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Urban trees provide multiple ecosystem services (ES) to city residents and are

used as environmentally friendly solutions to ameliorate problems in cities

worldwide. Effective urban forestry management is essential for enhancing ES,

but challenging to develop in densely populated cities where tradeoffs between

high ES provision and issues of periodic disaster-caused risks or maintenance

costs must be balanced. With the aim of providing practical guidelines to

promote green cities, this study developed an AI-based analytical approach

to systematically evaluate tree conditions and detect management problems.

By using a self-organizing map technique with a big dataset of Taipei street

trees, we integrated the ES values estimated by i-Tree Eco to tree attributes of

DBH, height, leaf area, and leaf area index (LAI) to comprehensively assess their

complex relationship and interlinkage. We found that DBH and leaf area are

good indicators for the provision of ES, allowing us to quantify the potential loss

and tradeoffs by cross-checking with tree height and the correspondent ES

values. In contrast, LAI is less effective in estimating ES than DBH and leaf area,

but is useful as a supplementary one. We developed a detailed lookup table by

compiling the tree datasets to assist the practitioners with a rapid assessment of

tree conditions and associated loss of ES values. This analytical approach

provides accessible, science-based information to appraise the right species,

criteria, and place for landscape design. It gives explicit references and

guidelines to help detect problems and guide directions for improving the

ES and the sustainability of urban forests.
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1 Introduction

In urban areas, trees are used as nature-based solutions to ameliorate environmental

problems arising from global warming and urbanization (Robinson and Lundholm, 2012;

Abdi et al., 2020). They provide a range of ecosystem services (ES) to improve the livability

of metropolitan environments and mitigate urban environmental degradation (Revelli

and Porporato, 2018; Miao et al., 2021; Koricho et al., 2022; Speak et al., 2022), including
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reducing air pollution (Nowak and Crane, 2000; Nowak et al.,

2006; Miao et al., 2021), regulating water and climate, recreation

and promoting quality of life (Jansson, 2013; Riondato et al.,

2020). Maintaining or enhancing the ES provided by trees is an

important task for urban forestry managers. This mission is

typically managed by multiple tasks, like planting, regular

maintenance and inspecting, long-term monitoring, and

curing tree diseases to increase the aesthetics and functions of

urban trees to improve the effectiveness and sustainability of the

urban green infrastructure.

In large cities, with extensive networks of streets and urban

plantings, the urban forestry plan can be highly complex,

challenging local governments and communities to manage

the urban forest estate (Pataki et al., 2021). For example, in

Taipei, the capital of Taiwan with 2.6 million people, there are

more than eighty-thousand street trees in the city. These trees are

regularly maintained for multiple social objectives, such as

attractive shapes, increasing light penetration, improving air

movement, and providing aesthetic views (Clark and

Matheny, 2010; Ryder and Moore, 2013). Taipei street trees

are also routinely pruned during periodic typhoons or storm

seasons to reduce risks of property damage and threats to lives

from tree failures, but the intensive pruning may cause potential

losses in ES (Wei and Cheng, 2022). However, the status of the

present ES to the optimal ES provision is rarely assessed.

Quantification of ES is a useful instrument to raise awareness

of biodiversity conservation, attract public attention and

engagement, evaluate compensation for damage/loss to natural

capital, influence policy, and determine policy effectiveness (Sang

et al., 2021). Valuation of ES provided by urban trees can aid

understanding of the role of trees in sustaining people’s well-

being, and drive the protection of trees, investment in tree

planting, and improvement of resilience by urban forestry

planning (Nytch et al., 2019; Riondato et al., 2020; Koricho

et al., 2022; Speak et al., 2022). While many studies have

developed methods to value ES provided by trees, most

require a considerable effort to quantify values related to

energy savings, water-related disaster avoidance, and carbon

sequestration and storage (Livesley et al., 2016; McPherson

et al., 2016; Berland et al., 2017; Tsoka et al., 2021) and rely

on extensive (often unavailable) datasets or measurements of

trees and environmental conditions involving complex mixes of

spatial-temporal scales (Revelli and Porporato, 2018; Zinia and

Mcshane, 2021). Most of the time, the complex parameterization

and data requirements limit the accessibility or applicability of

such methods.

The i-Tree Eco (http://www.itreetools.org/eco/) is a widely-

used, open-access, and reliable software developed by the US Forest

Service in 2006 to estimate the various ES values provided by

individual trees and forest stands (USDA Forest Service, 2016). It

requires minimum input data of tree species, DBH, and height, or

more detailed information on crown length and crownwidth. Users

also need to define the regional climate and upload local

meteorological measurements, to give reference for adjusting the

variations in tree growth to local weather and environmental

conditions (Riondato et al., 2020). By uploading the surveyed

information of trees to the i-Tree Eco, users will receive the

estimated ES and ES values of each tree from the i-Tree (Nowak

and Crane, 2000; Riondato et al., 2020; Koricho et al., 2022).

However, the estimates of ES of the individual tree are simply

numbers that do not point out if the trees have health problems or

provide governance suggestions, nor do they cover efficient

indicators of ES for the frontline personnel (Speak et al., 2022).

In this study, we sought to develop an AI-based method

integrating the urban forestry inventory with the ES estimates

to support improved urban forestry management for promoting a

greener urban city. Our tool harnessed comprehensive

information on tree attributes, functions, and benefits

for >87,000 street trees in Taipei, Taiwan, with an advanced

AI-based approach of a self-organizing map (SOM). It can be

used as a rapid evaluation tool that helps gain organized knowledge

from big data in assisting systematic assessment of tree conditions

and examination of potential ES loss for urban forestry planning in

a real-world setting. Here, we describe the development of the new

analytical method to explore the associations of tree attributes to

ES and provide critical information and readily searchable lookup

tables for fast and efficient inspection for improving urban forestry

management and ecosystem services.

2 Materials and methods

We assembled inventory data for a total of 87,014 Taipei

street trees from 2015 to 2017 provided by the Parks and Street

Lights Office of the Taipei City Government. The inventory

contains complete information on diameter at breast height

(DBH) > 1 cm, total tree height, tree species, habitat form,

and GPS coordinates. We applied the i-Tree Eco Version

6.0.14. (http://www.itreetools.org/eco/) (USDA Forest Service,

2016) to evaluate the ES values of each street tree on carbon

sequestration, runoff avoidance, and air pollution removal. Then

these values were summed as the gross ES. Input data prepared

and uploaded to i-Tree Eco include tree ID, species, location in

GPS, DBH, tree total height, hourly meteorological observations

of temperature, precipitation, wind, humidity, and air pollutant

fluxes in 2015. Measurements for crown size (i.e., crown width

and crown length) were lacking for all the street trees, so crown

width was estimated using the empirical DBH-crown width

equations embedded in i-Tree Eco for applicable species,

family, or order, with an assumption of a circular shape for

even crown width in every direction. The crown length was set as

half of the total tree height (rather than estimates for naturally

open-grown trees of 0.78; USDA Forest Service, 2016), to reflect

the reality of smaller crown lengths in Taipei due to intensive

pruning practices that remove a certain proportion of leaves and

branches from trees (Badrulhisham and Othman, 2016).
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The massive urban forestry information reflects the complex

interaction of trees with the surroundings or represents the

outcomes from the disturbances by nature and anthropogenic

activities. Interpreting such information can be challenging for

urban forestry management. A simple classification can aid

efficient efforts in urban forestry governance by determining the

systematic relation of tree attributes to the provision of ES. To avoid

subjective and arbitrary classifications, we employed an artificial

intelligence (AI) technique— a self-organizing map (SOM) for a

primary task of unsupervised clustering (Cheng et al., 2018; Chen

et al., 2020) based on the big datasets of 87,014 Taipei street trees.

The SOM applies a competitive learning procedure to the discrete

input space of the training datasets to produce a reduced

dimensional visualization in a feature map (Chang et al., 2017;

Tsai et al., 2017). This technique has been used to identify potential

impacts or problems among complex interactions and processes

(Cheng et al., 2018) based on multidimensional datasets for

resource planning (Chang et al., 2017), disaster forecasting

(Chen et al., 2020; Chang et al., 2021), and urban forest

management (Klobucar and Subasic, 2012). Variables were

selected based on the criteria of 1) basic measurements in the

tree inventory, including tree attributes of DBH and height, and 2)

commonly-used ES indicators, including leaf area and LAI. By

bundling these four variables from the 87,014 street trees to their

correspondent ES of carbon sequestration, runoff avoidance,

pollution removal, and gross ES estimated by i-Tree Eco, we

implemented a SOM analysis using MATLAB 2017a software.

Values of each variable were transformed into an unbiased

formation from 0 to 1 by an independent normalization process.

To preserve the topological properties of the input space, a

Gaussian neighborhood function was applied to train different

map sizes of SOM. The optimal size of SOM (i.e., the primary

clustering size) was determined by the criteria of local minimum

quantization error (QE) and topographic error (TE) (Kohonen,

2001). The quantization error (QE) estimates the average distance

between the input vector and the weight vector of its best-matching

unit, and is calculated by (Tsai et al., 2017; Chen et al., 2020):

QE � 1
n
∑n

i�1‖xi − uc‖

where xi is the input vector, uc is the vector of the best-matching

unit, and n is the number of data vectors. The topographic error

(TE) considers the number of input vectors to which the best-

and second-matching units are not adjacent, and is

approximated by (Tsai et al., 2017; Chen et al., 2020):

TE � 1
n
⎡⎣∑n

i�1u(xi)⎤⎦

where u (xi) is set to 1 if the second-matching unit is not adjacent

to the best-matching unit. We chose to produce a hexagonal

lattice topological SOM map that displays the signal density of

the topological structure and statistical characteristics of input

patterns for pattern recognition, classification, and interpretation

purposes.

Then based on the patterns of the ES in SOM, we re-classified

the clusters into fewer categories representing the level of ES

provision. For practical purposes, the simplified categories can

structure the extent of the provision of ES according to the

measured tree attributes. Furthermore, with the information

assembled from the big data, a lookup table can be established

for each tree species because of their physiological similarity. The

lookup table can support a quick ES examination for the

practitioners in the field to check the status of ES provision by

using the measurements of DBH, height, and leaf area index (LAI).

Lastly, we provide an example of applying this tool to assess the

potential loss of ES from the long-term effects of natural and/or

anthropogenic disturbances and highlight improvement areas.

The steps in our approach are summarized in Figure 1, starting

from the assemblage of tree inventory data for an investigation of the

current status of the street tree community, evaluating their ES

values, clustering by a SOM analysis, synthesizing for efficient gross

ES estimates, examining the potential loss of ES, and providing

reference and guidelines for urban forestry management.

3 Results

In this study, we assess the structure and ES values of a total of

87,014 Taipei street trees containing a high diversity of 215 species.

FIGURE 1
The flow chart of the study presents the general framework of
the AI-based approach allowing assessment and detection of
hidden problems and issues for urban forestry management.
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The DBH of street trees ranges from 1 to over 100 cm, with the

majority covering the DBH from 15 to 30 cm (37.9%) and

30–60 cm (36.5%), while small DBH trees (1–15 cm) account

for 21.7%, and trees with DBH over 60 cm are about 3.8%

(Table 1 and Figure 2). Based on the i-Tree Eco estimates, the

highest ES value provided by each individual street tree was on

average the carbon sequestration, valued at $3.45 USD, followed by

the ES of air pollution removal at $2.3 USD, and the lowest for the

ES of runoff avoidance of $1.9 USD per tree per year.

Determined by the quantization error (QE) and topographic

error (TE), the primary clustering size of SOM was 16 (i.e., 4 ×

4 neurons) for visualization and exploration purposes (Figure 3).

The SOM preserved a distance gradient among clusters to classify

the street trees by multi-relationships among individual tree’s

attributes of DBH and height, LA, LAI, and their ES values for

carbon sequestration, runoff avoidance, air pollution

removal, and gross ES. The color patterns demonstrated

similar trends of ES values of carbon sequestration, runoff

avoidance, and pollution removal to the gross ES. Their color

patterns all transited from black in neuron I at the lower-left

corner to a yellow color in neuron XVI at the upper-right

corner. The color codes denoted the values. Values from low

to high were represented by black, dark brown, brown, red,

orange, light orange, and yellow across the clusters (Figure 3).

Therefore, based on the level of ES patterns in the SOM, we

further simplified the 16 clusters into four categories

representing the superior, good, fair, and poor levels of the

gross ES (Figure 3).

The DBH and leaf area displayed similar color patterns to

various ES values, showing their close associations (Figure 3).

The variable height was not directly associated with the various

ES values. The highest value of height shown in yellow color

appeared in the upper right corner, the same as the DBH, leaf

area, and various ES values, but the transit patterns differed. The

top three highest values of height were lined up from right to left

in neurons XVI, XV, XIV, and XIII. The pattern of LAI was the

most different one among the variables (Figure 3). The highest

value of LAI shown in yellow color appeared in neuron XIII, and

its adjacent neurons of IX and XIV presented the next highest

values shown in red colors. The top five species dominant in the

most clusters were Liquidamber formosana, Bischofia javanica,

Ficus microcarpa, Koelreuteria elegans, and Cinnamomum

camphora, in contrast to the dominant species of Roystonea

regia, Livistona chinensis, Washingtonia filifera, and Melaleuca

TABLE 1 Summary of the top 10 species of the Taipei street trees in quantity (N), population percentage (%), percentage by DBH classification, and
mean DBH (cm).

Species N Proportion (%) Percentage by DBH (%) Mean DBH (cm)

<15 15-30 30–60 >60

Ficus microcarpa 12,985 14.9 6.6 24.6 57.5 11.4 40.1

Bischofia javanica 9,522 11.0 15.8 41.7 41.3 1.3 28.4

Cinnamomum camphora 8,629 9.9 11.9 36.8 47.4 3.9 32.2

Liquidamber formosana 6,785 7.8 36.9 37.7 24.4 1.0 22.4

Koelreuteria elegans 6,669 7.7 20.7 58.9 20.3 0.1 23.2

Melaleuca leucadendra 4,917 5.7 3.0 27.2 59.9 9.8 39.5

Alstonia scholaris 4,227 4.9 2.4 27.2 63.0 7.4 39.2

Terminalia mantaly 2,542 2.9 11.9 55.1 32.7 0.3 26.9

Lagerstroemia speciosa 2,098 2.4 39.3 52.9 7.9 0.0 18.5

Millettia pinnata 2,008 2.3 21.7 72.3 6.0 0.1 20.4

Overall Street Trees 87,014 100.0 21.7 37.9 36.5 3.8 28.7

FIGURE 2
Location and DBH distribution of the street trees in Taipei city
with local green infrastructure information.
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leucadendra in neurons XIII, IX, and XVI that determined the

discrepancies of LAI in the SOM (Figure 3).

Based on the SOM results, we extracted species-specific

information and explored the associations among tree

attributes to various ES by scatter plots using Cinnamomum

camphora (a fast-growth species) and Koelreuteria elegans (a

moderate-growth species) as examples (Figure 4). We found a

non-linear relationship between DBH and various ES of carbon

sequestration, runoff avoidance, pollution removal, and gross ES,

in which the variations of ES estimates were greater in larger

DBH (Figure 4). In contrast, leaf area showed a linear

relationship with ES of runoff avoidance and pollution

removal, but non-linear for carbon sequestration and gross ES

(Figure 4). Height and LAI showed much larger variations in the

associations to various ES than those seen with DBH or leaf area

(Figure 4). Nonetheless, we did not find species-specific

variability between leaf area to runoff avoidance or to

pollution removal. The relationships were identical among

different species (Figure 4).

We further investigated the relationships among DBH to leaf

area, height, and LAI, and the results also appeared non-linear

(Figure 5). The variations between DBH to height or LAI were

much larger than those with gross ES or leaf area (Figure 5).

Based on the upper boundary of the superior category, we

obtained the estimated highest ES values. Underneath the

estimated highest ES values presented the potential loss of ES.

Results showed remarkable potential losses of ES for most DBH

sizes of trees (Figure 5 and Table 2). Results found the highest

potential loss in gross ES and in leaf area in the poor category,

followed by the fair and the good, and the least in the superior

category. We generated a table showing the percentage of the

potential loss by individual species (Table 2). For example, for

FIGURE 3
SOM map with 16 neurons (i.e., 4 × 4) representing associations of DBH, height, leaf area, and LAI, to the ES of carbon sequestration, runoff
avoidance, pollutant removal, and gross ES. The lower left presented the re-classification into four categories of superior (yellow), good (orange), fair
(red), and poor (brown) gross ES with neuron numbers of the SOM from I to XVI and the number of input records (shown in blue) in each neuron. The
lower right listed the top 3 species in the 16 clusters.
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Ficus microcarpa, based on their current conditions, the average

potential loss of gross ES in each neuron was estimated from 2.6%

to 22.4%, in which neurons I to IV in the category of poor ES

values had the largest potential loss, around 20% less than the

estimated highest ES values (Table 2). The potential loss

gradually decreased with the categories from poor to superior,

FIGURE 4
Based on the SOM, we used Cinnamomum camphora (a fast-growth species) and Koelreuteria elegans (a moderate-growth species) as
examples to show the individual species’ associations of DBH, height, leaf area, and LAI to carbon sequestration, pollution removal, runoff avoidance,
and gross ES by scatter plots.
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such as the trend seen in neurons from 21.6% (neuron IV), 18.0%

(neuron VIII), 15.0% (neuron XII) to 8.9% (neuron XVI),

respectively. Negative values were found in Table 2, meaning

that the actual gross ES of the tree was higher than the estimated

highest. This is because the performance references were

calculated as the average of the top 5%, when some

individuals possessed higher ES values, it would result in

negative values.

The leaf area in the SOM results appeared similar trends to

the various ES (Figure 3), demonstrating that the loss in leaf area

can be directly associated with the loss of various ES, which was

also reflected in the scatter plots a positive and linear influence of

leaf area on runoff avoidance and pollution removal (Figure 4).

Therefore, disturbances from either natural or anthropogenic

disturbances, like windthrow or pruning can result in losses of

leaf area, and in turn cause losses in ES. According to the

inventory data, around 32.6% of Taipei street trees

experienced less than 15% leaf area loss and 33.1% around

16–25% leaf area loss. Analysis results indicated that around

25.9% of trees underwent more than 25% leaf area loss (Table 3).

The results revealed that for some tree species, the percentage loss

of ES values was smaller than the correspondent percentage loss

in leaf area, like Ficus microcarpa, Bischofia javanica,

Cinnamomum camphora, Koelreuteria elegans, and Melaleuca

leucadendra (Table 2). For other tree species, like Liquidambar

formosana, and the palm trees of Roystonea regia, Livistona

chinensis, and Washingtonia filifera, a greater percentage loss

of ES values was found than the percentage loss in the leaf area

(Table 2).

Results also found that trees with larger DBH can provide

greater ES. Particularly the trees with DBH greater than

60 cm were mostly grouped in the superior category of

gross ES. Nonetheless, results also showed that many of

these big trees possessed notable potential loss of ES. For

example, Cinnamomum camphora with DBH greater than

60 cm had an average percentage loss of 7.4% in gross ES in

neuron XVI (Table 2). Considerable variations in the height,

leaf area, or LAI representing potential losses in the gross ES

were observed for trees grouped in the superior category

(Figure 5).

The unique color pattern between DBH and LAI shown in

the SOM result (Figure 3) was investigated by a scatter plot with a

projected canopy cover (Cc) on the x-axis to the leaf area on the

y-axis (Figure 6). We found different DBH distributions to the

values of LAI from species to species. For example, the DBH of

Cinnamomum camphora and Koelreuteria elegans distributed

FIGURE 5
Based on the SOM, we display the individual species’ (e.g.,Cinnamomumcamphora here) associations of DBH to gross ES, leaf area, height, and
LAI by scatter plots to detect potential issues for improving urban forestry management and enhancing ES.
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TABLE 2 Examples of the percentage loss of gross ES and leaf area to the estimated highest values at DBH for dominant species clustered in each neuron with the number of individual trees (N).

Species Neuron I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI

Ficus microcarpa N 825 576 958 863 132 478 714 1553 12 324 898 1295 0 508 1236 2610

Gross ES 22.1% 22.4% 19.7% 21.6% 10.3% 10.2% 12.3% 18.0% −2.4% 5.6% 7.5% 15.0% NA 2.6% 3.5% 8.9%

Leaf Area 30.2% 31.3% 28.9% 33.4% 13.8% 14.3% 18.3% 28.8% −3.2% 8.1% 11.3% 24.2% NA 4.1% 5.6% 15.8%

Bischofia javanica N 1306 718 801 455 491 986 728 879 40 430 705 495 17 421 594 456

Gross ES 14.8% 15.7% 13.7% 15.3% 10.8% 10.2% 10.7% 15.6% 1.3% 4.2% 5.4% 14.6% −10.4% 0.9% 1.7% 7.6%

Leaf Area 22.7% 25.3% 22.5% 25.2% 17.6% 16.7% 17.6% 25.3% 2.2% 7.0% 9.0% 23.6% −16.7% 1.5% 2.8% 13.1%

Cinnamomum camphora N 783 355 496 243 513 804 443 514 42 482 911 741 2 467 878 955

Gross ES 16.9% 17.0% 18.2% 19.4% 11.7% 12.2% 12.1% 15.6% −0.9% 7.6% 7.7% 12.4% −8.8% 2.6% 3.8% 7.4%

Leaf Area 23.8% 25.3% 26.9% 29.1% 17.2% 18.0% 18.0% 23.5% −1.2% 11.2% 11.5% 19.0% −13.3% 3.9% 5.8% 12.7%

Liquidambar formosana N 2287 51 14 2 1346 319 21 5 564 1028 124 6 23 745 233 17

Gross ES 25.0% 38.0% 37.6% 38.5% 25.8% 27.7% 29.1% 24.4% 16.9% 17.6% 22.4% 12.7% −15.5% 8.3% 4.4% 0.1%

Leaf Area 19.9% 34.2% 34.5% 33.7% 23.6% 25.0% 24.9% 18.8% 16.1% 16.5% 19.1% 8.1% −15.6% 7.4% 3.3% 0.0%

Koelreuteria elegans N 888 566 769 296 574 780 700 383 118 460 617 238 8 128 91 53

Gross ES 15.8% 18.3% 15.9% 19.4% 11.9% 9.7% 9.8% 13.3% 3.6% 5.0% 5.2% 8.4% −9.4% −0.5% 1.5% 3.9%

Leaf Area 20.9% 25.4% 22.1% 27.4% 16.3% 13.5% 13.5% 18.5% 4.9% 6.9% 7.2% 11.7% −13.0% −0.8% 2.1% 5.5%

Melaleuca leucadendra N 143 133 319 268 284 327 172 490 31 345 181 381 3 409 389 1042

Gross ES 6.6% 12.4% 12.9% 17.7% 7.7% 6.8% 10.5% 17.6% 2.4% 2.6% 5.8% 14.1% −5.2% 0.9% 1.2% 6.9%

Leaf Area 13.8% 25.9% 24.4% 30.1% 17.3% 13.8% 18.6% 27.9% 5.3% 5.2% 10.1% 21.7% -10.8% 1.6% 1.9% 10.2%

Roystonea regia N 10 0 0 0 0 0 0 0 188 0 0 0 1612 0 0 0

Gross ES 69.2% NA NA NA NA NA NA NA 52.7% NA NA NA 28.4% NA NA NA

Leaf Area 67.3% NA NA NA NA NA NA NA 51.0% NA NA NA 27.1% NA NA NA

Livistona chinensis N 226 1 0 0 1 0 0 0 156 0 0 0 372 0 0 0

Gross ES 57.2% 0.0% NA NA 28.9% NA NA NA 35.9% NA NA NA 16.3% NA NA NA

Leaf Area 55.2% 0.0% NA NA 27.8% NA NA NA 34.5% NA NA NA 15.7% NA NA NA

Washingtonia filifera N 7 0 0 0 0 0 0 0 6 0 0 0 46 0 0 0

Gross ES 18.0% NA NA NA NA NA NA NA 23.0% NA NA NA 15.6% NA NA NA

Leaf Area 17.5% NA NA NA NA NA NA NA 22.1% NA NA NA 15.1% NA NA NA
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from 1 to 100 cm and 2 to 72 cm, respectively, while the plum tree

of Roystonea regia ranged from 10 to 73 cm and Livistona

chinensis from 7 to 73 cm, with a DBH more centered from

20 to 40 cm (Figure 6). However, the projected canopy cover of

plum trees was much smaller, resulting in larger LAI at values of

8 to 18.5 than the range of LAI from 2 to 6 for Cinnamomum

camphora and Koelreuteria elegans (Figure 6).

4 Discussion

In this study, we evaluated the conditions of the 87,014 street

trees in Taipei. Extensive variations in the ES functions and

values provided by trees were found driven by tree size and

species traits. With the knowledge extracted from big data by the

SOM approach, we are able to provide useful indicators of ES and

rapid examination information for management. The best

indicators/predictors of ES provision were DBH and leaf area.

Height was found to determine the potential loss of ES, due to

their being largely influenced by management practices or

natural disturbances. The LAI of some species may be biased

and is suggested as a supplementary indicator for the valuation

of ES.

The use of this AI-based approach may emerge potential

internal strengths and weaknesses and external opportunities and

threats. Integrated by the SOM technique the bottom-up in-situ

information of the tree attributes with the ES value estimations in

the i-Tree Eco, our approach provides strengths in extracting

from big data the efficient indicators of the commonly measured

tree attributes to the level of ES provision and deriving easy-to-

use lookup tables. Despite the complex and process-based models

used in the i-Tree Eco to evaluate various ES values from various

variables, the big-data mining of the 87,014 street trees revealed a

strong association between ES values and DBH and leaf area. For

annual carbon sequestration, the i-Tree Eco calculated the

TABLE 3 Frequency distribution for potential leaf area loss based on
the inventory data.

Leaf area loss (%) Number of trees Proportion (%)

<5 6,132 7.0

5–10 9,373 10.8

10–15 12,829 14.7

16–20 14,811 17.0

21–25 13,994 16.1

26–30 9,660 11.1

31–35 5,684 6.5

36–40 3,042 3.5

41–45 1,857 2.1

46–50 1,116 1.3

>50 1,228 1.4

NA 7,288 8.4

FIGURE 6
Scatter plots of DBH to LAI, and projected canopy cover to leaf area using examples of (A)Cinnamomumcamphora (B) Koelreuteria elegans, (C)
Roystonea regia, and (D) Livistona chinensis.
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difference between carbon storage in successive years by

classifying species into slow, moderate, and fast-growth

species with different fixed growth rates, and then adjusted by

different lengths of growing seasons in different climatic zones,

competition status, and tree conditions (Nowak, 2020). The

increase of DBH is calculated by the growth rate and then

transformed into gross carbon sequestration by species-

specific allometric equations. Based on the results, DBH was

found to be the most efficient indicator for carbon sequestration.

In Lin et al. (2020), DBH was as well reported the greatest

influence on carbon sequestration. Since DBH is a relatively easy

and widely measured variable in on-site forestry inventories,

when encountering time, budget, and labor constraints, DBH can

be used as the first choice to give a reasonable estimate of ES

values. In contrast, height and LAI showed different patterns

from that of various ES and gross ES. Similar DBH sizes were

found to be clustered into different neurons, in which lower ES

correspondent with lower heights. Height, in forest plantations, is

used to assess site quality (Carmean, 1975), but in an urban

setting, a lower height may imply several other possibilities, like

maintenance practices, intensive pruning (Ryder and Moore,

2013; Fini et al., 2015; Wei and Cheng, 2022), bad health

conditions, aging, inappropriate environment (Sanders and

Grabosky, 2014), or windthrow and natural-disaster-caused

consequences (Qin et al., 2022), than simply a reflection of

the site condition. Our approach offers an explicit standard

and convenient execution to help assess the status of the trees

and their ES provision. A systematic evaluation of tree conditions

also helps reduce the variation during tree inspection and

maintenance judgment from person to person (Ordóñez et al.,

2019). It can provide a comprehensive view and assist in

identifying the existing tree problems requiring further

inspection or practice adjustments for city-wise maintenance

or detecting issues hindered in the complex natural and

anthropogenic interactions for improving urban forestry

management.

By compiling the relationships among tree attributes to

various ES, the SOM technique solves the complexity in

estimating ES from each street tree with different growth rate

and distinct traits under various natural and anthropogenic

disturbances. This approach helps identify efficient urban

forest indicators of DBH and leaf area in estimating ES of

carbon sequestration, runoff avoidance, and pollution removal.

It also opens a way for providing an explicit ES assessment

standard. With this standard, we enable a science-based

opportunity for effective urban forestry management to help

inspect the feasibility of the improvement strategies made by the

authorities or the administrative organizations (Davies et al.,

2017) and facilitate citizen participation or public engagement in

the tree management process (Lawrence et al., 2013; Ordóñez &

Duinker, 2013). This interconnects a good relationship among

managers, the execution teams, stakeholders, and the public. In

traditional urban forestry management, the assessment quality

and the success of the urban forestry management heavily relied

on the experience and judgment of the frontline personnel or

managers/designers who develop the landscape planning

(Lawrence et al., 2013; Piana et al., 2021). In recent years,

citizen participation is important in promoting public affairs.

The involvement of the citizens and integrating their perceptions

in themanagement process will help create a win-win situation to

facilitate the effectiveness of urban forestry planning, as well as to

develop a long-term partnership between citizens and local

government.

However, our approach has some weaknesses and

limitations. First, uncertainties in the ES estimation can be

difficult to assess due to the long-term climatic variations and

disturbances (Reynolds et al., 2020) and the associated

measuring errors on tree size and species traits, such as DBH,

height, leaf area, and canopy cover, which may affect the

accuracy of the ES estimation in i-Tree Eco (Nowak, 1996;

Pace et al., 2018; Lin et al., 2020). Second, in the i-Tree Eco,

the standardized growths limit species-specific differentiation in

the model results. The lack of input on crown light exposure

(CLE) and tree conditions may further constrain the accuracy of

carbon sequestration estimations (Lin et al., 2020; Rötzer et al.,

2020). Based on the parameterization in the i-Tree Eco, leaf-on

and leaf-off dates are determined by frost to calculate the length

of growing season. As a result, the temperature rarely below

10 °C prolongs the whole-year length of the growing season in

Taipei. The warm weather also makes the dormancy of

deciduous trees unclear. Defoliation can be sometimes

observed in winter, but the leaf-off period is very short. We

suspect that the defoliation mechanism in tropical or sub-

tropical regions may differ from that in temperate regions.

These may be why in our results species-specific variations in

DBH to carbon sequestration are minimal due to a longer

growing season and unclear dormancy for deciduous trees

(Figure 4), contributing to greater ES of carbon sequestration.

To improve the parameterization in the i-Tree Eco, more data

from different regions should be included or experimental

studies be conducted to compare the growth of trees for a more

realistic match. Moreover, the amount of pollution removal

and runoff avoidance by urban trees is determined by the

pollution concentration and meteorological data (Nowak

et al., 2008). However, the detailed calculation of the

species-specific leaf trait to the ability of runoff avoidance

and pollution removal is not provided in the i-Tree Eco. In the

simulations, we used the same pollution concentration records

and meteorological data provided by the Taipei weather

station, producing no spatial variations in the

environmental conditions. In terms of the association of

leaf area to the provision of runoff avoidance and pollution

removal, we did not observe a species-specific effect (Figure 4).

This suggests that the species-specific air pollutant capturing

efficiency or runoff avoidance ability may not be evaluated in

the model.
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It should be aware that external threats may occur in the

implementation under dramatic climate change or socio-

economic shifts (Reynolds et al., 2020; Mofrad et al., 2022) in

the future because our approach cannot predict future situations

unless new datasets are collected and included in the analysis. In

addition, in the Taipei tree inventory, several crown-related

features were not measured, such as dieback ratio, crown

length, crown width, and crown light exposure (CLE),

producing considerable uncertainty in the quantification of

the overall leaf area. These crown parameters are more direct

than DBH in reflecting the competition status and health

condition of trees (Pace et al., 2018), and thus provide greater

reliability in estimating leaf area, leaf biomass, and the associated

estimations on ES provision when supplementing with DBH

(Nowak, 1996). The leaf area, as a direct component for the

utilization of solar radiation for photosynthesis, lies in the

primacy to account for fundamental processes of plant

growth, water use, energy absorption, and carbon balance

(Robinson and Lundholm, 2012; Konôpka et al., 2016), so as

to directly regulate the magnitude of ES. When lacking these

measurements, the assumptions made in this study or empirical

regression equations used in the i-Tree Eco may produce less

reliable estimates, and more significantly, the variation in the

results may be limited (Nowak, 1996). To reduce the uncertainty,

managers can consider holding special personnel training to

enhance measurement accuracy and future urban forestry

inventories are recommended to add measurements in

canopy-related variables, such as crown width and length,

dieback ratio, and CLE.

The leaf area index (LAI), in our analysis, was not a

straightforward indicator for ES values in comparison to DBH

or leaf area (Figure 4). In forestry, LAI has been widely used as a

collective measure to estimate the quantities of vegetation foliage

(Watson, 1947) or as a central parameter to compute site-level

primary production in vegetation (Kucharik et al., 1998; Parker,

2020). However, there have been debates about the suitability of

LAI in estimating biomass production, because the value of LAI

is sensitive to a variety of factors, such as weather, plant

functional type, management treatment, disturbance history,

and unexplored hidden parts (Parker, 2020). According to the

SOM results, LAI was not a strong indicator of ES values, and the

simulation results by i-Tree Eco spanned a wide range of LAI

from 1.7 to 18.5, of which LAI greater than 8 was almost engaged

with the plum trees, whereas for most species, LAI ranged from

2 to 6. Based on the calculation of i-Tree Eco on LAI as the

portion of leaf area to the projected canopy cover, the plum trees

happened to possess high values of LAI due to their unique trait

of vegetation form and specific patterns and placement of the leaf

organization in space. Therefore, we suggest using LAI as a

supplementary variable with the direct tree attributes like

DBH, height, and crown width/length for the valuation of ES,

to avoid the greater errors hidden in the aggregation scheme

of LAI.

Old trees are great assets for urban areas. In our analysis, we

found that greater DBH trees provided higher gross ES. However,

the SOM-based clusters indicated a situation of a much-reduced

height for many old trees. This may imply a serious aging

problem to retain normal growth and require an assessment

of the old tree’s health. In Taipei, trees with DBH greater than

80 cm can be potentially designated as protected trees by the

Forestry Act, Cultural Heritage Preservation Act, and Taipei City

Tree Protection Regulation. Unfortunately, many of the

designated protected trees are in bad condition, demanding

further inspection and extra care to provide protection; an

additional budget will be required for extra maintenance and

costs to ensure the health and survival of the existing mature and

old trees.

The current status of a tree can be viewed as a consequence of

tree growth at a specific location under complex natural and

anthropogenic disturbances. In this regard, the environmental

settings and management practices are critical for major

variations in the tree ES values (Nowak et al., 2008). To

evaluate the long-term combined effects of maintenance

practices like the pruning intensity, or natural disturbances on

the provision of ES, an examination of the potential loss of the

leaf area can provide some insights (Tables 3, 4). Results

indicated that several Taipei street trees encountered a

higher than 25% leaf area loss (Table 3), which exceeds a

commonly suggested live foliage removal of 25% on an

annual basis (American National Standard Institute [ANSI],

2008), and in many cities, a more conservative pruning intensity

of 10% was applied to avoid defective tree physiology. Although

pruning can be one of the most prevailing practices to rearrange

branch distribution, enhance tree structure and growth, reduce

competition between trees, and control pests or diseases

(Badrulhisham and Othman, 2016), improper pruning

operation can damage tree viability, induce new diseases,

even lead to death (Clark and Matheny, 2010). Our analysis

revealed that trees were clustered in different neurons reflecting

different conditions in their leaf areas and thus causing losses in

ES. Based on the difference between potential ES for a given

DBH and ES value for a reduced leaf area, the results can be

viewed as a reference to determine adjustments in the intensity

of pruning or other maintenance practices. By checking tree

performance along with frequencies, intensities, and forms of

the operating maintenance procedure and practice,

improvement of the urban forestry governance may be

achieved.

Through the analytical method of SOM, the clear

interconnected relationships between DBH and other variables

can be used as a rapid and efficient examination tool for practical

guidelines and references in urban forestry management. The
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TABLE 4 An example of the lookup table for species Cinnamomum camphora.

Category Poor
(LAI: 2.80–3.41)

Fair
(LAI: 3.40–3.70)

Good
(LAI: 3.60–4.89)

Superior
(LAI: 4.10–5.40)

DBH
(cm)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

1 2.40 0.41

2 3.19 0.48

3 3.40 0.58

4 3.78 0.73

5 4.44 0.91

6 4.89 1.11

7 5.16 1.32

8 5.30 1.53 7.74 1.72 11.61 2.17

9 5.53 1.76 7.81 1.93 11.62 2.35

10 5.69 1.99 7.87 2.21 11.64 2.62

11 5.78 2.24 7.94 2.36 11.65 2.88

12 5.87 2.47 8.01 2.72 11.67 3.18

13 5.95 2.73 8.08 2.89 11.68 3.44

14 6.04 2.95 8.15 3.13 11.69 3.68

15 6.12 3.23 8.22 3.48 11.71 3.78

16 6.21 3.54 8.29 3.81 11.72 4.10

17 6.30 3.85 8.36 4.11 11.74 4.74

18 6.39 4.19 8.43 4.51 11.75 5.14

19 6.48 4.55 8.51 4.80 11.76 5.52

20 6.58 4.77 8.58 5.13 11.78 5.77 13.27 6.01

21 6.67 5.19 8.66 5.52 11.79 5.96 13.50 7.58

22 7.02 5.63 8.73 5.90 11.81 6.51 13.72 7.22

23 7.16 5.90 8.81 6.18 11.82 6.80 13.92 7.51

24 7.29 6.33 8.88 6.63 11.83 7.21 14.13 7.89

25 7.44 6.78 8.96 7.05 11.85 7.50 14.32 8.17

26 7.58 7.08 9.04 7.34 11.86 7.78 14.50 8.79

27 7.72 7.54 9.11 7.78 11.88 8.28 14.68 9.22

28 7.87 7.88 9.19 8.22 11.89 8.58 14.85 9.99

29 8.03 8.25 9.27 8.64 11.91 9.10 15.02 10.01

30 8.18 8.57 9.35 8.96 11.92 9.48 15.18 10.43

31 8.34 9.08 9.43 9.44 11.93 10.04 15.33 10.88

32 8.50 9.40 9.51 9.77 11.95 10.43 15.48 10.98

33 8.66 9.87 9.60 10.26 11.96 10.93 15.62 11.52

34 8.83 10.23 9.68 10.60 11.98 11.28 15.77 12.22

35 9.00 10.58 9.76 10.95 11.99 11.68 15.90 12.47

36 9.17 10.97 9.85 11.56 12.01 12.20 16.03 12.83

37 9.35 11.00 9.93 12.02 12.02 12.50 16.16 13.43

38 9.53 11.08 10.02 12.39 12.04 12.86 16.29 14.10

39 9.71 11.10 10.10 12.74 12.05 13.22 16.41 14.07

40 10.19 13.17 12.06 13.76 16.53 14.89

41 10.28 13.49 12.08 14.13 16.65 15.21

42 10.37 13.81 12.09 14.44 16.76 15.71

43 10.46 14.13 12.11 14.82 16.87 16.14

44 10.55 14.41 12.12 15.19 16.98 16.63

(Continued on following page)
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TABLE 4 (Continued) An example of the lookup table for species Cinnamomum camphora.

Category Poor
(LAI: 2.80–3.41)

Fair
(LAI: 3.40–3.70)

Good
(LAI: 3.60–4.89)

Superior
(LAI: 4.10–5.40)

DBH
(cm)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

45 10.64 14.52 12.14 15.37 17.08 16.97

46 10.73 14.62 12.15 15.60 17.19 17.38

47 10.82 14.75 12.17 15.72 17.29 17.73

48 10.92 14.87 12.18 16.02 17.39 18.02

49 11.01 14.91 12.20 16.23 17.49 18.38

50 11.11 14.92 12.21 16.42 17.58 18.74

51 11.20 14.93 12.22 16.55 17.67 19.11

52 11.30 15.01 12.24 16.71 17.77 19.41

53 11.40 15.26 12.25 16.78 17.86 19.48

54 11.69 15.30 12.27 17.06 17.94 19.78

55 12.28 17.07 18.03 19.83

56 12.30 17.08 18.11 19.87

57 12.31 17.09 18.20 20.10

58 12.33 17.10 18.28 20.33

59 12.34 17.11 18.36 20.64

60 12.36 17.14 18.44 20.80

61 12.37 17.16 18.52 21.04

62 18.59 21.27

63 18.67 21.79

64 18.74 21.20

65 18.82 22.00

66 18.89 22.25

67 18.96 22.81

68 19.03 22.86

69 19.10 23.06

70 19.17 23.24

71 19.23 23.42

72 19.30 23.67

73 19.36 23.70

74 19.43 23.96

75 19.49 24.13

76 19.55 24.71

77 19.61 25.29

78 19.67 25.43

79 19.73 25.55

80 19.79 27.57

81 19.85 25.58

82 19.91 25.66

83 19.97 26.38

84 20.02 26.62

85 20.08 27.00

86 20.13 27.09

87 20.19 27.24

88 20.24 27.36

(Continued on following page)
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classification can also be used to compare the current status of

DBH distribution to the estimated highest gross ES and allow

managers to set up priorities for inspections. Based on the explicit

paired tree ID and location, possible issues can be detected by

cross-checking the associations between the attributes of trees

and their potential loss in ES (Figure 5). For example, for

Cinnamomum camphora at DBH of 60 cm, the height varied

from 7.9 to 18.5 m (Figure 5). Even though these trees were all

classified in the same category of superior ES values, through a

rapid check, managers can easily get an estimate of the potential

loss due to the reduced height. Understanding the reason and

improving the improper habitat condition can help increase ES

toward a greener city.

The produced lookup tables can be used in the field to

support a rapid examination on tree’s DBH and height to the

gross ES. In Table 4, we provide an example of the lookup

table for Cinnamomum camphora. For the frontline

personnel, when they take measurements of trees, they

can easily check with the table and know the growth

condition of a tree. If the table refers to a tree being in

poor condition, then it indicates an inspection should be

done for potential problems and a regular followed up. It may

imply a modification of the practice routines or an

improvement in the habitat of the tree. In summation,

with the SOM’s perceivable information, the problematic

trees can be identified and cared for, the good performance

trees can be used as models, and along with an examination

of the potential loss of ES, practices, and operations can be

reviewed and improved to develop a design platform for the

right tree, right place, and proper maintenance practices

towards sustainable urban forestry management and

improving the ecosystem services.

5 Conclusion

This study develops a general framework of the AI-based

SOM approach to assessing the ES provided by trees. This

analytical approach provides a comprehensive understanding

of the ES provision of trees varied with tree species, DBH,

height, leaf area, and LAI. We found that the ES values are

strongly associated with DBH, but can be further modified by the

conditions of the tree, such as height and leaf area. LAI, in our

analysis, is not an objective indicator for the valuation of ES, and

for some species, it can even be misleading. By compiling all the

data of the street trees, a lookup table can be used as a rapid

examination tool in the field. Through the integration of the tree

inventory data and the developed analytical approach, it is

possible to apprise optimal species, criteria, and locations for

city design. These findings can be applied to evaluate the long-

term complex effects of natural and anthropogenic disturbances,

as well as give practical guidance to help detect hidden problems

and improve directions for a more sustainable future.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://data.gov.tw/dataset/128274 or
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TABLE 4 (Continued) An example of the lookup table for species Cinnamomum camphora.

Category Poor
(LAI: 2.80–3.41)

Fair
(LAI: 3.40–3.70)

Good
(LAI: 3.60–4.89)

Superior
(LAI: 4.10–5.40)

DBH
(cm)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

Height
(m)

Gross ES
(USD y−1)

89 20.30 27.60

90 20.35 28.31

91 20.40 28.46

92 20.45 28.57

93 20.50 28.97

94 20.55 29.68

95 20.60 30.26

96 20.65 31.09

97 20.70 31.47
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