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Frequent mining activities can bring about problems such as soil erosion and

environmental pollution, which are detrimental to the efficient use of land and

the sustainable development of cities. Existing studies have paid little attention

to mining areas and lack comparative analysis of landscape changes in multiple

mining pits. In this paper, the main urban area of Anshan City, where the mining

areas are concentrated, was used as the research area, and the Landsat TM/OLI

surface reflectance (SR) data of the Google Earth Engine (GEE) platform and the

random forest algorithm were used to map the land use in 2008, 2014, and

2020. On this basis, land use dynamics and landscape pattern indices were used

to analyze the changes in land use and landscape patterns in the Anshan City

area. In addition, a moving window method was combined to further analyze

and compare the landscape changes between different pits. The results show

that:1. From 2008 to 2020, the construction land in Anshan urban area

continued to decline, the forest land continued to expand, and the

construction land was shifted to the forest land and cultivated land. Mining

land increased before 2014 and remained almost unchanged after 2014, which

is in line with the actual situation. 2. During the study period, the landscape

fragmentation degree and landscape heterogeneity in the urban area of Anshan

kept increasing. The high value areas of landscape fragmentation were the

urban-rural combination areas and the mining areas. Among them, the

reclamation of Dagushan and Donganshan is better, while the reclamation

of Anqian, Yanqianshan and Xiaolingzi mines needs to be strengthened. 3. The

random forest algorithm based on GEE shows a high degree of accuracy for

land use classification. The overall classification accuracy in 3 years exceeds

90% and the kappa coefficient exceeds 0.85. The study results can be used as an

essential reference for optimizing the urban ecological environment and

provide technical backing for the urbanization construction and rational use

of land in Anshan City.
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1 Introduction

Land use change is driven by human behavior and affects the

structure and function of landscape ecosystems (Schmitt et al.,

2010; Bajocco et al., 2012). Since the 1990s, land use change

research has become one of the central issues in global

environmental change research (Peng et al., 2008; Liu and

Deng, 2010; Chang et al., 2018). Landscape pattern is the

spatial distribution and arrangement of landscape elements

(Liu et al., 2010), which represents the effects of different

ecological processes acting at different spatial scales, and is

the embodiment of landscape heterogeneity (Cheung et al.,

2016; Feng et al., 2018). Changes in landscape patterns are an

integrated reflection of the regional ecosystem as a result of a

combination of human activities, natural and biological factors

(Turner, 1990; Bürgi et al., 2004). Therefore, monitoring and

analyzing the spatial and temporal evolutionary characteristics of

land use and landscape patterns can help reveal the links between

land use and landscape patterns, regulate the direction and speed

of human activities, and provide important references for the

rational use of land resources and the coordinated development

of landscape types.

With the continuous advancement of RS and GIS, the

application of RS and GIS to analyze the changing characteristics

of landscape pattern and land use has become a research hotspot in

geography, environmental science and other disciplines (Tekle and

Hedlund, 2000; Groom et al., 2006; Shao and Wu, 2008; Du et al.,

2012). The research includes the use of RS and machine learning

methods to obtain long time series remote sensing to monitor the

spatial and temporal evolution characteristics of land use and its

driving factors (Gao et al., 2015; Thakkar et al., 2017), the use of

Fragstats software and landscape pattern index to analyze landscape

pattern changes (Huang et al., 2008; Liu et al., 2012) and the impact

of land use and landscape pattern on the ecological environment

(Singh et al., 2010; Jazouli et al., 2019; Tian et al., 2020). Tang et al.

(2020) linked land use, landscape pattern and ecosystem service

values and used Pearson correlation coefficients to explore the extent

to which changes in land use and landscape pattern are associated

with ecosystem services, finding that high intensity land use leads to

degradation of ecosystem services. These studies have focused on

ecologically important areas (Wang et al., 2009;Wan et al., 2015; Liu

et al., 2018; Li et al., 2021a) and rapidly urbanizing areas (Deng et al.,

2009; Hassan, 2017; Dadashpoor et al., 2019), but less on ecologically

fragile urbanized areas such as mining areas and resource-based

cities.

The exploitation of mineral resources has become the

backbone of China’s sustained and stable economic and social

development (Wang et al., 2016; Zhai et al., 2021). Frequent

mining activities have changed the surface characteristics (Wu

et al., 2021b), the integrity of the original landscape pattern has

been damaged under human interference, and the landscape

spatial structure has undergone dramatic changes, breaking the

local ecological balance and damaging the regional ecological

environment. At the same time, this has led to the degradation of

urban ecology and aggravated environmental pollution (Xu et al.,

2019; Takam Tiamgne et al., 2021; Wang et al., 2021; Yu et al.,

2022), which has seriously affected the human settlement

environment and restricted the green, healthy and sustainable

development of cities (Yang et al., 2021). At present,

environmental monitoring in mining areas mainly focuses on

studies of vegetation cover changes in traditional mining areas

(Lei et al., 2010; Liu et al., 2016b; Fang et al., 2019; Li et al., 2021b)

and the characteristics of landscape use changes before and after

mine reclamation (Townsend et al., 2009; Ge et al., 2010; Yang

et al., 2018). Kuzevic et al. (2022) analyzed the vegetation cover of

the Slovakian mining area containing four deposits using NDVI

and further compared the vegetation changes in the four deposits

using Forest Spatial Division Unit data. Zhang et al. (2020b) used

multi-temporal remote sensing images and landscape pattern

indexes to study the change characteristics of landscape pattern

and land use in the Pingshuo mining area containing three open

pits, and constructed a complex network to analyze the

correlation between indexes, but did not further compare the

landscape changes of the three open pits. Most mining and

mineral resource cities have more than one pit, often multiple

pits clustered together, and there are differences in landscape

pattern changes between individual pits, so using the landscape

pattern index to analyze overall trends does not reflect the

changes in individual open pits. The moving window method

produces a quantitative, spatially distributed metric. Raster

mapping through moving windows allows specific changes in

the landscape to be monitored both spatially and quantitatively

(Hayes and Robeson, 2013).

However, when multi-temporal remote sensing images are

used for land use mapping, it often takes a lot of time to

download and process remote sensing images. The emergence

of Google Earth Engine (GEE) has greatly promoted the research

on land use by remote sensing. GEE not only provides massive

satellite image datasets and geographic datasets (Kumar and

Mutanga, 2018) but also provides API interfaces (Prasai et al.,

2021), analysis algorithms and tools based on JavaScript and

Python languages (Gorelick et al., 2017; Amani et al., 2020).

Programming languages are directly used to analyze and process

remote sensing data in GEE (Chang et al., 2018; Mutanga and

Kumar, 2019), which avoids the tedious processes of data

download, preprocessing, and image classification brought

about by traditional remote sensing analysis models. Ang

(Ang et al., 2021) and Pericak (Pericak et al., 2018) used GEE

to draw land use maps for the Didipio mine and the Appalachian

open-pit coal mine respectively. It was found that GEE can not

only quickly and efficiently process remote sensing images of

large areas over many years but also quantify land use change.

As a typical mineral resource city, Anshan City has abundant

iron ore resources, and its iron ore reserves account for 52% of

China’s total iron ore resources. Anshan iron ore is concentrated

in the main urban area of Anshan City. According to statistics,
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the total area of the mining area in Anshan is about 50 km2 and

the mining area in the main urban area of Anshan alone exceeds

30 km2, which means 60% of the iron ore in Anshan City is

concentrated in the main urban area of Anshan. With the

uninterrupted mining for a hundred years, a large area of

dumps and tailings ponds have been formed in the main

urban area of Anshan City, which not only wastes land

resources, destroys geological landforms, but also brings many

negative impacts to the urban and rural living environment of

Anshan. Therefore, this paper uses GEE-based multi-temporal

Landsat remote sensing data, combined with the moving window

method and the landscape pattern index, to explore 1) the spatial

and temporal evolutionary characteristics of land use and

landscape patterns in the main urban area of Anshan. 2)

Further analysis of landscape changes between different pits in

Anshan. 3) The driving factors causing the changes. To provide

reference for mine reclamation, rational land use and

comprehensive environmental management in Anshan.

2 Data and methods

2.1 Study area

Anshan’s main urban area is the study area (122°4′-123°1′E,
40°5′-41°1′N), situated in the central part of Anshan City,

Liaoning Province, bordering Liaoyang City, including Tiexi

District, Tiedong District, Lishan District and Qianshan

District. The urban area of Anshan is 796 km2. The

population of Anshan reaches 1.45 million in 2020. Six major

mining areas surround the main urban area of Anshan City. It

can be seen from Figure 1 that they are the Qidashanmining area,

Anqian mining area, Yanqianshan mining area, Dagushan

mining area, Donganshan mining area and Xiaolingzi mining

area. The Qidashan, Dagushan, Donganshan and Xiaolingzi

mining areas are all composed of mining areas and tailings

ponds. The Anqian mining area is composed of several small

iron ore stopes, and the Yanqianshan is an independent mining

area. These iron mines are concentrated in Anshan’s main urban

area. The mining area in the urban area is about 34 km2, or 4.2%

of the overall area of the main urban area. Continuous and

uninterrupted mining activities have resulted in deepening

mines, increasing the height of dumps, expanding tailings

ponds and bringing mines closer to urban areas in Anshan,

damaging the ecological environment of the city and restricting

the sustainable development of the city.

2.2 Data source and processing

Data for the study are Landsat TM/OLI surface reflectance

(SR) data, administrative division data and digital elevation data.

FIGURE 1
Location of study area and mining areas.
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Table 1 provides details of these data. On the basis of GEE

platform, we obtained and processed: 1) Landsat TM/OLI surface

reflectance (SR) data with a resolution of 30 m provided by

USGS. Among them, the images in 2008 were Landsat five TM SR

data, and those in 2014 and 2020 were Landsat eight OLI SR data.

The SR data was preprocessed by geometric correction and

atmospheric correction, and the data contained the image

quality assessment (QA) band obtained by the FMASK

algorithm (Qiu et al., 2018). The composite algorithm was

used to stitch the SR data from January to December of the

current year, and the median value was selected to synthesize the

image with the smallest annual cloud cover. The QA band was

then used to automatically mask clouds, snow and cloud shadows

to remove clouds from images (Wahap and Shafri, 2020). The

vector data of the study area was uploaded to GEE to crop the

three-phase remote sensing images. The cloud-free images of the

study area in 2008, 2014, and 2020 were obtained respectively. 2)

NASA DEM data with a resolution of 30 m released by NASA LP

DAAC. NASA DEM serves as an approach to reprocessing

STRM data, improving its accuracy by incorporating auxiliary

data from datasets such as STER GDEM.

2.3 Sample selection

Based on the Classification of Current Land Use Status (GB/

T21010-2017) and with the land cover and landscape conditions

of Anshan City taken into account, the land use types in the study

area were categorized into five categories: mining land,

construction land, forest land, water and cultivated land

(Table 2). The training samples were selected on the basis of

the features of five types of land use. This study used the

hyperspectral satellite Sentinel-2A data with a resolution of

10 m, combined with the 2020 Landsat-8 OLI image, to select

samples in 2020. The 2008 and 2014 samples were obtained by

examining Google Earth Pro historical images and Landsat TM/

OLI images. The number of sample points in 2008, 2014, and

2020 were 753, 601, and 906, respectively. 70% of the samples

were randomly selected as training data and the rest as test data

for accuracy evaluation.

In order to obtain classification results of higher accuracy, it

is necessary to introduce feature variables. This study not only

selected five spectral bands of blue, green, red, near-infrared, and

short-wave infrared (SWIR 1) in the Landsat image, but also used

the GEE platform to calculate with the normalized difference

vegetation index (NDVI), enhanced vegetation index (EVI), bare

soil index (BSI), normalized difference water index (NDWI) and

index-based built-up index (IBI) (Kupidura, 2019; Cui et al.,

2022; Fathololoumi et al., 2022). At the same time, DEM was

introduced to account for the apparent variance related to

topographical factors. The above 11 feature variables were

selected and introduced to the original image to improve the

accuracy of image classification.

2.4 Processes and methods

2.4.1 Land use classification based on random
forest

Random forest is a machine learning algorithm consisting

of multiple decision trees (Ghimire et al., 2013; Zhang and

Yang, 2020). It uses the bootstrap resampling technique

TABLE 1 Data source and description.

Data types Resolution (m) Year Data sources

LANDSAT-5 (TM) SR 30 2008 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2?hl=en

LANDSAT-8(OLI) SR 30 2014, 2020 https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2?hl=en

NASA DEM 30 2000 https://developers.google.com/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001?hl=en

Administrative division 2015 http://www.resdc.cn/

TABLE 2 Land use classification.

Category Describe

Construction land Land transformed by human activities, including urban residences, commercial areas, industrial areas, road traffic

Cultivated land Land capable of growing crops, including vegetable fields, paddy fields and dry land

Forest land Covered by woods, including forests, woodlands and meadows, and urban parkland

Mining land Areas used for mining activities, including stopes, tailings ponds, dumps

Water Includes standing water in rivers, lakes, cisterns, land reservoirs, fish ponds, and mining subsidence
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(Breiman, 2001b) to randomly choose n samples from the

original dataset D to form a sub-data set (Wu et al., 2021a),

and then uses the sub-data set to build a single decision tree.

After each sample has been drawn, the drawn sample needs to

be put back into data set D again. Repeat the above steps to

produce m decision trees to form a random forest. Decision

trees are independent and parallel to each other, and each

decision tree outputs a result. Finally, the classification result

of the new data is derived from the joint voting of m decision

trees (He et al., 2022b). The specific classification process is

described below: 1) Randomly choose n samples from the data

set and then put them back into the data set. 2) Randomly

select k features for the selected samples to generate a decision

tree (Magidi et al., 2021). 3) Repeat the above steps m times to

obtain m decision trees, resulting in a random forest. 4) For

the input new data, m decision trees are used to classify it

respectively. Count the votes of these m classification results.

The category with the most votes is the result of the

classification of the new data.

The construction of the decision tree in the random forest

algorithm selects some samples and features randomly, which

enhances the anti-noise performance of the method and avoids

overfitting to a certain extent (Breiman, 2001a; Belgiu and

Drăguţ, 2016). Moreover, the random forest adopts the

bagging ensemble algorithm, and multiple independent

decision trees make common decisions, which not only has

high accuracy but also saves time (Schmidt et al., 2019).

Classification using random forests in GEE requires setting

five variables: the number of decision trees, the maximum

number of leaf nodes in each tree, the randomization seed,

the fraction of input to bag per tree, and the number of

variables per split. In this study, the amount of feature

variables for each split was the square root of the total

amount of feature variables, the amount of decision trees was

set to 100, the fraction of input to bag per tree was 0.8, and the

rest of the parameters were default values. After the above

parameters in GEE had been set, the land use map of Anshan

urban area in 2008, 2014, and 2020 was obtained through

random forest classification (Figure 2).

Random forest classification accuracy was evaluated by

confusion matrix in GEE. Through the evaluation, overall

classification accuracy and Kappa coefficient were educed.

Among them, the Kappa coefficient is considered to be the

most representative and comprehensive calculation accuracy

index. If the Kappa coefficient exceeds 0.8, it means that the

simulation is almost completely consistent (He et al., 2022a).

Through the confusion matrix, the overall classification accuracy

in 2008, 2014, and 2020 was 90.15%, 90.74%, and 91.94%

respectively, and the Kappa coefficients were all above 0.85,

indicating that the classification was efficient and of high

accuracy.

2.4.2 Land use dynamic degree
The dynamic degree of land use is the rate of change of the

area between various land use types over a certain period and

reflects the degree of change in different land-use types over the

study period. It is expressed as follows (Yang et al., 2022):

K � Sb − Sa
Sa

×
1
T
× 100%

Where K is the degree of dynamic change in a certain land use

type within the study time T; Sa and Sb indicate the area of this

land use type at the beginning and end of the study respectively.

When T is a year, K represents the annual change rate of

land use.

2.4.3 Landscape pattern based on landscape
pattern index

Landscape pattern index is commonly used to quantify

landscape changes and it allows quantitative monitoring and

FIGURE 2
The land use map of Anshan urban area. (A) 2008; (B) 2014; (C) 2020.
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analysis of evolution in the spatial structure of the landscape

(Bai et al., 2008; Fan and Ding, 2016). Landscape pattern index

can reflect landscape characteristics from three levels:

landscape, class and patch. Based on the landscape

conditions of Anshan City, the study chose to research the

landscape pattern from the two levels of landscape and class.

And Fragstats4.2 was used to compute the landscape index in

2008, 2014, and 2020 respectively.

Regarding the selection of the index, in view of the

morphological complexity, fragmentation, agglomeration and

diversity of the landscape pattern, seven indexes including patch

density (PD), perimeter-area fractal dimension (PAFRAC),

landscape shape index (LSI), largest patch index (LPI), Shannon’s

diversity index (SHDI), contagion (CONTAG), and Shannon’s

evenness index (SHEI) were chosen to quantify the landscape

pattern of Anshan urban area. The specific calculation formula

and meaning of each index are given in Table 3.

2.4.4 Landscape pattern based on moving
window

Using a moving window to generate a raster map can be a

better way to analyze the landscape pattern from a spatial

perspective. A moving window is a window with a fixed

radius. It starts to move from the upper left corner. Each time

it moves by one grid, the landscape index value within the

window range is calculated, and the value is assigned to the

center grid of the window. Finally, a raster map that can reflect

the landscape pattern is formed (Hagen-Zanker, 2016). In this

method, the size of the window radius may affect the landscape

pattern directly. When the window radius is too small, the

landscape pattern index between adjacent pixels will have a

significant difference, which will easily lead to distortion of

the results. When the window radius is too large, some small

areas with changes will be ignored, which is not conducive to

research and analysis. Therefore, in this study, 500, 800, 1000,

1200, and 1500 m were set as the window radius in Fragstats4.2.

It was found that when the window radius was 1000 m, the result

was the most consistent with the landscape pattern of the area. So

1000 m was used as the moving window radius to generate the

raster map.

3 Result analysis

3.1 Land use

3.1.1 Land use changes
Forest land, construction land and cultivated land are the

main types of land use in the urban areas of Anshan, with the

sum of the three areas exceeding 95% of the total land area.

Construction land is mainly in the northern plains, namely

Tiexi District, Tiedong District and Lishan District. The forest

land is located in the southeast of the urban area, cultivated land

in the southwest and northwest of it and mining land in the east

and south of it. The proportion of water is small, mainly

consisting of rivers, lakes and mining subsidence stagnant

water.

The transfer direction and transfer quantity of various types

of land in Anshan urban area were analyzed on the basis of

Figure 3. Between 2008 and 2014, cultivated land and

construction land declined, while forest land, mining land,

and water increased (Table 4). Cultivated land was converted

to construction land and forest land, of which 5.66% was

converted to construction land and 3.44% to forest land.

Construction land was converted to cultivated land, forest

land and mining land, of which 8.44% was converted to

cultivated land, 3.64% to forest land, and 0.87% to mining

land. The increased area of forest land came from

construction land and cultivated land. 0.87% of construction

land and 0.75% of forest land were transformed to mining land,

TABLE 3 Formula and significance of landscape pattern index.

Formula Meaning

PD � ni
A Indicates the number of patches of a certain landscape type per unit area, reflecting the fragmentation degree of

the patch type and the complexity of the spatial structure

LPI � Max(aij)
A × 100 Reflect the dominant type of landscape

LSI � 25∑
m

k�1 eik�
A

√ Indicates the complexity of the shape of the patch, the larger the value, the more complex the shape and the
narrower the geometry

PAFRAC � 2
[ni∑

n

j�1 (lnpij × ln aij )]−[∑
n

j�1 lnpij × ∑
n

j�1 ln aij ]

(ni∑
n

j�1 lnp2
ij
)−(∑

n

j�1 lnpij )2

Reflects the complexity of the shape of the landscape. The higher the value, themore complex the shape and the
more irregular the boundary

CONTAG � [1 +
∑

m

i�1 ∑
m

k�1(pi ×
gik

∑
m

k�1 gik

) × [ln(pi ×
gik

∑
m

k�1 gik

)]
2 lnm ] × 100

Reflects spatial information and describes the degree of aggregation and trends in the extension of different
patch types in the landscape

SHDI � −∑m
i�1(pi lnpi) Reflects landscape heterogeneity, the larger the value, the richer the landscape types

SHEI � −∑m

i�1(pi lnpi )
lnm

Describe how evenly distributed among different landscape types

Note: i = 1 . . .mpatch types; j= 1 . . . n patches; k= 1 . . .mpatch types; ni= total number of patches for patch type i;A= total landscape area; aij= area of patch ij; eik= total length of edge in

landscape between patch types i and k; pij = perimeter of patch ij; pi= proportion of the landscape occupied by patch type i; gik = number of neighbouring patches of patch type i and k.
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and the mining land increased. 0.37% of the construction land

was converted into water, and the water area increased. From

2014 to 2020, construction land area decreased, forest land area

grew, and cultivated land, mining land and water area remained

almost unchanged (Table 5). Construction land was transformed

to cultivated land and forest land, of which 6.7% was converted to

cultivated land and 2.49% to forest land. The increased forest

land area came from construction land and 2.61% of

cultivated land.

In short, from 2008 to 2020, construction land area

continued to decrease, and forest land area continued to

increase, with a transfer of construction land to forest land

and cultivated land. Water area increased significantly from

2008 to 2014 and remained unchanged from 2014 to 2020.

Mining land area grew first and then remained almost

unchanged, while cultivated land area decreased first and then

remained unchanged.

3.1.2 Changes in land use dynamic degree
From Figure 4, it can be noticed that the annual change rate

of cultivated land from 2008 to 2020 was −0.13%, indicating that

there was nearly no change. The dynamic attitude of forest land,

mining land and water were 0.84%, 1.61%, and 8.1% respectively,

among which only the construction land was negative. The

FIGURE 3
The transfer situation of various land use types in urban area of Anshan.

TABLE 4 Land use transfer matrix in Anshan urban area from 2008 to 2014.

2008 2014 Total (%)

Cultivated land (%) Construction land (%) Mining land (%) Water (%) Forest land (%)

Cultivated land 12.59 5.66 0.08 0.05 3.44 21.83

Construction land 8.44 23.81 0.87 0.37 3.64 37.13

Mining land 0.03 0.85 2.53 0.07 0.15 3.63

Water 0.02 0.12 0.05 0.16 0.02 0.37

Forest land 0.37 3.53 0.75 0.06 32.35 37.05

Total 21.46 33.96 4.28 0.70 39.60 100.00
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annual change rate of water is 8.1 times that of construction land,

and water is the type with the most volatile degree of change.

Comparing the degree of annual change of each land use type

over different periods, it is found that the dynamics from 2008 to

2014 were relatively variable, with the rate of change for each land

use type from 2014 to 2020 not exceeding 1%. Among them, the

dynamic degree of construction land was negative, but the values

for the first 6 years are approximately 2.2 times higher than those

for the last 6 years. The annual change rate of forest land in the

first 6 years was 1.15%, which was about 2.3 times that in the next

6 years. The dynamic degree of mining land in the first 6 years

was 3.01%, which was approximately 16.7 times that in the

following 6 years. The dynamic degree of water in

2008–2014 was 15.24%, while that in 2014–2020 was only

0.5%. The dynamic degree of the water in the first 6 years was

about 30.5 times that of the latter years. The change of cultivated

land was the least severe. The annual change rate of cultivated

land was −0.28% from 2008 to 2014 and 0.02% from

2014 to 2020.

In conclusion, the dynamics of each land use type changed

markedly during the first 6 years of the research period,

with flat changes in the second 6 years. From 2008 to 2020,

the most significant change was in water, followed by mining

land, and cultivated land almost remained unchanged.

The annual change rate of construction land remained

negative.

TABLE 5 Land use transfer matrix in Anshan urban area from 2014 to 2020.

2014 2020 Total (%)

Cultivated land (%) Construction land (%) Mining land (%) Water (%) Forest land (%)

Cultivated land 12.88 5.78 0.19 0.03 2.61 21.49

Construction land 6.70 22.40 0.85 0.23 2.49 32.67

Mining land 0.14 1.20 2.69 0.06 0.23 4.33

Water 0.06 0.19 0.09 0.29 0.10 0.72

Forest land 1.66 4.39 0.46 0.09 34.18 40.79

Total 21.45 33.97 4.28 0.70 39.61 100.00

FIGURE 4
Dynamic degree of land use in Anshan urban area from 2008 to 2020.
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3.2 Landscape pattern analysis

3.2.1 Comprehensive analysis at the class level
For the chosen seven landscape pattern indices, considered

from the class level, the indices with similar results or high

overlap were excluded, and PD, LSI, LPI, and PAFRAC were

chosen to identify the landscape pattern characteristics of the

study area at the class level (Figure 5).

1. From 2008 to 2014, the PD and LSI of water increased, but the

PAFRAC remained almost unchanged. At this stage, the

management of the Nansha River has achieved remarkable

results, and the previously unconnected Nansha River is

gradually being connected. At the same time, the

development of mining activities has caused an increase in

the accumulation of water in the subsidence. Secondly, with

the urban construction and agricultural development, the

number of ornamental lakes and rural reservoirs in the

study area has increased. Water area increased and

dispersed, and the agglomeration level decreased. At the

same time, the fragmentation of water has increased under

the impact of human activity. From 2014 to 2020, PD, LSI, and

PAFRAC of water all decreased. During this period, the

scattered rural reservoirs were gradually replaced by

construction land, and with the continuous reconstruction

of the Nansha River, the length of the Nansha River increased.

The agglomeration degree of water rose, the degree of

fragmentation declined, and the shape tended to be regular.

2. PD, LSI, and PAFRAC for construction land increased from

2008 to 2014. This period saw an increase in the

fragmentation degree of construction land, a tendency for

fragmented patches to become more complex in shape and a

decrease in overall agglomeration. The reason is that the

urbanization process of Anshan City was accelerating.

According to the 2011 “Anshan City Master Plan,” the new

urban land would expand in conformity with the development

direction of the central urban area and spread mainly to the

western Dadaowan New City and the southern Tanggang

FIGURE 5
Landscape pattern index at class level. (A) change in largest patch index; (B) change in landscape shape index; (C) change in perimeter-area
fractal dimension; (D) change in patch density.
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New City. The construction land has continued to expand to

the west and south, not only in the central urban area, but also

in the scattered townships and villages in the Qianshan

Mountains. From 2014 to 2020, the PD and LSI of

construction land decreased, and PAFRAC remained

almost unchanged. During this period, the construction

land expanded outwards, constantly encroaching on other

surrounding lands. The original scattered construction land

was connected into large pieces with the development of the

city. At this time, the agglomeration of construction land

increased and the degree of fragmentation decreased. In 2008,

the LSI of construction land was the highest. At this time,

construction land was the dominant type in the area. With the

continuous reduction of construction land, forest land became

the dominant type in Anshan urban area. The LSI and

PAFRAC of construction land have always been the

highest over the study period, indicating that construction

land is the type with the lowest degree of aggregation and the

most complex patch shape among the land types.

3. The LPI of forest land did not change much. From 2008 to

2020, the forest land continued to grow and gradually became

the dominant type in this area. During the study period, PD,

LSI, and PAFRAC of the woodland increased continuously.

Due to the increase of park green space in urban construction

as well as the policy of returning farmland to forest and

mining area reclamation policy, part of the arable land and

construction land have been converted to forest land and its

area has increased. The forest land was less clustered, more

fragmented and tended to be more complex in shape.

4. From 2008 to 2014, LSI, and PAFRAC of cultivated land

increased, while LPI decreased. During this period,

urbanization accelerated, the original cultivated land was

replaced by construction land, and the degree of

dominance of cultivated land was reduced. The

concentrated cultivated land was divided by built-up land,

the degree of agglomeration of cultivated land was reduced,

and the shape and boundary became complex and irregular.

Between 2014 and 2020, LSI and PAFRAC decreased and LPI

rebounded. As a result of the policy, part of the cultivated land

has been restored to forest land, and the cultivated land has

been concentrated into pieces under the influence of

agricultural activities, showing a state of agglomeration and

distribution as a whole. The agglomeration degree has

increased, and the boundaries have become regularized.

The patch density of arable land continued to grow over

the study period, indicating that fragmentation of arable land

continued to rise.

5. The PD and LSI of mining land continued to increase over the

study period. PAFRAC remained almost unchanged from

2008 to 2014 and increased from 2014 to 2020,

demonstrating that the fragmentation of industrial and

mining land was continuously increased due to human

activities during the study period. After the implementation

of closed-pit mine ecological management in Anshan City in

2014, some mining areas were reclaimed and converted into

forest land, the degree of agglomeration was reduced, and the

shape became complex and irregular.

3.2.2 Comprehensive analysis at the landscape
level

From the landscape level, indexes that can reflect the

characteristics of landscape aggregation, fragmentation and

diversity were selected to study the landscape pattern of

Anshan urban area (Table 6). From 2008 to 2020, PD, SHEI,

and SHDI in Anshan urban area continued to increase, while

CONTAG continued to decrease. In terms of the degree of

change, each indicator changed more from 2008 to 2014, and

slightly changed from 2014 to 2020. It is indicated that the degree

of fragmentation and heterogeneity of landscape in Anshan

urban area kept increasing over the study period. In

particular, the degree of fragmentation and landscape

heterogeneity increased significantly from 2008 to 2014.

3.2.3 Spatial level comparative analysis
The index calculation reveals that the overall fragmentation

degree and landscape heterogeneity of Anshan urban area have

been increased. However, due to the agglomeration of mines in

the study area, it is impossible to compare the landscape pattern

changes of different mining areas. Therefore, a raster map was

drawn with a moving window to reflect landscape fragmentation

and landscape heterogeneity in space and to compare the

landscape pattern characteristics of different regions.

PD indicates the fragmentation degree of the landscape.

The higher the value, the greater the degree of fragmentation.

As can be seen from Figure 6, the areas with high PD values in

2008 are mainly the mining areas of Qidashan and Xiaolingzi,

as well as the urban-rural areas in the southern part of the main

city. Moreover, the high value areas are scattered and not

connected to each other. Compared with 2008, the number

of PD high-value areas increased significantly in 2014. The

high-value areas are mainly divided into three areas: the urban-

rural integration area in the western part of Qianshan District,

the urban-rural integration area in the western part of Tiexi

District, and areas where mining areas such as Anqian and

Yanqianshan are concentrated. Anshan City expands to the

west and the south. Both of these urban-rural areas are major

areas of urban development with a fragmented distribution of

TABLE 6 Landscape pattern index at landscape level.

Year PD CONTAG SHDI SHEI

2008 1.706 49.8409 1.4011 0.782

2014 2.8 46.1504 1.4153 0.7899

2020 3.2443 45.9326 1.4178 0.7913
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arable land and building land. There is a high degree of

fragmentation in both areas. With the development of

mining activities, the degree of fragmentation in the Anqian

mining area and the Yanqianshan mining area increased

significantly, while the relative decline in the Qidashan and

the Donganshan mining areas. The PD high-value areas in

2020 are similar to those in 2014, but they have expanded again

compared to 2014. The high-value area surrounded the main

urban area, and the original three high-value areas were

connected into a ring. The reason is that Anshan City

expanded from the central city to the surrounding areas and

the landscape fragmentation degree around the main urban

area increased during this period.

SHDI indicates landscape heterogeneity. The higher the

value, the greater the heterogeneity. The high-value area of

SHDI is nearly the same as the high-value area of PD. In

2008, the areas with high heterogeneity were mainly mining

areas. In 2014, the areas with high SHDI values consisted of two

parts: the urban-rural integration area in the west of Qianshan

District and the mining agglomeration area in the east. With the

constant development of Anshan City to the south and west, the

original cultivated land and forest land have been replaced by

construction land and water due to anthropogenic interventions.

The landscape heterogeneity in the urban-rural integration area

in the western part of Qianshan District has increased, the

landscape richness has been improved, and the types have

become diversified. Under the influence of mining activities,

the mining area expanded and some workers built houses and

farmland around the mining area, leading to the increase of

landscape heterogeneity of the mining area. The high value areas

in 2020 are similar to those in 2014, with increased landscape

heterogeneity near the Dagushan mine, due to the

implementation of mine reclamation in Anshan and the

conversion of some industrial and mining land to forest land

and construction land.

4 Discussion

4.1 Random forest classification
optimization

With the continuous advancement of computer technology,

machine learning technology is widely applied in remote sensing

land use classification and mapping (Hansen et al., 2007; Liu

et al., 2016a). Common classification methods include support

vector machine (SVM), decision tree (DT), maximum likelihood

classification (MLC), random forest (RF), etc. Yu et al. (2014)

found that MLC is the most commonly used remote sensing

classification method. Pal and Mather. (2006) compared the

three methods of support vector machine, maximum

likelihood classification and neural network and found that

support vector machine accuracy is higher. Then Pal (2007)

compared the support vector machine and the random forest,

FIGURE 6
Raster map of landscape pattern in urban area of Anshan. (A) Patch density in 2008; (B) Patch density in 2014; (C) Patch density in 2020; (D)
2008 Shannon’s diversity index; (E) 2014 Shannon’s diversity Index; (F) 2020 Shannon’s diversity Index.
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and found that the classification accuracy of the two methods is

not much different, but the random forest needs to set fewer

parameters. Lawrence and Moran (2015) compared SVM, RF,

DT, and other six classification methods, and found that the

classification accuracy of RF is higher than other classification

methods.

Random forest has high classification accuracy. At the same

time, in contrast to classification methods such as NN and SVM,

this classification method can help to achieve the optimization of

classification results by defining two parameters, the number of

input feature variables and the number of decision trees

(Rodriguez-Galiano et al., 2012; Phan et al., 2020). In this

study, through the GEE platform, the random forest classifier

was applied to classify remote sensing images, and the number of

decision trees was adjusted in GEE to improve the classification

accuracy. From 100 to 2000, 20 tests were carried out at intervals

of 100 trees to observe the test accuracy (Figure 7). It is found that

the test accuracy leveled off when the number of decision trees

was 1700 in 2008, 200 in 2014, and 1,200 in 2020. In 2008,

when the number of decision trees was changed from the

initial 100 trees to 1700 trees, the classification accuracy

increased by 1.6%. The optimized parameters were

respectively input into the random forest classifier to improve

the classification accuracy.

4.2 Comparison of landscape changes in
different pits

There are six large pits in the study area, and the extent of

reclamation varies from mine to mine due to different mining

and management patterns. Based on the spatial and temporal

characteristics of the land use and landscape patterns of the six

pits, it was found that the Donganshan and Dagushan mines

were the most effective in terms of reclamation. These two mines

have been significantly reduced in size. The Donganshan mine

follows the principle of “greening while mining” and reclaims the

open pit and tailings ponds, and the Yuemingshan tailings pond

in the northeast of the mine and the Shannan tailings pond in the

south have been effectively treated. The greening of the discharge

FIGURE 7
The effect of the number of decision trees on classification accuracy. (A) 2008; (B) 2014; (C) 2020.
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site at the Dagushan mine has been effective and the mine area

has been significantly reduced. The Donganshan and Dagushan

mines have the lowest PD and SHDI values and the lowest degree

of landscape fragmentation and landscape heterogeneity

compared to the other mines. Reclamation of the Qidashan

mine is generally effective, with no significant change in the

size of the mine and consistently high PD and SHDI values,

which have remained largely unchanged over the course of the

study. The reclamation of the Yanqianshan, Anqian and

Xiaolingzi mines is not satisfactory, as the size of these pits

has increased to varying degrees due to ongoing

mining activities, and PD and SHDI values have increased

over time.

Based on the effectiveness of reclamation and changes in the

landscape pattern, these pits are divided into three categories: 1.

Mine areas with significant reclamation and low landscape

fragmentation (Donganshan and Dagushan mines); 2. Mine

areas with average reclamation and no increase in landscape

fragmentation and heterogeneity (Qidashan mines); 3. Mine

areas with unsatisfactory reclamation and increasing landscape

fragmentation and heterogeneity (Yanqianshan, Anqian and

Xiaolingzi mines). In the future management of mining areas

in Anshan, there is an urgent need to strengthen the intensity of

reclamation of Category three mining areas and improve the

mining environment. Attention should be paid to changes in the

landscape pattern of Category two mining areas to prevent an

increase in landscape fragmentation. Continue to increase the

area of greening and expand the scope of reclamation for

Category one mining areas.

4.3 Factors affecting changes in land use
and landscape patterns

Urbanization is one of the main drivers contributing to

changes in land use and landscape patterns (Lambin et al.,

2001; Deng et al., 2009; Wu et al., 2010). After the reform and

opening up, urbanization in China has accelerated and a large

number of people have flowed from rural areas to cities,

leading to a rapid decrease in arable land and an increasing

amount of land for construction (Deng et al., 2015; Zhang

et al., 2020a). As Liaoyang City lies to the north of Anshan

City, the urban development direction of Anshan City is

mainly to the south, east and west. In 2008, Anshan City

developed mainly to the south, hence the high PD value of the

urban-rural area between the Donganshan and Dagushan

mining areas. Urban roads are also the core areas of urban

construction (Zhang et al., 2021). From 2008 to 2014, Anshan

City continued to expand to the southwest along the Heida

Line, and the PD value in the southwest area of Qianshan was

relatively high. Between 2014 and 2020, the main city of

Anshan expanded in all directions, with construction along

the Anshan Ring Road, dominated by construction in the

south and east. The main urban area of Anshan was

surrounded by high value areas of PD and SHDI.

The evolution of land use and landscape patterns in

Anshan City are obviously affected by policies. In 2007,

Anshan City began to renovate the Nansha River, repairing

bridge decks, building embankments and dams, regulating

river water, and widening the river surface. Under the

influence of river governance policies, the Nansha River

basin has been connected and the water area increased. In

2014, Anshan City implemented the closed mine ecological

management plan. Before 2014, with the development of

mining activities, the fragmentation degree and landscape

heterogeneity of the mining area increased. After 2014,

mining activities in Anshan City were restricted, some

mines were shifted from open pit to underground mining,

and open-pit mines were gradually restored and managed.

Among them, the belt rock dumping fields in the northern and

central parts of the Qidashan mining area have been

reclaimed, and some of them have been turned into forest

land. The Dagushan and Donganshan mining areas have

achieved remarkable results in reclamation, and the rock

dumping fields and slopes have been treated. In 2015,

Anshan City fully implemented the project of returning

arable land to forest, and carried out afforestation in a

planned way, and some cultivated land was changed into

forest land from 2014 to 2020.

Mining activities affect land use and landscape patterns.

Mining activities destroy land use and landscape structure,

leading to landscape fragmentation and increased

heterogeneity. At the same time, the mining industry attracts

large numbers of people to the mining areas. Workers

developed urban activities in the vicinity of the mines, and

commercial facilities, housing, and public amenities near the

mines increased.

Population also affects changes in land use and landscape

patterns. According to the Anshan City Statistical Yearbook,

the population of Anshan City was 1.473 million in 2008,

1.511 million in 2014, and 1.45 million in 2020. From 2008 to

2014, due to the urbanization of Anshan City and the

development of mineral resources, a large number of

people flowed into Anshan City, arable land decreased, and

industrial and mining land increased. From 2014 to 2020, due

to the transformation of the economic development model,

Anshan City lost its population, the urban development

slowed down, and the changes in various land use types

were not obvious.

4.4 Limitations

This study has certain limitations. First, the analysis of

land use and landscape pattern changes relies on the results of

random forest classification. The study used Landsat data at a
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resolution of 30 m for land classification. At 30 m resolution,

it is impossible to distinguish precisely various types of land

use and then differentiate collapsed land, stope and dump in

the mining area. In future research, high-resolution sentinel

data can be used for land use classification, which may

improve the accuracy of analysis and comparison studies

on changes in subsidence, dumps and slopes in different

mining areas. At the same time, this study selected

11 characteristic variables for random forest classification,

which would generate a certain amount of data redundancy.

In future research, characteristic variables with high

correlation can be selected for training to improve

classification efficiency. Secondly, the causes of variations

in land use and landscape patterns are complex and

diverse. The study only analyzed the impact of

anthropogenic factors such as urbanization, policy, mining

and population on change, and did not consider the impact of

natural factors such as climate and soil on change, nor did it

conduct a correlation analysis. The next step will be to

conduct a principal components analysis of the drivers to

clarify the main causes of change in both. Future research

should focus on the evolution of land use and landscape

patterns in mineral resource-based cities and areas where

mining areas are concentrated, and further analyze the

impact of change on regional ecosystems.

5 Conclusion

Building on the GEE platform, the study selected multi-

temporal Landsat images and random forest classification

algorithm to draw the land use map of Anshan urban area in

2008, 2014, and 2020. Using confusion matrices to verify the

accuracy of classification. The results show that the overall

classification accuracy in 3 years is more than 90% and the

Kappa coefficient is more than 0.8. The classification accuracy is

high. The dynamic land use attitude and the moving window

method combined with the landscape pattern index were applied

to analyze the spatial and temporal characteristics of land use and

landscape patterns in Anshan City. The results of the study are as

follows.

From 2008 to 2020, the change in land use in Anshan City

District shows a continuous decline in construction land and a

continuous growth in forest land, with a shift from

construction land to forest land and cultivated land. The

area of mining areas grew before 2014 but remained largely

unchanged after mine management was carried out in Anshan

City in 2014. During the study period, changes in the

landscape pattern of the Anshan city area were

characterized by increasing landscape fragmentation and

landscape heterogeneity. The areas with high values of

landscape fragmentation and heterogeneity in 2008 were

the Qidashan mining area and the urban-rural combination

area in the southern part of the main city. With urbanization

and mining activities, the areas with high values of landscape

fragmentation and landscape heterogeneity increased

significantly. 2014 saw the development of Anshan City to

the southwest, and the areas with severe landscape

fragmentation were the urban-rural combination areas in

the Qianshan District. During this phase, mining activities

are frequent and landscape fragmentation is severe in the

mining areas of Anshan Qian and the immediate mountain

area. 2014–2020 sees little change in the landscape pattern of

Anshan, but the city develops to the east, west and south, with

the areas of severe landscape fragmentation being the

combined urban-rural areas around the main urban area.

The six mining sites in the study area vary in their reclamation

effectiveness. The best reclamation results were found at the

Dagushan and Donganshan mines, where the mine area was

significantly reduced and the landscape fragmentation was low.

There is a need to continue to expand the greening area. The

relatively good results of reclamation are in Qidashan, where the

area of the mine and the degree of landscape fragmentation remain

largely unchanged, but the degree of fragmentation is still high and

the rate of reclamation needs to be accelerated. The least satisfactory

results are found in the mining areas of Yanqianshan, Anqian and

Xiaolingzi, where the size of the mining area is still increasing and

the degree of landscape fragmentation continues to increase,

requiring increased reclamation efforts.

Land use and landscape pattern changes in Anshan are

influenced by urbanization, policies, population and mining

activities. Between 2008 and 2014, Anshan experienced

rapid urbanization, increased population, reduced arable

land, increased industrial and mining land use, and a

significant increase in landscape fragmentation. Since 2014,

Anshan City has paid attention to environmental governance.

Due to policies on returning farmland to forests, mining

area restoration and watershed management, Anshan City

set about planting trees, reclaiming mining areas and

making rivers circulate. The landscape pattern and land

use changes in Anshan City have slowed significantly

since 2014.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary

Material, further inquiries can be directed to the

corresponding authors.

Author contributions

YZ performed the data analysis and wrote the manuscript; YF

and YZ contributed to the idea of the study; YF helped with the

Frontiers in Environmental Science frontiersin.org14

Fu and Zhang 10.3389/fenvs.2022.988346

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.988346


analysis through constructive discussions and provided valuable

reviewer comments.

Funding

This work was supported by the National Natural Science

Foundation of China under Grand 52074064.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fenvs.2022.

988346/full#supplementary-material

References

Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A.,
Mirmazloumi, S. M., et al. (2020). Google earth engine cloud computing
platform for remote sensing big data applications: A comprehensive review.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 5326–5350. doi:10.1109/
jstars.2020.3021052

Ang, M. L. E., Arts, D., Crawford, D., Labatos, B. V., Jr, Ngo, K. D., Owen, J. R.,
et al. (2021). Socio-environmental land cover time-series analysis of mining
landscapes using Google Earth Engine and web-based mapping. Remote Sens.
Appl. Soc. Environ. 21, 100458. doi:10.1016/j.rsase.2020.100458

Bai, J., Ouyang, H., Cui, B., Wang, Q., and Chen, H. (2008). Changes in landscape
pattern of alpine wetlands on the Zoige Plateau in the past four decades. Acta Ecol.
Sin. 28 (5), 2245–2252. doi:10.1016/s1872-2032(08)60046-3

Bajocco, S., De Angelis, A., Perini, L., Ferrara, A., and Salvati, L. (2012). The
impact of land use/land cover changes on land degradation dynamics: A
mediterranean case study. Environ. Manage. 49 (5), 980–989. doi:10.1007/
s00267-012-9831-8

Belgiu, M., and Drăguţ, L. (2016). Random forest in remote sensing: A review of
applications and future directions. ISPRS J. Photogrammetry Remote Sens. 114,
24–31. doi:10.1016/j.isprsjprs.2016.01.011

Breiman, L. (2001a). Random forests. Mach. Learn. 45 (1), 5–32. doi:10.1023/a:
1010933404324

Breiman, L. (2001b). Using iterated bagging to debias regressions. Mach. Learn.
45 (3), 5–32. doi:10.1023/a:1010933404324

Bürgi, M., Hersperger, A. M., and Schneeberger, N. (2004). Driving forces of
landscape change - current and new directions. Landsc. Ecol. 19 (8), 857–868.
doi:10.1007/s10980-004-0245-8

Chang, Y., Hou, K., Li, X., Zhang, Y., and Chen, P. (2018). Review of land use and
land cover change research progress. IOP Conf. Ser. Earth Environ. Sci. 113, 012087.
doi:10.1088/1755-1315/113/1/012087

Cheung, A. K. L., Brierley, G., and O’Sullivan, D. (2016). Landscape structure and
dynamics on the qinghai-Tibetan plateau. Ecol. Model. 339, 7–22. doi:10.1016/j.
ecolmodel.2016.07.015

Cui, J., Zhu, M., Liang, Y., Qin, G., Li, J., and Liu, Y. (2022). Land use/land cover
change and their driving factors in the yellow River basin of shandong Province
based on Google earth engine from 2000 to 2020. ISPRS Int. J. Geoinf. 11 (3), 163.
doi:10.3390/ijgi11030163

Dadashpoor, H., Azizi, P., and Moghadasi, M. (2019). Land use change,
urbanization, and change in landscape pattern in a metropolitan area. Sci. Total
Environ. 655, 707–719. doi:10.1016/j.scitotenv.2018.11.267

Deng, J. S., Wang, K., Hong, Y., and Qi, J. G. (2009). Spatio-temporal dynamics
and evolution of land use change and landscape pattern in response to rapid
urbanization. Landsc. Urban Plan. 92 (3-4), 187–198. doi:10.1016/j.landurbplan.
2009.05.001

Deng, X., Huang, J., Rozelle, S., Zhang, J., and Li, Z. (2015). Impact of
urbanization on cultivated land changes in China. Land Use Policy 45, 1–7.
doi:10.1016/j.landusepol.2015.01.007

Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., and Liu, S. (2012). Multiple classifier
system for remote sensing image classification: A review. Sensors (Basel) 12 (4),
4764–4792. doi:10.3390/s120404764

Fan, Q., and Ding, S. (2016). Landscape pattern changes at a county scale: A case
study in fengqiu, henan Province, China from 1990 to 2013. Catena 137, 152–160.
doi:10.1016/j.catena.2015.09.012

Fang, A., Dong, J., Cao, Z., Zhang, F., and Li, Y. (2019). Tempo-spatial variation of
vegetation coverage and influencing factors of large-scale mining areas in eastern inner
Mongolia, China. Int. J. Environ. Res. Public Health 17 (1), 47. doi:10.3390/ijerph17010047

Fathololoumi, S., Firozjaei, M. K., Li, H., and Biswas, A. (2022). Surface
biophysical features fusion in remote sensing for improving land crop/cover
classification accuracy. Sci. Total Environ. 156520, 156520. doi:10.1016/j.
scitotenv.2022.156520

Feng, Y., Liu, Y., and Tong, X. (2018). Spatiotemporal variation of landscape
patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 87, 22–32.
doi:10.1016/j.ecolind.2017.12.034

Gao, P., Niu, X., Wang, B., and Zheng, Y. (2015). Land use changes and its driving
forces in hilly ecological restoration area based on gis and RS of northern China. Sci.
Rep. 5, 11038. doi:10.1038/srep11038

Ge, H., Yi, Y., Yang, X., Yang, L., Su, D., and Ma, L. (2010). Study on ecological
characteristic and reclamation in Xiangshui coal mining area, Guizhou,
China. Int. J. Min. Reclam. Environ. 24 (1), 18–33. doi:10.1080/
17480930903474774

Ghimire, B., Rogan, J., Galiano, V. R., Panday, P., and Neeti, N. (2013). An
evaluation of bagging, boosting, and random forests for land-cover classification in
cape cod,Massachusetts, USA.GIScience Remote Sens. 49 (5), 623–643. doi:10.2747/
1548-1603.49.5.623

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.
(2017). Google earth engine: Planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. doi:10.1016/j.rse.2017.06.031

Groom, G., Mücher, C. A., Ihse, M., and Wrbka, T. (2006). Remote sensing in
landscape ecology: Experiences and perspectives in a European context. Landsc.
Ecol. 21 (3), 391–408. doi:10.1007/s10980-004-4212-1

Hagen-Zanker, A. (2016). A computational framework for generalized moving
windows and its application to landscape pattern analysis. Int. J. Appl. Earth
Observation Geoinformation 44, 205–216. doi:10.1016/j.jag.2015.09.010

Hansen, M., Dubayah, R., and Defries, R. (2007). Classification trees: An
alternative to traditional land cover classifiers. Int. J. Remote Sens. 17 (5),
1075–1081. doi:10.1080/01431169608949069

Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth
dynamics and landscape pattern analysis in five fastest urbanized cities in
Bangladesh. Remote Sens. Appl. Soc. Environ. 7, 69–83. doi:10.1016/j.rsase.2017.
07.001

Hayes, J. J., and Robeson, S. M. (2013). Spatial variability of landscape pattern
change following a ponderosa pine wildfire in northeastern New Mexico, USA.
Phys. Geogr. 30 (5), 410–429. doi:10.2747/0272-3646.30.5.410

Frontiers in Environmental Science frontiersin.org15

Fu and Zhang 10.3389/fenvs.2022.988346

https://www.frontiersin.org/articles/10.3389/fenvs.2022.988346/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenvs.2022.988346/full#supplementary-material
https://doi.org/10.1109/jstars.2020.3021052
https://doi.org/10.1109/jstars.2020.3021052
https://doi.org/10.1016/j.rsase.2020.100458
https://doi.org/10.1016/s1872-2032(08)60046-3
https://doi.org/10.1007/s00267-012-9831-8
https://doi.org/10.1007/s00267-012-9831-8
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1007/s10980-004-0245-8
https://doi.org/10.1088/1755-1315/113/1/012087
https://doi.org/10.1016/j.ecolmodel.2016.07.015
https://doi.org/10.1016/j.ecolmodel.2016.07.015
https://doi.org/10.3390/ijgi11030163
https://doi.org/10.1016/j.scitotenv.2018.11.267
https://doi.org/10.1016/j.landurbplan.2009.05.001
https://doi.org/10.1016/j.landurbplan.2009.05.001
https://doi.org/10.1016/j.landusepol.2015.01.007
https://doi.org/10.3390/s120404764
https://doi.org/10.1016/j.catena.2015.09.012
https://doi.org/10.3390/ijerph17010047
https://doi.org/10.1016/j.scitotenv.2022.156520
https://doi.org/10.1016/j.scitotenv.2022.156520
https://doi.org/10.1016/j.ecolind.2017.12.034
https://doi.org/10.1038/srep11038
https://doi.org/10.1080/17480930903474774
https://doi.org/10.1080/17480930903474774
https://doi.org/10.2747/1548-1603.49.5.623
https://doi.org/10.2747/1548-1603.49.5.623
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1007/s10980-004-4212-1
https://doi.org/10.1016/j.jag.2015.09.010
https://doi.org/10.1080/01431169608949069
https://doi.org/10.1016/j.rsase.2017.07.001
https://doi.org/10.1016/j.rsase.2017.07.001
https://doi.org/10.2747/0272-3646.30.5.410
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.988346


He, F., Yang, J., Zhang, Y., Sun, D., Wang, L., Xiao, X., et al. (2022a). Offshore
island connection line: A new perspective of coastal urban development boundary
simulation and multi-scenario prediction. GIScience Remote Sens. 59 (1), 801–821.
doi:10.1080/15481603.2022.2071056

He, Y., Oh, J., Lee, E., and Kim, Y. (2022b). Land cover and land use mapping of
the east asian summer monsoon region from 1982 to 2015. Land 11 (3), 391. doi:10.
3390/land11030391

Huang, J., Lin, J., and Tu, Z. (2008). Detecting spatiotemporal change of land use
and landscape pattern in a coastal gulf region, southeast of China. Environ. Dev.
Sustain. 12 (1), 35–48. doi:10.1007/s10668-008-9178-8

Jazouli, A. E., Barakat, A., Khellouk, R., Rais, J., and Baghdadi, M. E. (2019).
Remote sensing and GIS techniques for prediction of land use land cover change
effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco).
Remote Sens. Appl. Soc. Environ. 13, 361–374. doi:10.1016/j.rsase.2018.12.004

Kumar, L., and Mutanga, O. (2018). Google earth engine applications since
inception: Usage, trends, and potential. Remote Sens. 10 (10), 1509. doi:10.3390/
rs10101509

Kupidura, P. (2019). The comparison of different methods of texture analysis for
their efficacy for land use classification in satellite imagery. Remote Sens. 11 (10),
1233. doi:10.3390/rs11101233

Kuzevic, S., Bobikova, D., and Kuzevicova, Z. (2022). Land cover and vegetation
coverage changes in the mining area—a case study from Slovakia. Sustainability 14
(3), 1180. doi:10.3390/su14031180

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W.,
et al. (2001). The causes of land-use and land-cover change: Moving beyond the
myths. Glob. Environ. Change 11 (4), 261–269. doi:10.1016/s0959-3780(01)00007-3

Lawrence, R. L., and Moran, C. J. (2015). The AmericaView classification
methods accuracy comparison project: A rigorous approach for model selection.
Remote Sens. Environ. 170, 115–120. doi:10.1016/j.rse.2015.09.008

Lei, S., Bian, Z., Daniels, J. L., and He, X. (2010). Spatio-temporal variation of
vegetation in an arid and vulnerable coal mining region.Min. Sci. Technol. (China)
20 (3), 485–490. doi:10.1016/s1674-5264(09)60230-1

Li, P., Zuo, D., Xu, Z., Zhang, R., Han, Y., Sun, W., et al. (2021a). Dynamic
changes of land use/cover and landscape pattern in a typical alpine river basin of the
Qinghai-Tibet Plateau, China. Land Degrad. Dev. 32 (15), 4327–4339. doi:10.1002/
ldr.4039

Li, S., Wang, J., Zhang, M., and Tang, Q. (2021b). Characterizing and
attributing the vegetation coverage changes in North Shanxi coal base of
China from 1987 to 2020. Resour. Policy 74, 102331. doi:10.1016/j.resourpol.
2021.102331

Liu, D., Hao, S., Liu, X., Li, B., He, S., andWarrington, D. N. (2012). Effects of land
use classification on landscape metrics based on remote sensing and GIS. Environ.
Earth Sci. 68 (8), 2229–2237. doi:10.1007/s12665-012-1905-7

Liu, J., and Deng, X. (2010). Progress of the research methodologies on the
temporal and spatial process of LUCC. Chin. Sci. Bull. 55 (14), 1354–1362. doi:10.
1007/s11434-009-0733-y

Liu, X., Li, X., Chen, Y., Tan, Z., Li, S., and Ai, B. (2010). A new landscape index
for quantifying urban expansion using multi-temporal remotely sensed data.
Landsc. Ecol. 25 (5), 671–682. doi:10.1007/s10980-010-9454-5

Liu, P., Choo, K.-K. R.,Wang, L., andHuang, F. (2016a). SVM or deep learning? A
comparative study on remote sensing image classification. Soft Comput. 21 (23),
7053–7065. doi:10.1007/s00500-016-2247-2

Liu, X., Zhou,W., and Bai, Z. (2016b). Vegetation coverage change and stability in
large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 95, 447–451.
doi:10.1016/j.ecoleng.2016.06.051

Liu, X., An, Y., Dong, G., and Jiang, M. (2018). Land use and landscape pattern
changes in the sanjiang plain, northeast China. Forests 9 (10), 637. doi:10.3390/
f9100637

Magidi, J., Nhamo, L., Mpandeli, S., andMabhaudhi, T. (2021). Application of the
random forest classifier to map irrigated areas using Google earth engine. Remote
Sens. 13 (5), 876. doi:10.3390/rs13050876

Mutanga, O., and Kumar, L. (2019). Google earth engine applications. Remote
Sens. 11 (5), 591. doi:10.3390/rs11050591

Pal, M., and Mather, P. M. (2006). Support vector machines for classification in
remote sensing. Int. J. Remote Sens. 26 (5), 1007–1011. doi:10.1080/
01431160512331314083

Pal, M. (2007). Random forest classifier for remote sensing classification. Int.
J. Remote Sens. 26 (1), 217–222. doi:10.1080/01431160412331269698

Peng, J., Wu, J., Yin, H., Li, Z., Chang, Q., and Mu, T. (2008). Rural land use
change during 1986-2002 in lijiang, China, based on remote sensing and GIS data.
Sensors (Basel) 8 (12), 8201–8223. doi:10.3390/s8128201

Pericak, A. A., Thomas, C. J., Kroodsma, D. A., Wasson, M. F., Ross, M. R. V.,
Clinton, N. E., et al. (2018). Mapping the yearly extent of surface coal mining in
central appalachia using Landsat and Google earth engine. PLoS One 13 (7),
e0197758. doi:10.1371/journal.pone.0197758

Phan, T. N., Kuch, V., and Lehnert, L. W. (2020). Land cover classification using
Google earth engine and random forest classifier—the role of image composition.
Remote Sens. 12 (15), 2411. doi:10.3390/rs12152411

Prasai, R., Schwertner, T. W., Mainali, K., Mathewson, H., Kafley, H., Thapa, S.,
et al. (2021). Application of Google earth engine python API and naip imagery for
land use and land cover classification: A case study in Florida, USA. Ecol. Inf. 66,
101474. doi:10.1016/j.ecoinf.2021.101474

Qiu, S., Lin, Y., Shang, R., Zhang, J., Ma, L., and Zhu, Z. (2018). Making Landsat
time series consistent: Evaluating and improving Landsat analysis ready data.
Remote Sens. 11 (1), 51. doi:10.3390/rs11010051

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-
Sanchez, J. P. (2012). An assessment of the effectiveness of a random forest classifier
for land-cover classification. ISPRS J. Photogrammetry Remote Sens. 67, 93–104.
doi:10.1016/j.isprsjprs.2011.11.002

Schmidt, J., Marques, M. R. G., Botti, S., and Marques, M. A. L. (2019). Recent
advances and applications of machine learning in solid-state materials science.
npj Comput. Mat. 5 (1), 83. doi:10.1038/s41524-019-0221-0

Schmitt, M., Bahn, M., Wohlfahrt, G., Tappeiner, U., and Cernusca, A. (2010).
Land use affects the net ecosystem CO<sub>2</sub> exchange and its components
in mountain grasslands. Biogeosciences 7 (8), 2297–2309. doi:10.5194/bg-7-2297-
2010

Shao, G., and Wu, J. (2008). On the accuracy of landscape pattern analysis using
remote sensing data. Landsc. Ecol. 23 (5), 505–511. doi:10.1007/s10980-008-9215-x

Singh, S., Singh, C., and Mukherjee, S. (2010). Impact of land-use and land-cover
change on groundwater quality in the lower shiwalik hills: A remote sensing and
GIS based approach. Open Geosci. 2 (2), 124–131. doi:10.2478/v10085-010-0003-x

Takam Tiamgne, X., Kalaba, F. K., and Nyirenda, V. R. (2021). Land use and cover
change dynamics in Zambia’s Solwezi copper mining district. Sci. Afr. 14, e01007.
doi:10.1016/j.sciaf.2021.e01007

Tang, J., Li, Y., Cui, S., Xu, L., Ding, S., and Nie, W. (2020). Linking land-use
change, landscape patterns, and ecosystem services in a coastal watershed of
southeastern China. Glob. Ecol. Conservation 23, e01177. doi:10.1016/j.gecco.
2020.e01177

Tekle, K., and Hedlund, L. (2000). Land cover changes between 1958 and 1986 in
kalu district, southern wello, Ethiopia. Mt. Res. Dev. 20 (1), 42–51. doi:10.1659/
0276-4741(2000)020[0042:Lccbai]2.0.Co;2

Thakkar, A. K., Desai, V. R., Patel, A., and Potdar, M. B. (2017). Post-classification
corrections in improving the classification of Land Use/Land Cover of arid region
using RS and GIS: The case of Arjuni watershed, Gujarat, India. Egypt. J. Remote
Sens. Space Sci. 20 (1), 79–89. doi:10.1016/j.ejrs.2016.11.006

Tian, Y., Liu, B., Hu, Y., Xu, Q., Qu, M., and Xu, D. (2020). Spatio-temporal land-
use changes and the response in landscape pattern to hemeroby in a resource-based
city. ISPRS Int. J. Geoinf. 9 (1), 20. doi:10.3390/ijgi9010020

Townsend, P. A., Helmers, D. P., Kingdon, C. C., McNeil, B. E., de Beurs, K.
M., and Eshleman, K. N. (2009). Changes in the extent of surface mining and
reclamation in the Central Appalachians detected using a
1976–2006 Landsat time series. Remote Sens. Environ. 113 (1), 62–72. doi:10.
1016/j.rse.2008.08.012

Turner, M. G. (1990). Spatial and temporal analysis of landscape patterns. Landsc.
Ecol. 4 (1), 21–30. doi:10.1007/bf02573948

Wahap, N. A., and Shafri, H. Z. M. (2020). Utilization of Google earth
engine (GEE) for land cover monitoring over klang valley, Malaysia. IOP
Conf. Ser. Earth Environ. Sci. 540 (1), 012003. doi:10.1088/1755-1315/540/1/
012003

Wan, L., Zhang, Y., Zhang, X., Qi, S., and Na, X. (2015). Comparison of land use/
land cover change and landscape patterns in Honghe National Nature Reserve and
the surrounding Jiansanjiang Region, China. Ecol. Indic. 51, 205–214. doi:10.1016/j.
ecolind.2014.11.025

Wang, S., Zhao, Y., Yin, X. a., Yu, L., and Xu, F. (2009). Land use and landscape
pattern changes in Nenjiang River basin during 1988–2002. Front. Earth Sci. China
4 (1), 33–41. doi:10.1007/s11707-010-0006-8

Wang, R., Cheng, J., Zhu, Y., and Xiong, W. (2016). Research on diversity of
mineral resources carrying capacity in Chinese mining cities. Resour. Policy 47,
108–114. doi:10.1016/j.resourpol.2015.12.003

Wang, D., Huang, Z., Wang, Y., andMao, J. (2021). Ecological security of mineral
resource-based cities in China: Multidimensional measurements, spatiotemporal
evolution, and comparisons of classifications. Ecol. Indic. 132, 108269. doi:10.1016/
j.ecolind.2021.108269

Frontiers in Environmental Science frontiersin.org16

Fu and Zhang 10.3389/fenvs.2022.988346

https://doi.org/10.1080/15481603.2022.2071056
https://doi.org/10.3390/land11030391
https://doi.org/10.3390/land11030391
https://doi.org/10.1007/s10668-008-9178-8
https://doi.org/10.1016/j.rsase.2018.12.004
https://doi.org/10.3390/rs10101509
https://doi.org/10.3390/rs10101509
https://doi.org/10.3390/rs11101233
https://doi.org/10.3390/su14031180
https://doi.org/10.1016/s0959-3780(01)00007-3
https://doi.org/10.1016/j.rse.2015.09.008
https://doi.org/10.1016/s1674-5264(09)60230-1
https://doi.org/10.1002/ldr.4039
https://doi.org/10.1002/ldr.4039
https://doi.org/10.1016/j.resourpol.2021.102331
https://doi.org/10.1016/j.resourpol.2021.102331
https://doi.org/10.1007/s12665-012-1905-7
https://doi.org/10.1007/s11434-009-0733-y
https://doi.org/10.1007/s11434-009-0733-y
https://doi.org/10.1007/s10980-010-9454-5
https://doi.org/10.1007/s00500-016-2247-2
https://doi.org/10.1016/j.ecoleng.2016.06.051
https://doi.org/10.3390/f9100637
https://doi.org/10.3390/f9100637
https://doi.org/10.3390/rs13050876
https://doi.org/10.3390/rs11050591
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.1080/01431160512331314083
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.3390/s8128201
https://doi.org/10.1371/journal.pone.0197758
https://doi.org/10.3390/rs12152411
https://doi.org/10.1016/j.ecoinf.2021.101474
https://doi.org/10.3390/rs11010051
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.5194/bg-7-2297-2010
https://doi.org/10.5194/bg-7-2297-2010
https://doi.org/10.1007/s10980-008-9215-x
https://doi.org/10.2478/v10085-010-0003-x
https://doi.org/10.1016/j.sciaf.2021.e01007
https://doi.org/10.1016/j.gecco.2020.e01177
https://doi.org/10.1016/j.gecco.2020.e01177
https://doi.org/10.1659/0276-4741(2000)020[0042:Lccbai]2.0.Co;2
https://doi.org/10.1659/0276-4741(2000)020[0042:Lccbai]2.0.Co;2
https://doi.org/10.1016/j.ejrs.2016.11.006
https://doi.org/10.3390/ijgi9010020
https://doi.org/10.1016/j.rse.2008.08.012
https://doi.org/10.1016/j.rse.2008.08.012
https://doi.org/10.1007/bf02573948
https://doi.org/10.1088/1755-1315/540/1/012003
https://doi.org/10.1088/1755-1315/540/1/012003
https://doi.org/10.1016/j.ecolind.2014.11.025
https://doi.org/10.1016/j.ecolind.2014.11.025
https://doi.org/10.1007/s11707-010-0006-8
https://doi.org/10.1016/j.resourpol.2015.12.003
https://doi.org/10.1016/j.ecolind.2021.108269
https://doi.org/10.1016/j.ecolind.2021.108269
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.988346


Wu, Y., Zhang, X., and Shen, L. (2010). The impact of urbanization policy on land
use change: A scenario analysis. Cities 28 (2), 147–159. doi:10.1016/j.cities.2010.
11.002

Wu, H., Lin, A., Xing, X., Song, D., and Li, Y. (2021a). Identifying core driving
factors of urban land use change from global land cover products and POI data
using the random forest method. Int. J. Appl. Earth Observation Geoinformation
103, 102475. doi:10.1016/j.jag.2021.102475

Wu, J., Zhu, Q., Qiao, N., Wang, Z., Sha, W., Luo, K., et al. (2021b). Ecological risk
assessment of coal mine area based on “source-sink” landscape theory – a case study
of Pingshuo mining area. J. Clean. Prod. 295, 126371. doi:10.1016/j.jclepro.2021.
126371

Xu, J., Zhao, H., Yin, P., Wu, L., and Li, G. (2019). Landscape ecological quality
assessment and its dynamic change in coal mining area: A case study of peixian.
Environ. Earth Sci. 78 (24), 708. doi:10.1007/s12665-019-8747-5

Yang, Y., Erskine, P. D., Lechner, A. M., Mulligan, D., Zhang, S., and Wang, Z.
(2018). Detecting the dynamics of vegetation disturbance and recovery in surface
mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 178,
353–362. doi:10.1016/j.jclepro.2018.01.050

Yang, J., Yang, R., Chen, M.-H., Su, C.-H., Zhi, Y., and Xi, J. (2021). Effects of rural
revitalization on rural tourism. J. Hosp. Tour. Manag. 47, 35–45. doi:10.1016/j.jhtm.
2021.02.008

Yang, H., Zhong, X., Deng, S., and Nie, S. (2022). Impact of LUCC on landscape
pattern in the yangtze River basin during 2001–2019. Ecol. Inf. 69, 101631. doi:10.
1016/j.ecoinf.2022.101631

Yu, L., Liang, L., Wang, J., Zhao, Y., Cheng, Q., Hu, L., et al. (2014). Meta-
discoveries from a synthesis of satellite-based land-cover mapping
research. Int. J. Remote Sens. 35 (13), 4573–4588. doi:10.1080/01431161.
2014.930206

Yu, H., Yang, J., Sun, D., Li, T., and Liu, Y. (2022). Spatial responses of ecosystem
service value during the development of urban agglomerations. Land 11 (2), 165.
doi:10.3390/land11020165

Zhai, M., Hu, R., Wang, Y., Jiang, S., Wang, R., Li, J., et al. (2021). Mineral
resource science in China: Review and perspective. Geogr. Sustain. 2 (2), 107–114.
doi:10.1016/j.geosus.2021.05.002

Zhang, F., and Yang, X. (2020). Improving land cover classification in an
urbanized coastal area by random forests: The role of variable selection. Remote
Sens. Environ. 251, 112105. doi:10.1016/j.rse.2020.112105

Zhang, D., Zhou, C., and Xu, W. (2020a). Spatial-temporal characteristics of
primary and secondary educational resources for relocated children of migrant
workers: The case of liaoning Province. Complexity 2020, 1–13. doi:10.1155/2020/
7457109

Zhang, M., Wang, J., Li, S., Feng, D., and Cao, E. (2020b). Dynamic changes in
landscape pattern in a large-scale opencast coal mine area from 1986 to 2015: A
complex network approach. Catena 194, 104738. doi:10.1016/j.catena.2020.104738

Zhang, D., Zhou, C., Sun, D., and Qian, Y. (2021). The influence of the spatial
pattern of urban road networks on the quality of business environments: The case
of dalian city. Environ. Dev. Sustain. 24 (7), 9429–9446. doi:10.1007/s10668-021-
01832-z

Frontiers in Environmental Science frontiersin.org17

Fu and Zhang 10.3389/fenvs.2022.988346

https://doi.org/10.1016/j.cities.2010.11.002
https://doi.org/10.1016/j.cities.2010.11.002
https://doi.org/10.1016/j.jag.2021.102475
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.1007/s12665-019-8747-5
https://doi.org/10.1016/j.jclepro.2018.01.050
https://doi.org/10.1016/j.jhtm.2021.02.008
https://doi.org/10.1016/j.jhtm.2021.02.008
https://doi.org/10.1016/j.ecoinf.2022.101631
https://doi.org/10.1016/j.ecoinf.2022.101631
https://doi.org/10.1080/01431161.2014.930206
https://doi.org/10.1080/01431161.2014.930206
https://doi.org/10.3390/land11020165
https://doi.org/10.1016/j.geosus.2021.05.002
https://doi.org/10.1016/j.rse.2020.112105
https://doi.org/10.1155/2020/7457109
https://doi.org/10.1155/2020/7457109
https://doi.org/10.1016/j.catena.2020.104738
https://doi.org/10.1007/s10668-021-01832-z
https://doi.org/10.1007/s10668-021-01832-z
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.988346

	Research on temporal and spatial evolution of land use and landscape pattern in Anshan City based on GEE
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Data source and processing
	2.3 Sample selection
	2.4 Processes and methods
	2.4.1 Land use classification based on random forest
	2.4.2 Land use dynamic degree
	2.4.3 Landscape pattern based on landscape pattern index
	2.4.4 Landscape pattern based on moving window


	3 Result analysis
	3.1 Land use
	3.1.1 Land use changes
	3.1.2 Changes in land use dynamic degree

	3.2 Landscape pattern analysis
	3.2.1 Comprehensive analysis at the class level
	3.2.2 Comprehensive analysis at the landscape level
	3.2.3 Spatial level comparative analysis


	4 Discussion
	4.1 Random forest classification optimization
	4.2 Comparison of landscape changes in different pits
	4.3 Factors affecting changes in land use and landscape patterns
	4.4 Limitations

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


