall (mm),

wind speed (m/s), air pressure (hPa), relative humidity (%)

and sunshine duration (h) data, were collected from 1985 to

2021 and downloaded from the National Meteorological

Information Center (http://data.cma.cn/). The population and

GDP (CNY) data of Chun’an County from 1985 to 2021 were

collected from the Zhejiang statistical yearbook (http://data.cnki.

net/Yearbook). Land-cover data of Chun’an County with a 30-m

spatial resolution from 1985 to 2020 were obtained from the Data

Sharing and Service Portal (https://data.casearth.cn/en/). This

land-cover product contains 29 land-cover types and has a 5-year

temporal resolution (Zhang et al., 2021). Impervious surface area

(ISA) (km2) data were extracted from the land-cover product.

2.6 Statistical analyses

2.6.1 Analysis of the spatiotemporal variations in
LSWT

Spatially, the variations in LSWT were described at whole-

lake scale and lake-segment scale; temporally, the variations in

LSWT were described at seasonal and monthly scale. Four

statistical values, mean, minimum, maximum and standard

deviation, were used to elucidate the spatial and temporal

variations in LSWT. Two steps were performed to calculate

the spatiotemporal variations in LSWT. First, the Landsat-

derived LSWTs were averaged at spatial and temporal scales

using the corresponding valid Landsat images. Furthermore, the

values of minimum, maximum, mean and standard deviation

were extracted from the averaged LSWT. The spatiotemporal

variations in LSWT were performed in ENVI (version 5.3) and

ArcGIS (version 10.6).

In our study, monotonic increasing or decreasing LSWT

trends over the past 36 years were detected with Mann-Kendall

(MK) tests (Mann, 1945; Kendall, 1948). In these tests, if the

statistic variable Z is positive, it indicates that the LSWT

displayed a linear increasing trend (Li et al., 2020). Otherwise,

a linear decreasing trend is observed if Z is negative.

Furthermore, the slope of the linear LSWT trend was

measured by Sen’s slope (Sen, 1968). Sen’s slope estimator is a

useful index for analyzing long-term trends in hydrological and

meteorological data (Gocic and Trajkovic, 2013). Sen’s slope is

more accurate than traditional linear regression, especially for

nonnormally distributed data. In addition, Sen’s slope is

insensitive to outlier data (Yang Q. et al., 2019). Finally, the

linear trend in the long-term LSWT data was displayed using a

linear model with Sen’s slope and its corresponding intercept.

The MK test and Sen’s slope were calculated in R (version 4.2.0),

and statistical significance was defined when p < 0.05. Therefore,

four types of long-term LSWT trends were classified, including

significantly increased, nonsignificantly increased, significantly

decreased and nonsignificantly decreased trends.

2.6.2 Analysis of the driving forces of the long-
term LSWT trend

Eight variables, including the annual GDP and POP in

Chun’an County, annual mean air temperature (AT), annual

mean wind speed (WS), annual mean relative humidity (RH),

annual mean air pressure (AP), annual accumulated sunshine

duration (SSD) and annual accumulated rainfall (RF), were

selected as independent variables to elucidate the potential

driving forces of the obtained long-term LSWT trend.

Stepwise regression and the Akaike information criterion

(AIC) estimator were used to select the best model for

predicting the long-term LSWT trend. The best model was

selected only if the model had the lowest AIC value and the

model’s p value was less than 0.05. The proportion of variance in

lake warming explained by the variables in the selected model

was determined by analysis of variance (ANOVA) (Tao et al.,

2015). Stepwise regression analysis and ANOVAwere performed

in R with the step function in the stats package.

3 Results

3.1 Validation of various landsat-derived
LSWT products

The matched in situ LSWT data ranged from 10.93 to 33.0°C,

with a mean value of 20.66°C, and covered four seasons. The

Landsat-based LSWT data derived from the PSC algorithm, GSC

algorithm and Landsat land surface temperature product were

validated with buoy observations (Figure 2). The performances of

these Landsat-derived LSWT products were evaluated with the

mean absolute percent error (MAPE) and root mean square

difference (RMSE). The PSC-derived LSWT product showed the

best performance, with an MAPE value of 7.5% and RMSE value

of 1.7°C. The Landsat land surface temperature product had the

largest RMSE value (2.0°C). Specifically, the GSC-derived LSWTs
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(MAPE = 10.1%, RMSE = 1.9°C) and Landsat land surface

temperature product (MAPE = 9.6%, RMSE = 1.8°C) had

better accuracies than the PSC-derived LSWT (MAPE =

10.5%, RMSE = 1.9°C) when the in situ LSWT ranged from

10 to 20°C. When the in situ LSWTs were larger than 20°C, the

PSC-derived LSWT data showed the best performance (MAPE =

4.8%, RMSE = 1.5°C). In addition, the GSC-derived LSWT and

Landsat land surface temperature product underestimated and

overestimated the LSWT, respectively, when the in situ LSWTs

were larger than 30°C (Figure 2). Therefore, the PSC algorithm

was selected to retrieve LSWTs in Lake Qiandaohu.

3.2 Spatial LSWT variations

The LSWTs derived from 880 Landsat images were averaged

to elucidate the spatial LSWT variations in Lake Qiandaohu

(Figure 3). Furthermore, the minimum, maximum, mean and

standard deviation 36-year averaged LSWTs were calculated at

FIGURE 2
Validation results of Landsat-based LSWT data derived from the PSC algorithm (A), GSC algorithm (B) and Landsat land surface temperature
product (C).

FIGURE 3
36-year (1986–2021) averaged LSWTs in Lake Qiandaohu.
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the whole-lake scale and lake-segment scale. Overall, the 36-year

averaged LSWT had a mean value of 20.2°C, with values ranging

from 18.2 to 23.1°C. Specifically, the mean Landsat-derived

LSWTs in the C segment, NE segment, NW segment, SE

segment and SW segment were 20.2°C, 19.7°C, 20.0°C,

20.1 and 20.6°C, respectively. Thus, a clear upward trend in

LSWT was displayed from the NE segment to the SW segment.

However, the spatial LSWT variation from the NW segment to

the SE segment was relatively stable. Moreover, the minimum

standard deviation LSWT values were observed in the C segment

and SE segment (0.3°C), while the maximum standard deviation

LSWT was observed in the NW segment (0.4°C).

3.3 Seasonal LSWT variations

The Landsat-derived LSWTs were averaged at the seasonal

and monthly scales (Figures 4, 5). The Lake Qiandaohu LSWTs

clearly had seasonal variations, with theminimum seasonal mean

value recorded in winter (December to February) (11.1 ± 0.6°C)

and the maximum value recorded in summer (June to August)

(27.9 ± 0.5°C). At the lake-segment spatial scale, the minimum

seasonal mean LSWT values occurred in the NE segment (10.6 ±

0.7°C) and SW segment (10.6 ± 0.5°C) in winter, whereas the

maximum seasonal mean LSWT occurred in the NW segment

(28.2 ± 0.4°C) in summer. In addition, the minimum and

maximum mean LSWTs in different seasons occurred in

different segments (Supplementary Figure S2). For example, in

winter, the NE segment and SW segment had the minimum

mean LSWTs, while the SE segment (11.5 ± 0.5°C) had the

maximum mean LSWT. However, the C segment (27.7 ± 0.3°C)

and NW segment (28.2 ± 0.4°C) had the minimum and

maximum mean LSWTs in summer, respectively.

The monthly mean LSWTs in Lake Qiandaohu had

minimum and maximum values in February (9.4 ± 0.4°C) and

July (29.1 ± 0.5°C), respectively. The monthly LSWT distribution

in the lake segments was similar to that in the whole lake except

for the SW segment. In the SW segment, the minimum and

FIGURE 4
Spring (A), summer (B), autumn (C) and winter (D) averaged LSWTs in Lake Qiandaohu.
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maximum mean LSWTs occurred in January (9.1 ± 0.8°C) and

July (28.9 ± 0.6°C), respectively.

3.4 Long-term LSWT trend

The Landsat-derived LSWTs were averaged at the annual

scale to display the interannual variation (Supplementary

Figure S3) and long-term trend in LSWT (Figure 6). The

annual averaged LSWT in Lake Qiandaohu ranged from

17.1 ± 1.4°C in 1987 to 25.1 ± 1.3°C in 1994. The peak of

annual averaged LSWT in the C segment (24.9°C), NE segment

(24.5°C), NW segment (24.5°C), SE segment (24.6°C) and SW

segment (26.4°C) were observed in 1994. Meanwhile, the lowest

annual averaged LSWT in the C segment (17.5°C), NE segment

(16.8°C), NW segment (15.8°C), SE segment (17.1°C) and SW

segment (15.5°C) occurred in 1987, 2003, 1993, 1986 and 1993,

respectively.

FIGURE 5
Monthly averaged LSWT in Lake Qiandaohu from 1986 to 2021. (A–L) represent January to December, respectively.
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Overall, a significant increasing trend in the LSWT in Lake

Qiandaohu was observed with a Z value of 2.6 at the 95%

confidence level. Similarly, significant increasing trends were

also observed in the C segment (Z = 2.7, p < 0.05), NE

segment (Z = 2.4, p < 0.05), NW segment (Z = 2.3, p < 0.05)

and SE segment (Z = 3.2, p < 0.05). The long-term LSWT trend in

the SW segment was increasing with a Z value of 1.5, but this

trend was statistically nonsignificant. Specifically, the mean

LSWT increased annually by 0.07°C from 1986 to 2021 in

Lake Qiandaohu and increased by approximately 2.5°C from

1986 to 2021. The magnitude of the annual increment in the

mean LSWT in the whole lake was equal to the annual

increments in the C segment and NE segment but less than

the annual increments in the NW segment (Sen’s slope = 0.09°C/

year) and SE segment (Sen’s slope = 0.10°C/year). The minimum

magnitude of the mean LSWT change slope was observed in the

FIGURE 6
Long-term LSWT trends in Lake Qiandaohu (A), the C segment (B), NE segment (C), NW segment (D), SE segment (E) and SW segment (F).
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SW segment (Sen’s slope = 0.06°C/year), but this slope was

statistically nonsignificant.

Approximately 65.6%, 34.2% and 0.3% of the area of Lake

Qiandaohu displayed significant increases, nonsignificant

increases and nonsignificant decreases in the LSWT over the past

36 years, respectively (Figure 7A). Specifically, all segments

displayed warming trends except the SW segment, and

approximately 1.0% of the area of the SW segment displayed a

nonsignificant decreasing trend in the LSWT. Significant LSWT

warming trends were identified in 80.2%, 65.9%, 45.5%, 94.8% and

25.3% of the C, NE, NW, SE and SW segments, respectively. In

addition, the magnitude of these trends exhibited clear spatial

heterogeneity (Figure 7B). For example, approximately 19.8% of

the areaof the SE segmenthadwarming rates larger than0.1°C/year,

whereas thiswas observed inonly 1.4%of the area of theC segment.

4 Discussion

4.1 Driving force for spatial variation in
LSWT

Water depth is a critical parameter that impacts LSWT

dynamics due to its ability to regulate the amplitude and the

FIGURE 7
Spatial distribution of the long-term LSWT trend (A) and its magnitude (B) in Lake Qiandaohu.

FIGURE 8
Water depths of Lake Qiandaohu (A) and scatter plot of the relationship between the water depth and 36-year averaged LSWT (B).
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spatial variation in LSWT (Becker and Daw, 2005). For example,

relatively high daytime LSWTs were observed in East Lake Taihu

due to the low water depth and long, narrow shape of this

segment (Liu et al., 2015). Lake Qiandaohu is a deep lake, and the

water depth of Lake Qiandaohu has clear spatial variations

(Figure 8). Specifically, the lacustrine zone and the riverine

FIGURE 9
Long-term (1985–2021) changes in POP (A), GDP (B) and ISA (C), AT (D), RF (E), WS (F), SSD (G), RH (H) and AP (I). s represents the Sen’s slope.
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zone have the highest (46.8 m) and lowest (32.7 m) mean water

depths, respectively. Among the three riverine segments, the SW

segment and NW segment have the minimum (30.6 m) and

maximum (34.9 m) mean water depths, respectively. The 36-year

averaged LSWT was significantly negatively correlated with the

water depth (R2 = 0.08, p < 0.001) (Figure 8). This result implied

that relatively shallow areas have higher LSWTs than relatively

deep areas, which could be attributed to shallow areas being

easier to heat with solar radiation than deeper areas. Becker and

Daw (2005) found that shallow depth areas are strongly impacted

by solar radiation and inflow water. Therefore, the shallowest

segment, the SW segment, had the largest 36-year averaged

LSWT. In addition, the shallow depth areas are mainly

distributed in the riverine zone, which usually has relatively

low water clarity (Li et al., 2020). Low water clarity can

reduce the light penetration depth, trap heat in the surface

water and, finally, increase the LSWT (Read and Rose, 2013).

Therefore, spatial LSWT variations could be attributed in part to

the water depth.

4.2 Driving force of LSWT warming

The social and economic environment in Chun’an County

and the physical environment in Lake Qiandaohu experienced

profound changes from 1985 to 2021 (Figure 9). Over the past

37 years, Chun’an County has experienced a rapid

urbanization process. The POP, GDP and ISA in Chun’an

County increased from 42.72×104, 2.7×108 CNY and

11.21 km2 to 45.62×104, 255.17×108 CNY and 39.78 km2,

respectively. On the other hand, significant long-term trends

in climatic factors were observed in Lake Qiandaohu over this

period (Figure 9). For example, the AT in Lake Qiandaohu

displayed a significant increasing trend (Z = 4.6, p < 0.05),

with a Sen’s slope of 0.04°C/year, and increased by

approximately 1.5°C over the past 37 years. In contrast, the

SSD and AP in Lake Qiandaohu displayed significant

decreasing trends, with Sen’s slope of −5.1 h/year

and −0.02 hPa/year, respectively.

Many potential drivers for warming LSWTs have been

explored including the AT (Zhang G. et al., 2014; Piccolroaz

et al., 2018), RF (Wan et al., 2018), WL (Zhang G. et al., 2014),

water clarity (Rose et al., 2016), lake-specific morphology

(water depth, water area, water storage) (Becker and Daw,

2005; Xie et al., 2022) and land use and land cover (Tan

et al., 2020). Among these factors, the AT is widely

considered a main driving factor for LSWT warming (Fink

et al., 2014). For example, the LSWT warming recorded in Lake

Baikal (Hampton et al., 2008), Lake Superior (Austin and

Colman, 2008), Lake Ladoga (Naumenko et al., 2006),

11 lakes in the Yunnan-Guizhou Plateau (Yang et al., 2020)

and 31 lakes in the Tibetan Plateau (Zhang G. et al., 2014) could

be primarily attributed to increased ATs. In Lake Qiandaohu,

the long-term LSWT trend is consistent with the long-term AT

trend; both of these variables exhibit significant upward trends.

The annual mean Landsat-derived LSWT was significantly

correlated with the annual mean daily AT (r = 0.43, p <
0.05). The relatively low strength of the correlation between

LSWT and AT could be attributed to the spatial and temporal

differences between Landsat data and in situ meteorological

data. At the daily temporal scale, a strong and significant

correlation was observed between the mean Landsat-derived

LSWT in Lake Qiandaohu and the mean AT (r = 0.95, p < 0.05).

This result implied that AT is one of the main driving factors

affecting LSWT warming in Lake Qiandaohu.

The potential effects of human and climatic factors on long-

term LSWT variations were analyzed with stepwise regression

(Table 1). Overall, AT was found to be the dominant factor

affecting LSWT warming in Lake Qiandaohu, and explained

87.35% of the variance in the LSWT warming. In addition, AT is

the main driving factor affecting LSWT warming in each

subsegment of the lake except the C segment. GDP was the

main contributor to the LSWT variations in the C segment and

explained 83.88% of the variance in the LSWT warming. These

results indicate that human activities have a stronger impact on

the LSWTs in urban areas than in other areas. The C segment is

spatially nearest to Chun’an County among the five lake

segments. With the increased GDP over the past 30 years, the

ISA and population in Chun’an County displayed upward trends

(Figure 9). Under the background of rapid urbanization and

population growth, the urban heat island effect increased, which

may have increased the LSWTs. Our results are consistent with

the factors affecting LSWT warming in urban lakes. For example,

the expansion of ISA and increased population were found to be

themain driving forces affecting LSWTwarming in Lake Dianchi

and Lake Qilu (Yang K. et al., 2019). Xu et al. (2013) found that

ISA had a larger impact on the land surface temperature variation

in Xiamen City than other land cover types, such as water and

vegetation.

In addition to the AT and GDP, the decreasing water clarity

is another potential driving force affecting LSWT warming.

Water clarity can influence underwater light attenuation,

vertical heat partitioning and outward heat fluxes (Rinke

et al., 2010; Read and Rose, 2013; Rose et al., 2016). For

example, the water clarity in Lake Crystal significantly

decreased at a rate of 2.2%/year from 1981 to 2011. The

LSWT warming in Lake Crystal was accelerated by the

decreasing water clarity (Rose et al., 2016). Lakes with

declining water clarity trends could experience surface water

heating more easily and face larger outward heat fluxes (Pilla

et al., 2018). In addition, the lake temperatures in deep-water

lakes are more sensitive to water clarity changes (Gorham, 1964;

Rose et al., 2016). Li et al. (2020) reported that water clarity in

Lake Qiandaohu declined approximately 0.2 m from 1986 to

2016. The significant decreasing water clarity trend could

partially contribute to the LSWT warming in Lake Qiandaohu.
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4.3 Implications for the lake thermal
structure

Many lakes and reservoirs worldwide have warmed over the

past several decades, with varied warming rates (Schneider and

Hook, 2010; O’Reilly Catherine et al., 2015; Xie et al., 2022). From

1986 to 2021, the LSWTs of Lake Qiandaohu displayed a

significant increasing trend, with a warming rate of 0.07°C/year.

This significant LSWT warming trend in Lake Qiandaohu is

consistent with the trends identified in many lakes worldwide

(O’Reilly Catherine et al., 2015). found that the LSWT change rates

of 235 lakes globally ranged from −0.07°C/year to 0.13°C/year from

1985 to 2009 and displayed clear spatial variations. Lake Michigan

and Lake Huron have shown significant warming trends from

1976 to 2006, with warming rates of 0.065°C/year and 0.086°C/

year, respectively (Austin and Colman, 2007; Fink et al., 2014). It is

notable that the warming rate of the LSWTs in Lake Qiandaohu

was faster than the warming rate of AT in Chun’an County over

the past 36 years Woolway and Merchant (2017) found that the

LSWT warming rates in deep lakes more easily exceed those of

regional ATs. In addition, changes in water clarity (Rose et al.,

2016) and the timing of stratification (Austin and Colman, 2007)

could also explain the different warming trends between the LSWT

and AT.

Two linear models have been developed to estimate the

thermocline depth (TD) and thermocline thickness (TT) from

surface (0–2 m) water temperature (T) data in Lake Qiandaohu

(Zhang Y. et al., 2014). Specifically, the TD has a significant

negative relationship with T during the weakening period of

stratification (July-February) (TD = -1.68×T+55.66, R2 = 0.94);

the TT has a significant positive relationship with T (TT =

1.29×T-13.19, R2 = 0.91). Over the past 36 years, the LSWTs

increased by 2.5°C based on the warming rate of 0.07°C/year.

Thus, there was an approximately 4.2-m decrease in the TD

during the weakening period of stratification and a 3.2-m

increase in the TT according to these two linear models.

Zhang Y. et al. (2014) found that the AT and T increased by

1.2 and 0.8°C from 1951 to 2012, resulting in a 1.4-m TD decrease

during the weakening period of stratification and a 1.1-m TT

increase. Compared to the results derived from Zhang Y. et al.

(2014), our results may reflect uncertainty in overestimating the

TD and TT changes. In our study, the TD and TT were calculated

from the Landsat-derived LSWTs (water temperatures at 0.5 m

below the water surface), which could be higher than the mean

water temperature over the 0–2-m range. In addition, Zhang Y.

et al. (2014) established an empirical linear model between the

AT and T with in situ measurements, and this model indicated

that every 1°C increase in the AT could result in an approximately

0.729°C increase in T. However, our study revealed that the

LSWT has a faster warming rate than the AT. Therefore, the

above two reasons could result in larger TD and TT estimates

than the results of Zhang Y. et al. (2014).

In addition to the decreased TD and increased TT, the

stratification timing would advance with LSWT warming (Lee

et al., 2012; Zhang Y. et al., 2014).Woolway andMerchant (2017)

investigated 144 lakes worldwide and found that the start date of

lake stratification and the length of the stratification period were

significantly negatively and positively correlated with the mean

surface AT, respectively. On the other hand, an earlier lake

stratification start date would amplify the LSWT response to

the AT (Austin and Colman, 2007; Woolway and Merchant,

2017). With increased thermal stability, many problems in

aquatic ecosystems have been observed, including increases in

the frequency and area of algal blooms, changes in the

composition of functional phytoplankton and decreases in

primary productivity (Zhu et al., 2019). Therefore,

understanding the amplification of LSWTs to ATs and

quantitatively estimating of the spatial and temporal variations

in the thermal structure could help policy-makers design

efficiency measures to protect aquatic ecosystems.

5 Conclusion

The LSWT products derived for Lake Qiandaohu from the

PSC algorithm, GSC algorithm and Landsat Level 2 data were

validated with long-term buoy data, and the PSC algorithm

showed the best performance, with an MAPE value of 7.5%

and RMSE value of 1.7°C. With 36 years of Landsat data and the

PSC algorithm, we retrospectively examined the spatial and

temporal LSWT variations in Lake Qiandaohu. Spatially, the

36-year mean LSWT in Lake Qiandaohu was 20.2°C, and the NE

TABLE 1 Stepwise regression analysis results of the impacts of human and climatic factors on LSWT warming in Lake Qiandaohu and in each
subsegment of the lake.

Lake
Qiandaohu

C NE NW SW SE

Variable MS SS(%) MS SS(%) MS SS(%) MS SS(%) MS SS(%) MS SS(%)

GDP — — 12.11 83.88* — — — — — — — —

AT 17.22 87.35* — — 23.10 90.51* 16.46 81.44* 15.27 77.90 22.14 91.99*

Residuals 2.49 12.65 2.33 16.12 2.42 9.49 3.75 18.56 4.33 22.10 1.93 8.01

*p < 0.05; MS, represents mean squares; SS, represents the proportion of variances explained by the variable.
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and SW segments had the minimum (19.7°C) and maximum

(20.6°C) mean LSWT values, respectively. Temporally, a

significant upward LSWT trend was observed, with a warming

rate of 0.07°C/year. Specifically, approximately 65.6% of the area

of Lake Qiandaohu displayed a significantly increasing LSWT

trend over the past 36 years. The spatial variations in LSWT

could be explained in part by the water depth. The warming

LSWTs in Lake Qiandaohu were main attributed to the warming

AT. Based on the LSWT warming rate, the TD decreased by

4.2 m and the TT increased by 3.2 m over the past 36 years.

In this work, we analyzed spatiotemporal LSWT variations,

elucidated the response of LSWT to AT and quantitatively

estimated the changes in TD and TT; our results could be

useful for local authorities in making policies to protect the

health of aquatic ecosystems under global warming. Our findings

highlight the importance of using satellite data to reveal the

historic variations in and potential driving forces of LSWTs.
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