
Using crop modeling to find
solutions for wheat diseases: A
review

Caroline Fadeke Ajilogba1,2* and Sue Walker1,3*
1Division of Agrometeorology, Agricultural Research Council—Natural Sciences and Engineering, Pretoria,
South Africa, 2Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West
University, Mmabatho, South Africa, 3Department of Soil, Crop and Climate Sciences, University of the Free
State, Bloemfontein, South Africa

Plant diseases have caused serious challenges in the production of food globally. This
has led to hunger and food insecurity. Different solutions for crop diseases have been
introduced in the recent past that include cultural control using farm management
methods, chemical control, resistant cultivars, and recently, biocontrol. Each of these
solutions has varied weaknesses. Faced with the changes in climate and the
recurrences of crop diseases, new strategies incorporating preventive measures
would be important by reducing risks to crop production from crop diseases, thus
alleviating food insecurity. Strategies for the prevention of these diseases and/or
forecasting favorable environmental conditions for disease development have not
been fully employed as preventive measures. The use of crop modeling has been
used to advise farmers on planting procedures that would bring maximum yields
using different management procedures at the farm level. Little is known about the
use of crop models in crop disease control. In order to increase the use of crop
models for these objectives, this review provides the current status quo and will help
to stimulate more research in this regard.
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1 Introduction

Diseases of crops are known to be critical worldwide challenges to optimal food production.
Different means are used to combat this menace and to reduce the impacts of pathogens and
diseases in crop production (Ajilogba and Babalola, 2013).

Cultural control of crop diseases involves making the environment unfit for the growth and
development of plant diseases and disease-causing factors by using local or international
management procedures (Ajilogba and Babalola, 2013). In their study, Ajilogba and Babalola
emphasized that the application of the working knowledge of environmental conditions aiding
the growth of such pathogens and diseases would play an important role in mitigating the
spread and impact of diseases. Some other cultural methods are used as part of the integrated
control of pests and diseases (Ogle and Dale, 1997). These include mulching, crop rotation, and
fallowing the land, while others that are seldom used include grafting of fruit trees (Ogle and
Dale, 1997). Cultural control is always important as a support in farmmanagement systems and
can be used as additional support to the main preventive strategy.

In modern agriculture, chemical sprays are mostly used to control pest and diseases in a
preventative fashion even before they are detected on the crop (Ajilogba and Babalola, 2013).
Such chemicals can be called eradicants, which help to kill disease pathogens present in soils and
plant parts. Protectants are chemicals that protect plants and stand as an interface between
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plants and pathogens while therapeutic chemicals are useful
in situations where the disease is already progressing (Pelczar et al.,
2020). One of the chemicals that is commonly used as a fumigant
before planting to manage disease-causing microbes and weeds of
plant diseases globally is methyl bromide (Mao et al., 2017).

The use of methyl bromide as a means of control of soil-borne
crop diseases has been phased out although it is still used in a few
cropping situations. It is normally used as a fumigant in the soil against
nematodes of soil, parasites, and pathogenic inoculum. Because of
environmental pollution and the risk of health hazards, it is now only
used for critical situations (Mao et al., 2017). 1,3-Dichloropropene
(1,3-D) andmetam sodium (Sadrati et al., 2013) were observed to be as
effective as using methyl bromide against soil nematodes. One of the
critical challenges with the use of chemicals is an increase in the
number of pathogens developing resistance to such chemicals. This
makes suppression and elimination of such pathogens more
burdensome (Leadbeater, 2015). Another challenge with the use of
chemicals is the cost price in comparison to the final production
obtained. This normally discourages some farmers from using
chemical control methods.

Use of chemical applications is gradually being phased out, while
the production of resistant cultivars and, recently, biocontrol methods
are being increased (Ajilogba and Babalola, 2013).

Biological control is one of the integrated disease management
practices of plant and animal diseases that reduce the yield loss by
suppressing the disease and reducing the use of chemicals in order to
promote sustainable crop production and human health (O’Brien,
2017; Thurman et al., 2017; Köhl et al., 2019b). It is the control of plant
and animal diseases and pests by the application of biological agents to
a host animal or plant that prevents the development of a disease by a
pathogen (O’Brien, 2017). It can also include the use of microbial
antagonists to suppress the disease (Heydari and Pessarakli, 2010;
Ajilogba and Walker, 2020). These microbial antagonists can be
bacterial, fungal, viral, or by nematodes, although bacterial and
fungal antagonists are more common; recently, the use of
bacteriophages, which are viruses that kill bacteria, have been
reported to be effective (Jones et al., 2007; Buttimer et al., 2017).
Sometimes, these microbial antagonists are used singly or as a
consortium (O’Brien, 2017; Köhl et al., 2019b; Bradáčová et al.,
2019). These microbial antagonists have different modes of
operation which include hyperparasitism, phosphate solubilization,
predation, antagonism, hydrogen cyanide production, and induced
resistance (Jones et al., 2007; Ajilogba and Babalola, 2016). The mode
of operation or action of a microbial or biological control agent (M/
BCA) is dependent on different events happening in and around the
M/BCA (Junaid et al., 2013; Köhl et al., 2019a). These range from how
the M/BCA is able to establish itself, and its ability to produce and
release metabolites and/or signaling compounds that can induce the
defense mechanism of the plants and also how the pathogen in
question will respond to the defense mechanism (Köhl et al.,
2019b). Furthermore, other determining factors to ensure the
effectiveness of the antagonist include the plant cultivar, mode of
inoculation, time and duration of inoculation, available conditions for
germination and infection of pathogens, physiology, and growing
conditions of the plant (Junaid et al., 2013; Ajilogba and Walker,
2020). These growing conditions of pathogens, M/BCA, and plants are
very important and form a trio impacted by environmental conditions.

Biological control and M/BCA will be affected by climate change
both positively and negatively, as environmental conditions affect

agricultural productivity. The biocontrol agents that are effective as a
result of the positive impact of climate change might be ineffective in
the future as the climate changes (Thurman et al., 2017). As the
climate changes in terms of increases in temperature, decreases in
precipitation and rainfall, and drought spells, the amount of water in
the soil is reduced, which can impact the quality and quantity of soil
microbes available depending on their various living conditions. This
proceeds to change the incidence of pest and disease patterns and
definitely the effectiveness, or lack of it, ofM/BCA (Fuhrer, 2003; Jones
and Thornton, 2003; Lin, 2011; Thornton et al., 2011).

Biocontrol has been effective against a host of wheat plant diseases
including stem rust disease of wheat using a combination of
Trichoderma spp. and arbuscular mycorrhizal (AM) fungi based on
their efficiency and eco-safety (El-Sharkawy et al., 2018). The research
by Larran et al. (2016) concluded that endophytes have potential in the
biological control of the tan spot of wheat caused by Drechslera tritici-
repentis, and particularly Trichodema hamatum and Bacillus sp.
Pseudomonas fluorescens strains significantly improved the
establishment and harvest yield of winter wheat infected by the
Microdochium nivale causal agent of wheat-seedling blight (Amein
et al., 2008). In different field trials, this led to an increase in the wheat
yield and plant number by 26.5% and 48%, respectively. Suppression
of the growth of wheat take-all disease caused by Gaeumannomyces
graminis var. tritici (Ggt) was observed using a combination of
Trichodema isolates (Zafari et al., 2008) and bacterial strains from
wheat rhizosphere (Nasraoui et al., 2007). According to Bouanaka
et al. (2021), Trichoderma afroharzianum is a promising biocontrol
agent against Fusarium culmorum, which is responsible for fusarium
head blight (FHB) and crown rot (FCR). Furthermore, Lactobacillus
plantarum SLG17 and Bacillus amyloliquefaciens FLN13 were
observed as biocontrol antagonists against FHB applied starting
from the heading period until anthesis of wheat plants (Baffoni
et al., 2015). Acceptance of the usage of these biocontrol agents has
been slow. This is because farmers, due to different perceptions,
including the learning process about new innovations, the ability to
evaluate the relative advantages of a new innovation over previously
used methods, and the ease of applying a new innovation (Cullen et al.,
2010), have not accepted most biocontrol methods.

Use of resistant genes by genetic manipulation has been used to
increase the growth of crops and crop yields. Certain genes have been
inserted to combat infection by diseases (Dong and Ronald, 2019; Van
Esse et al., 2020). This is because resistant genes are able to recognize
an attack from a disease pathogen and resist such an attack. They have
also been used to increase favorable traits in crops. Beyond this,
genetics have also helped in improving genes resistant to pests and
diseases and introducing them into other cultivars or crops (Gómez
et al., 2009). For example, durable disease-resistant gene Lr34 (= Yr18/
Sr57/Pm38) from bread wheat (Triticum aestivum) confers the
resistance against multiple fungal diseases, namely leaf rust
(Puccinia triticina), stripe rust (Puccinia striiformis f.sp. tritici),
stem rust (Puccinia graminis f.sp. tritici), and powdery mildew
(Blumeria graminis f.sp. tritici) (Bräunlich et al., 2021).

However, these different strategies are not short-term processes,
and implementation can take decades; in order to forestall this, the
projection of climate change effects on the severity and intensity of
crop diseases and yield losses becomes imperative (Newbery et al.,
2016).

Geocontrol is a coined term that means the use of geographical
factors to control the incidences of plant diseases. It involves the use of
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TABLE 1 Climate change and implication on plant disease susceptibility.

Plant
disease

Class of
causative
pathogen

Sources of
infection

Site
affected

Impact on
plants

Causative
organism

Susceptibility to weather References

Location/
region

Temperature Rainfall/
humidity/
precipitation

Solar
radiation

Wind

Wheat brown
(leaf) rust

Fungal Rust spores are
wind-blown

Foliage, whole
plant

Grain yield losses
associated with
plant rust are
caused by flag leaf
infection

Puccinia triticina Warm, humid
spells

Higher spring
temperature/
optimum air
temperatures ranged
from 12°C to 15°C

Moisture-induced
air triggers leaf
wetness

Intensity of
light can slow
down or
prevent disease

Junk et al. (2016);
Spitters and
Schapendonk (1990);
Teferi (2015)

Wheat
take all

Fungal Soil-borne Whole plant The root tissue of
upcoming plants is
infected,
conducive tissues
are blocked, and
water absorption is
reduced. Tillering
is reduced and
premature
maturation of
plants with the
seed heads
bleached

Gaeumannomyces
graminis var. tritici

Temperate
climates

Optimum growth
temperature is
20°C–25°C

High precipitation
or irrigation/low
precipitation

Light-textured
soils with low
fertility, and at
alkaline pH

Kwak and Weller
(2013)

Wheat
Fusarium
head blight

Fungal Infested crop
residue e.g.
wheat straw/
rain-splash or
wind dispersal
during the
winter

Head and
spikes

As a result of
contamination, the
seed shrinks and
wrinkles

Fusarium
graminearum
(anamorph) Gibberella
zeae (teleomorph)

Warm and moist
environment/
humid

Low temperatures
(between 15°C and
30°C/59°F and 86°F)

High moisture or
relative
humidity (>90%)

Schmale and
Bergstrom (2003)

Wheat yellow
(stripe) rust

Fungal Pst is capable of
long-distance
dispersal by
wind movement
and human-
assisted
transport

Foliage, whole
plant

Pst infection in
wheat causes losses
in wheat yield
because of the
reduced number of
kernels and lower
kernels’ values

Puccinia striiformis f.
sp. tritici (Pst)

Low-temperature
disease and
frequently occurs
in temperate areas
with cool and
moist weather
conditions

Average
temperature (range
of 2–15°C)

High relative
humidity

Low light
intensities

Sensitive to
air
pollution

Chen et al. (2013)

Wheat
septoria
tritici blotch

Fungal Airborne, rain-
splash dispersal
rubble from
significantly
infected stems
and leaves persist
in the soils for
the next planting
season

Foliage Leaf and stem
swellings lead to
significantly lower
yields and poor
grain quality

Mycosphaerella
graminicola (asexual
stage: Septoria tritici)

Cool, wet weather/
Mediterranean-
type climates (wet
winters with
temperate
temperatures)

High humidity Eyal, (1999); Fones
and Gurr, (2015);
Ponomarenko et al.
(2011)

(Continued on following page)
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TABLE 1 (Continued) Climate change and implication on plant disease susceptibility.

Plant
disease

Class of
causative
pathogen

Sources of
infection

Site
affected

Impact on
plants

Causative
organism

Susceptibility to weather References

Location/
region

Temperature Rainfall/
humidity/
precipitation

Solar
radiation

Wind

Wheat
powdery
mildew

Fungal Wind and rain-
dispersed,
stubble borne
and carried over
on a green bridge

Foliage and
the plant part
above the
ground

Photosynthesis is
reduced while
respiration and
transpiration rates
are increased in the
host leaves leading
to a loss of vigor,
heading, and filling
and death of leaves
prematurely

Blumeria graminis f.
sp. tritici (syn. Erysiphe
graminis)

Summer storms
and good autumn
rainfall; humid,
mild weather

Low temperature High humidity Martinez-Espinoza
et al. (2014);
Martinez-Espinoza
(2014)

Wheat sharp
eyespot

Fungal Soil-borne, plant
debris or in the
soil

Base of tillers,
crown, stem-
base disease,
and root
tissues

Damping off
before and after
emergence and
death of shoot in
seedlings result in
small wrinkled
grains

Rhizoctonia cerealis
van der Hoeven
(teleomorph:
Ceratobasidium cereale
D. Murray and L.L.
Burpee)

Temperate wheat-
growing regions of
the world

Cool autumn
or spring

Neutral to
slightly
acid, dry
and sandy
soils

Lemańczyk and
Kwaśna (2013)

Wheat
crown/foot
fusarium

Fungal Seed-borne and
soil-borne

Seed and
whole tiller,
crown, base of
tiller

Loss of grain
production,
reduction in
stands, and
rottenness of the
whole plant

F. culmorum Humid/cooler
semiarid

Heavy precipitation
in Eastern Australia
(>500 mm) and in
the colder and
higher Idaho/low
rainfall years in the
Pacific Northwest of
the United States

Moya-Elizondo
(2013); Xu et al.
(2018)

F. pseudograminearum Slightly warmer

F. graminearum Regions/warm and
dry soil
environment

Wheat
septoria
nodorum
blotch

Fungal Seed-borne
inoculum, Rain-
splashed conidia
or infected wheat
debris
ascospores

Foliage and all
the parts that
are above the
soil

Death of leaves
caused by
coalescing of
lesions on leaves
and infected
kernels leading to a
reduction in grain
quality and
quantity due to
glume
contamination

Parastagonospora
nodorum

Warm and moist
weather/S.
nodorum is more
common in
northern latitudes

High temperature High relative
humidity

High wind Eyal (1999); Mehra
et al. (2018)

Wheat spot
blotch
disease

Fungal Seed-borne
disease,
surviving
inoculum on
crop residues,
secondary hosts
or soil conidia

Foliage, root,
stem, and
head tissues

Lesions on leaves
lead to plant death
causing significant
yield loss

Bipolaris sorokiniana,
which is an anamorph
(teleomorph
Cochliobolus sativus)

World’s hottest
wetlands, which
includes Southeast
Asia

Increase in
temperature

High relative
humidity

Gupta et al. (2018)
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TABLE 1 (Continued) Climate change and implication on plant disease susceptibility.

Plant
disease

Class of
causative
pathogen

Sources of
infection

Site
affected

Impact on
plants

Causative
organism

Susceptibility to weather References

Location/
region

Temperature Rainfall/
humidity/
precipitation

Solar
radiation

Wind

Bacterial leaf
streak/black
chaff on
glume

Bacterial Seed-borne
infection, soil
and crop debris

Foliage, culms,
leaves, rachis,
glumes, and
awns

Sterility of wheat
spikes as a result of
infection leading to
a reduction in
grain weight

Xanthomonas
translucens pv.
undulosa

Sprinkler-irrigated
fields in temperate
climates,
subtropical
highlands with
high precipitation,
and hotter areas
marked by cool
nights or regular
changes in the
climate and
unexpected
fluctuations in
temperature

High temperature High relative
humidity

Duveiller, (2002)

Bacterial leaf
blight/leaf
necrosis

Bacterial Hail, wind, or
mechanical
damage

Flag leaves and
other plant
parts

Spots on leaves
leading to plant
death

Pseudomonas syringae
pv. syringae

— Temperatures
between 60°F and
77°F favor disease
development, along
with

Cloudy, humid, and
rainy weather

Duveiller, (2002)

Bacterial
basal
glume rot

Bacterial It is
disseminated by
splashing rain or
by insects and
can be seed
borne

The leaves,
culms, and
spikes of
wheat and
triticale can be
infected,
glumes

Water-soaked
lesions leading to
plant infections

Pseudomonas syringae
atrofaciens
(McCulloch)

Extraordinarily
humid cool
weather

Duveiller, (2002)

Wheat
spindle streak
mosaic
(WSSMV)

Viral It is intense in
field areas that
are
extremely wet

Seedlings, and
leaves

Reduction in stem,
heads, and kernels
leading to yield
loss

Polymyxa graminis High temperature Moderate light — Zhang et al. (2005)

Soilborne
wheat mosaic
(SBWMV)

Viral Humid soil
conditions
promote
protozoa growth
which transmit
this viral disease

Leaves Reduction in stem,
heads, and kernels
leading to yield
loss

Polymyxa graminis Weather is cool
and moist in
autumn

Temperature range
of 10oC to 16°C

Cold weather Altay and Bolat
(2004)
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climate data to forecast the activities of microbes in terms of their
positive or negative responses to climatic factors including
temperature, rainfall, solar radiation, and other factors
(Plantegenest et al., 2007; Charaya et al., 2021). This is
important because when the climatic factors affect the growth of
pathogens by suppressing them, then disease incidence can also be
suppressed, reduced, and/or, if possible, eliminated (Varma and
Meena, 2020). Factors that can increase the growth of causative
organisms are monitored and decreased and even removed where
possible, while factors that will suppress growth are increased and
encouraged. This leads to other preventive measures so that plant
diseases are not initiated, crop losses are avoided, and invariably,
crop yields are increased (Varma and Meena, 2020; Charaya et al.,
2021).

It is important to note that changes in the climate affect both
spatial and temporal distributions of diseases, pathogens, and pests
affecting plants (Varma and Meena, 2020). Climate factors such as
temperature, rainfall, and radiation are quite important in the
growth and development of diseases in any given plant (Charaya
et al., 2021; Skendžić et al., 2021). They affect all the different stages
in the lifecycle of the pathogen and affect the disease process from
the site of infection to sporulation andmultiplication and survival of
the pathogen in the system (Gautam et al., 2013; Skendžić et al.,
2021). These environmental factors also affect the survival of the
biocontrol agent in any system (Ahanger, 2013).

2 Climate change and its effect on
wheat crop diseases

Climate change has been observed to affect the incidence of
plant diseases and the growth of pathogens. In some cases,
climatic conditions favored the spread of plant diseases
(Juroszek and von Tiedemann, 2013; Seidel, 2014), while in
other cases, climate had little to no impact on the progress of
plant diseases (Chakraborty et al., 2000; Juroszek and von
Tiedemann, 2013). The growth of wheat varies according to
the altitude and different rainfall regions in South Africa, either
in the summer or winter. The winter rainfall areas support the
optimal growth of spring wheat cultivars while the high altitude
summer rainfall areas support the growth of winter and
intermediate wheat cultivars, and the warm western irrigation
areas grow in mostly spring-type cultivars (Jordaan, 2002). The
development of stem rust, stripe rust, and leaf rust disease of
wheat caused by Puccinia graminis Pers. f. sp. tritici (Pgt), P.
striiformis f. sp. tritici (Pst), and P. triticina Eriks (Pt),
respectively, varies in their distribution across the wheat-
growing regions (Pretorius et al., 2007). Thus, it is clear that
environmental factors are very important in the establishment of
diseases in plants (Table 1).

It has been observed that areas with high elevations had lower
disease incidence in cereals compared with areas with lower
altitude, probably due to variations in the temperature. This
brings into perspective the classic disease triangle, which
includes the interaction between the plant, deleterious microbe,
and the ecosystem (including weather conditions) (Ghini et al.,
2008). Humidity, heat, and wind are the three main climatic factors
that increase the outbreaks of the wheat rusts diseases, even though
in some wheat growing areas globally, an increase in temperatureTA
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may decrease growth, development, and survival of some pathogens
(Luck et al., 2011).

An alert system for wheat rusts should be established as part of the
preventive strategies for combating wheat stem rust. This will include the
use of weather data to forecast and provide advisories dependent on
different climate and weather conditions (Saunders et al., 2019).

3 Climatic change impact on the
development process of wheat diseases

Some of the climatic factors that affect the development process of
plant diseases include, temperature, water availability/rainfall/
precipitation, and carbon dioxide concentration (Helfer, 2014).
Because crop diseases are greatly impacted by environmental
conditions, a plant host will not be affected by a disease pathogen
even if it is virulent, especially in a situation where climatic conditions
are not favorable for pathogen establishment and disease progression
(Velásquez et al., 2018). With changes in the climate pattern, the
ability of plant pathogens to adjust to the environmental changes
keeps changing, which results in new bacterial infections. Plants,
pathogens, and the environment form the disease triangle because
for a disease to occur, there must be an interplay between these three
factors (Figure 1) (Velásquez et al., 2018; Ajilogba and Walker, 2020).

As both plants and disease pathogens have optimal conditions
under which they will grow and reproduce, environmental conditions
then must be favorable for this to happen (Juroszek and von
Tiedemann, 2013; Velásquez et al., 2018).

In recent times, when the temperature was warm during winter,
wheat head blight thrived in China. The stripe rust’s causative
pathogen Puccinia striiformis was able to cause infection in the
field experiment at a temperature range between 18°C and 30°C.
This optimal temperature range helped the fungus to grow,
establish, and be able to cause an infection (Velásquez et al., 2018).
Furthermore, it is observed that warm winter temperatures also
encouraged the infection rate of stem rust in wheat caused by the
fungus Puccinia graminis f. sp. tritici. This is because, sometimes
during the winter, wheat plants mature early and they are not able to
withstand the accumulation of stem rust pathogen inoculum as was
also observed in Germany in 2013 (Olivera Firpo et al., 2017; Saunders
et al., 2019).

Furthermore, the geographical distribution of hosts and pathogens
will alter as it is clear that the location where wheat is grown can
impact the health of the crop as climate variability increases. For
example, in the United Kingdom, there is a high probability that by the
middle of this century, Fusarium head blight disease incidence will
increase according to the analysis by Juroszek and von Tiedemann,
2013, while the opposite will be the case in France for Septoria tritici

FIGURE 1
Schematic diagram of how climate affects the spread of plant diseases.
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TABLE 2 Overview of wheat crop models with the purpose of their development and documentation.

Wheat crop
models

Purpose of development Development
based on the
initial model

Type of model/documentation Reference articles

ARCWHEAT1 Simulate the main temperature and solar
radiation limitations to production

NA Mechanistic Porter (1984); Porter et al.
(1993); Weir et al. (1984)

AFRCWHEAT2 to deal with water and nitrogen constraints ARCWHEAT1 Mechanistic Porter et al. (1993)

APSIM-Nwheat Crop water demand routine, crop water stress
calculation, root growth, carbon partitioning
and respiration, carbon remobilization,
waterlogging impacts, and grain protein
routines

CERES-Wheat Mechanistic http://www.apsim.info Asseng et al. (1998); Asseng and
Van Herwaarden (2003);
Keating et al. (2003); McMaster
et al. (2011)

APSIM-Wheat Internationally recognized as an extremely
advanced agricultural model simulator—it
contains a series of modules that allow the
simulation of systems covering a series of
interactions between plants, animals, soil,
climate, and management

NA Mechanistic http://www.apsim.info/Wiki/ Keating et al. (2003); McMaster
et al. (2011); Zheng et al. (2014)

AQUACROP FAO crop model that is used to simulate
multiple herbaceous crop water yield responses

NA Statistical/mechanistic http://www.fao.
org/nr/water/aquacrop.html

Farahani et al. (2009); Steduto
et al. (2009); Vanuytrecht et al.
(2014)

CENTURY General plant–surface nutrient cycling
model—used to predict carbon and nutrient
cycles for various ecosystem types including
wetlands, arable land, woodlands, and
grasslands

NA Process-based biogeochemical models
https://www.nrel.colostate.edu/projects/
century/index.php

Parton and Rasmussen (1994)

CropSyst Multi-year multi-crop daily-time level
simulation model that is user friendly,
functionally straightforward yet robust

NA http://www.bsyse.wsu.edu/CS_Suite/
CropSyst/index.html

Stöckle et al. (2003)

COUP Process-oriented, complex model representing
water–heat–carbon (C) and nitrogen (N) flows
in the soil–plant–atmosphere cycle as a climate
process at different times and spatial scales;
usually from a minute to day scale and from
field to regional scale

NA Process-based biogeochemical models
http://www.coupmodel.com/sample-page

Conrad and Fohrer (2009);
Jansson, (2004); Jansson (2012)

DailyDayCent Regular biogeochemical template sequence used
in agro-ecosystems to simulate carbon and
nitrogen flows between the atmosphere,
vegetation, and soil

CENTURY Process-based biogeochemical models
https://www.nrel.colostate.edu/projects/
century/index.php

Del Grosso, (2012); Del Grosso,
(2008); Del Grosso et al. (2005);
Yeluripati et al. (2009)

DAISY Daisy monitors rain, phosphorus, carbon, and
contaminants in the biologically active region
near the surface of the soil (around the top of
the canopy to the bottom of the root system)

NA Mechanistic http://daisy.ku.dk/ Hansen et al. (2012)

DSSAT-CERES-
Wheat

Water and N constraint simulation NA Mechanistic http://www.icasa.net/dssat/ Hoogenboom andWhite, (2003);
Jones et al. (2003); McMaster
et al. (2011); Ritchie et al. (1987)

DSSAT-CROPSIM Interconnected template in DSSAT v4.7, which
simulates the production of wheat, growth, and
phenotypic parameters based on specific crop,
then transforms into the entire plant population

CERES-Wheat Mechanistic http://www.icasa.net/dssat/ Hunt and Pararajasingham
(1995); Jones et al. (2003);
Hussain et al. (2018); McMaster
et al. (2011)

EPIC-Wheat Model of the plant systems developed to
estimate the productivity of the soil affected by
erosion as part of the 1980 review of the Soil and
Water Resources Conservation Act

NA Site-based process model http://epicapex.
brc.tamus.edu/

Kiniry et al. (1995); Williams
et al. (1989)

Expert-N—CERES Application model with the goal of enhancing
the process of understanding in the
soil–plant–atmosphere cycle of the turnover
and transport of matter and energy fluxes

NA Process-based biogeochemical models
http://www.helmholtz-muenchen.de/en/
iboe/expertn/

Biernath et al. (2011); Klier et al.
(2011); Priesack et al. (2006);
Ritchie et al. (1987)

FASSET Farm-wide integrated model used as a method
to assess the impact of changes in policy,
operations, values, and incentives on a variety of
farm-level sustainability variables, such as farm

NA Process-based biogeochemical models
http://www.fasset.dk

Berntsen et al. (2003); Chatskikh
et al. (2003); Chirinda et al.
(2011); Olesen et al. (2002)

(Continued on following page)
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TABLE 2 (Continued) Overview of wheat crop models with the purpose of their development and documentation.

Wheat crop
models

Purpose of development Development
based on the
initial model

Type of model/documentation Reference articles

productivity, growth, loss of nitrogen, energy
consumption, and greenhouse gas emissions

GLAM Simulates the effects of climate variability and
plant change by using weather forecast data to
determine crop growth and development, from
planting to harvesting

NA Process-based model https://environment.
leeds.ac.uk/climate-change-impacts/doc/
general-large-area-model-annual-crops

Challinor et al. (2004)

HERMES Describes the growth of plants and the balance
of water and nitrogen in the soil cycle

NA http://www.zalf.de/en/forschung_lehre/
software_downloads/pages/default.aspx

Kersebaum (2011); Kersebaum
(2007)

INFOCROP Standard crop model, simulates the
environment, soil, agricultural management
(planting, nitrogen, residues, and irrigation),
and major pests on crop growth, yield, soil
carbon, nitrogen and water emissions, and
greenhouse gas emissions

NA http://www.iari.res.in Aggarwal et al. (2006)

LandscapeDNDC Design framework for ecosystem scaling from
site to national simulation domains

MoBiLE http://ldndc.imk-ifu.kit.edu/ Grote et al. (2009); Haas et al.
(2013); Kraus et al. (2015)

LINTUL Simple standard plant growth simulation
model—phenology component is a crop growth
model capable of simulating crop growth under
both potential and water-limited conditions
(i.e., rain-fed)

NA Process-based crop http://models.pps.wur.
nl/models

Gourdji et al. (2013); Shibu et al.
(2010); Spitters and
Schapendonk (1990)

LPJmL Designed to simulate the composition and
distribution of vegetation and the exchange of
carbon and water flows in the soil and
atmosphere for both natural and agricultural
ecosystems

MAgPIE and REMIND Global ecosystem model http://www.pik-
potsdam.de/research/projects/lpjweb

Beringer et al. (2011); Bondeau
et al. (2007); Fader et al. (2010);
Gerten et al. (2004); Müller et al.
(2007); Rost et al. (2008)

MCWLA-Wheat Models the effects on plant production over a
large area of weather and climate variability. It is
a general plant model based on processes

NA Process-based http://www.scale-it.net/?
tag = mcwla

Tao et al. (2009a); Tao and
Zhang (2010); Tao and Zhang
(2013); Tao et al. (2009b)

MODWht Predict the canopy and resulting yield
development and growth by using temperature

NA Mechanistic Rickman et al. (1996)

MONICA Complex, process-based model framework
explaining biomass, nitrogen, and water
transport and biochemical transfer in agro-
ecosystems

NA One-dimensional, dynamic, process-based
simulation model http://monica.
agrosystem-models.com

Nendel et al. (2011)

OLEARY Simulation model of a fallow-wheat system that
includes nitrogen-related crops and alternative
stubble and reduced tillage-management
techniques

NA Process-based crop model Latta and O’Leary (2003);
O’Leary et al. (1985); O’Leary
and Connor (1996a); O’Leary
and Connor (1996b)

QUEFTS Addressing the primary nutrient interactions NA Mechanistic Janssen et al. (1990); Kuang.
(2012)

PhenologyMMS
model

Simulation model detailing and measuring the
growth sequence of different crops under
different levels of water deficits, offering specific
physiological data for each crop and is designed
for use separately or integrated into established
plant growth models

SHOOTGRO Component-based https://www.ars.usda.
gov/research/software/download/?
softwareid=238

McMaster et al. (2011);
McMaster et al. (2005)

SALUS Designed to simulate the existing plant, soil,
water, and nutrient conditions for multiple
seasons under various management techniques

The CERES-Wheat http://www.salusmodel.net Basso et al. (2010); Senthilkumar
et al. (2009)

SHOOTGRO Phenology and metabolic processes (predict
canopy development and growth and resulting
yield through temperature utilization)

CERES-Wheat Mechanistic https://data.nal.usda.gov/
dataset/shootgro

McMaster et al. (2011);
McMaster et al. (1992); Wilhelm
et al. (1993); Žalud et al. (2003)

SIMPLACE Compact modeling structure to help decisions
to manage a wide variety of crops and habitats
under the increasing availability of resources
and climate conditions

NA Mechanic http://www.simplace.net/ Angulo et al. (2013)

(Continued on following page)
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blotch disease incidence, which will decrease. This means that, even though
climate change is affecting plants negatively, there is hope that climatic
change may also improve the health situation of wheat crops depending on
the location. Using experimental observation data in China, the increase or
decrease in wheat production was varied based on the regional climate, as
wheat yields in Northern China rose by 1%–13%, while in Southern China,
it reduced by 1%–10% (Wang et al., 2018).

As the level of atmospheric carbon dioxide (CO2) increases, the
disease severity in wheat (780 ppm) also increases (Váry et al., 2015).
When the CO2 level increases for the fungal pathogen Fusarium
graminearum, the virulence of the causative agent of Fusarium
wheat head blight increases, and different varieties of the wheat
plant become highly susceptible. This is turn results in increased
overall severity of the diseases (Váry et al., 2015). As temperature and
carbon dioxide increases, there is also an increase in the fecundity of
fungi (Chakraborty and Newton, 2011).

Thompson et al. (2014) suggested that the elevated and increasing
temperature can increase the range of plant pathogens and thereby increase
the range of plant infections and diseases. Furthermore, the spread of wheat
diseases such stripe rust (Puccinia striiformis) is increased. It has been
observed that migration of pathogenic rhizospheric nematodes would
increase by over 160 km to the north as the temperature rises by 1°C

(Dixon, 2012). In the United States, warmer and increased temperature has
led to the increase in the emergence ofPuccinia striiformis f. sp. tritici strains
that are adapted to warmer temperatures. They are also resistant to wheat
genes Yr8 and Yr9 (Gautam et al., 2013).

Disease development and severity is also increased because of rainfall,
precipitation, high soil moisture, and air humidity for most plant bacterial
and fungal infections (Pietraszko et al., 2018). The amount of time that
water from rain, dew, and humidity stays on a leaf is also very critical for
disease development from especially fungal pathogens. For example, for
stripe rust infection caused byPuccinia striiformis to occur on awheat plant,
the leaf must have been wet for 5 h. In a situation where the sky is clear and
it is not windy, the time needed for dew to accumulate on the leaf is longer.
The opposite is the case when the temperature is higher; this will increase
the amount of water vapor in the air and also increase the accumulation of
dew which will invariably lead to an increased rate of disease infection
(Rowlandson et al., 2015). Furthermore, for pathogenic rhizospheric
microorganisms, soil moisture is very important in disease development,
especially with wilting in plants (Velásquez et al., 2018).

Life cycles, growth stages, and development of pathogens and pests
are also being affected by climate change, as host resistance and
host–pathogen interactions are being modified (Chakraborty and
Newton, 2011).

TABLE 2 (Continued) Overview of wheat crop models with the purpose of their development and documentation.

Wheat crop
models

Purpose of development Development
based on the
initial model

Type of model/documentation Reference articles

SIRIUS Simulation of phenology, aggregation, and
partitioning of biomass, plant nitrogen
economy

Phenological sub-model
of ARCWHEAT1

Mechanistic http://www.rothamsted.ac.
uk/mas-models/sirius.php

Jamieson and Semenov (2000);
Jamieson et al. (1998); Lawless
et al. (2005); Semenov and
Shewry (2011)

SiriusQuality In response to plant–climate management, in
the soil–plant–atmosphere environment of
cereals and water, nitrogen and carbon flows,
and phenology and canopy development is
modeled

NA Component based model http://www1.
clermont.inra.fr/siriusquality/

Ferrise et al. (2010); He et al.
(2010); Martre et al. (2006)

SSM-Wheat Simulate the phenology, growth, and
development of wheat

General (wheat) model Process-based model https://sites.google.
com/site/cropmodeling/-6-ssm-wheat

Amir and Sinclair (1991); Soltani
and Sinclair, (2012); Soltani et al.
(2013)

STICS Models the routine soil–plant water carbon and
nitrogen dynamics. Considers the effects of
stress on crop growth and grain yield from
water and nitrogen. A multidisciplinary
simulation for model crops, projections of plot-
level plant production across all agronomic
criteria: climate, soil, and farming. Also, it is
capable of modeling intercropping and crop
rotation cycles

NA Daily time-step crop model http://www.
inra.fr/en/Scientists-Students/
Agricultural-systems/All-reports/
Modelling-and- agrosystems/STICS-an-
agronomy-dynamo

Bergez et al. (2013); Brisson.
(1998)

WHEATGROW Simulates the response of the growth and
production of wheat to climate and irrigation.
Main model for future performance simulation

NA Mechanistic Cao et al. (2002); Cao and Moss
(1997); Hu et al. (2004); Li et al.
(2002); Pan et al. (2007); Pan
et al. (2006); Yan et al. (2000)

WOFOST Examines NPK macronutrients and uses
QUEFTS performance

uses the output of
QUEFTS

Mechanistic http://www.wofost.wur.nl Boogaard and Kroes (1998);
Kuang. (2012); Van Diepen et al.
(1989)

Web InfoCrop Forecast variables of daily plant growth, yield
factors, soil moisture, and nitrogen dynamics,
and global warming impact

InfoCrop Web-based model http://InfoCrop.iari.
res.in

Krishnan et al. (2016)

Source: Modified after Guarin and Asseng (2017).
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3.1 Rust diseases of wheat

One of the leading reasons for crop yield loss and food insecurity
is plant diseases. They are important hindrances to the production of
food and the value of such production. They are a threat to food
security, as they can cause up to 10% loss of global food production
(Strange and Scott, 2005). Diseases such as rusts on wheat not only
affect the quality of food production but also the safety of the food
when it is consumed by animals and humans and is thus a big
concern (Chakraborty and Newton, 2011). Wheat rusts are one of
the major plant diseases that cause economic losses across the world
and, in particular, in South Africa as a result of the biotic stress
factors caused in wheat (Singh et al., 2006). Wheat rusts are plant
diseases caused by fungi and include stem rust (black rust), leaf rust
(brown rust), and stripe rust (yellow rust) and are all found in South
Africa. Warm temperatures (>20°C) favor the spread of stem and leaf
rust while cooler temperatures encourage the growth of stripe or
yellow rust (<15°C) (Terefe et al., 2016). According to Singh et al.
(2011), 90% of wheat varieties grown worldwide are prone to
Ug99 variety of the stem rust. Ug99 is a different variety of wheat
stem rust fungus that is extremely virulent with Sr31 wheat varieties
and was discovered in 1999 in Uganda (Schumann and Leonard,
2000). Stem rust is likely to reduce grain yields of susceptible
varieties by 10%–50% with higher losses, up to 90%, reported in

rare but more severe cases (Beard et al., 2005). In 1726, for the first
time, wheat stem rust was discovered around the wheat-growing
areas located in the southwest of Western Cape according to
Pretorius et al., 2007. As it gradually became an epidemic, it
spread and affected the Free State summer rainfall regions and
Western Cape winter rainfall regions (Figlan et al., 2014).

The causative agent of stem rust is Puccinia graminis f. sp. tritici
(pgt). Stem rust is important as one of wheat’s most devastating
diseases globally, causing about 100% crop failure to the susceptible
varieties under favorable climatic and soil characteristics (Leonard and
Szabo, 2005). Of the three rust disease pathogens, pgt is highly
aggressive and is a great concern for wheat farmers, breeders, and
crop pathologists. This is because the disease pathogen can build up in
the stem of the infected plant even a few weeks before harvest, and
severely infected stems can prevent the flow of nutrients from the roots
to the developing grain head, thereby leading to shriveled heads with
little or no market value (Figlan et al., 2014).

4 Climate change, crop modeling, and
their impact on wheat productivity

In order to mitigate the impact of pathogens and to develop
models that will predict climate change, “plant disease models

FIGURE 2
Factors involved in crop modeling of wheat disease.
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themselves must capture a thorough quantitative understanding
of disease epidemiology and their reliability in disease forecasting
must be proven through rigorous testing and validation” (Shaw,
2009). Furthermore, such models and management practices
must include monitoring, forecasting, planning, and mitigation
for diseases (Sturrock et al., 2011).

Due to the current relevance of wheat for food safety, various crop
models were designed to model the growth and development of wheat
crops. Some of these cropmodels include the Decision Support System
for Agrotechnology Transfer (DSSAT) - CERES-Wheat, Nwheat,
DSSAT-CROPSIM-Wheat, and the Agricultural Production
Systems Simulator (APSIM)-Wheat model. According to Hussain
et al. (2018), only the APSIM model had poor accuracy of the
simulated performance of days to maturity of wheat compared to
the other models (Asseng, 2015). A detailed list of wheat crop models
and the purpose of their development and documentation are given in
Table 2.

Using the CropSyst model to assess crop growth and yield of
14 wheat varieties in the study by Sommer et al. (2013), elevated
temperature resulted in early and fast growth of wheat.
Simulations also revealed that higher temperature during
flowering could increase the risk of flower sterility and thus
crop yield would be reduced. Zhao et al. (2017) found that
temperature increase decreased the global wheat yield by 6.0%,
rice by 3.2%, maize by 7.4%, and soybean by 3.1% using multi-
method analysis. The impacts of climate change have been studied
on different wheat models based on different underlying factors
such as management, nitrogen availability (Abeledo et al., 2008),
rainfall or irrigation impact, differences in cultivar/genetic
coefficient, water-use efficiency, and canopy level. In the study

carried out by Valizadeh et al., 2014, it was observed that in Iran,
using the CERES-Wheat model of DSSAT to simulate wheat
growth in the future, wheat production was affected by climate
change, possibly because of an increase in temperature and wheat
growth rate. This means that different strategies to mitigate this
climate change impact should be considered in order to manage
the situation so that wheat can be properly adapted. It is also very
interesting to note that climate change with an increase in
temperature can also bring an increase in the yield based on
location and topography, such as that which was observed in the
simulation using the CERES-WHEAT model in Mexico from
1988 to 2002 (Janjua et al., 2010). In a mechanistic wheat
model in northwestern Turkey, at a stable climatic condition,
increased atmospheric CO2 led to an increase in wheat yield. But
when the climate varied with temperature and precipitation, the
winter wheat yield declined (between 5% and 35%) depending on
the GCM inputs used (Özdoğan, 2011).

In China, several studies based on experimental observations have
also shown that an increase in temperature increased wheat
productivity. For the past 20 years, the impact of climate change
has been positive in wheat production in North-Central China
(Zhang and Huang, 2013; Zhai et al., 2017). It was also observed
that wheat production increased in northern China but decreased in
southern China by .9%–12.9% and 1.2%–10.2%, respectively, because
of the climate change in temperature, precipitation, and solar
radiation. This was also true for simulated future climate scenarios
in the northern China plain using a new process-based model to
capture the crop–weather relationship over a large area (MCWLA)
and a new super ensemble-based probabilistic projection system
(SuperEPPS) (Tao and Zhang, 2013; Tao et al., 2014; Zhai et al., 2017).

FIGURE 3
An illustration of how climate, crop growth, and disease models can be combined to produce projections of crop growth stages and disease incidence/
severity for different climate change scenarios (Source: Modified after Newbery et al., 2016).
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4.1 Crop modeling of wheat diseases

Use of crop modeling techniques as found in DSSAT (Jones
and Thornton, 2003) and APSIM (Keating et al., 2003) can
increase the diversity in the agricultural system in terms of
control of plant diseases by increasing the resilience of the
system to variability in the climate (Lin, 2011). This ultimately
leads to increasing and maintaining of high yields in crop
production (Lin, 2011). In the study by Savary and Willocquet,
2014, an applied simulation model was proposed for the
estimation of disease risk using the DSSAT model and/or the
APSIM model. The GENEPEST is a good example of the
simulation of crop growth, yield including yield losses. This
was done by incorporating the presence/absence of damage/
destructions caused by pests into the crop growth model
GENECROP. (Savary and Willocquet, 2014). Using the
DYMEX-APSIM crop disease model to simulate the rust
disease of wheat, it was showed that the model was able to
predict the disease proportion in some of the years examined
and was able to change the development of the wheat plant to the
rust population that was growing (Whish et al., 2015). This
invariably translates to improved crop growth and yield.

In order to reduce the usage of chemicals such as fungicides and to
increase the crop yield in the midst of plant disease epidemics, two risk
models were used to collect decisions on the control of leaf blotch
disease in wheat (caused by Zymoseptoria tritici, Parastagonospora
nodorum, and Pyrenophora tritici-repentis) (Jørgensen et al., 2020).
The two risk models, Crop Protection Online (CPO) and humidity
model (HM), both use precipitation and relative humidity to
determine the need for fungicide application. Using the models
forecasted, very few treatments thereby reduced the amount of
chemicals applied before disease inception, leading to 95%
correctness in prediction during the 2018 trials (Jørgensen et al., 2020).

A site-specific model (coffee leaf rust model) and hhh4 model
(spatial) were evaluated in predicting wheat stripe (yellow) rust caused
by (Puccinia striiformis f.sp. tritici) in Alberta, Canada. These two
models were effective in reproducing the observed pattern of the
disease, with the hhh4 model having the highest forecast accuracy.
This disease prediction is important as a preventive measure to
forestall crop disease epidemics and thereby reducing crop losses to
diseases (Newlands, 2018).

Optimal weather conditions are important for the development of
wheat rust diseases with temperature and moisture as the major
environmental factors that increase disease severity and limit
regional production and the yield of wheat species. So, in order to
control these lethal wheat diseases, in-depth knowledge of the
requirements of the host plant, the disease cycles of the pathogen,
and the environmental factors influencing the cycle are required
(Rodríguez-Moreno et al., 2020). Using two weather-based models
and lassification and regression trees (CARTs) for data analysis,
Rodríguez-Moreno et al. (2020) were able to predictively forecast
the presence of leaf rust (LR) and stripe rust (SR) on wheat in Mexico.
These predictions are important as early warning systems to enhance
informed strategies to reduce yield losses due to the rust diseases.

The forecasting of the pattern of spread of wheat diseases is a
preventive measure that can be used to give governments, authorities,
and farmers enough time to act in order to prevent crop losses using
satellite imagery, machine learning, and forecasting models in Europe
based on the study by Patil et al. (2018).

4.2 Impact of crop modeling on wheat rust/
crop disease control

It is now very clear that the effect of change in climate on plant
diseases leading to yield loss is enormous, and weather forecasts and
projections are being used by researchers to combat this challenge
(Collins, 2013; Morley and Lewis, 2014; Newlands, 2018). Since
climate variability affects the biology of pathogens both directly
and indirectly, this interaction and the impact on crop yield is
made available by the inclusion of crop models in such
assessments (Sparks et al., 2014; Zhang et al., 2014; Duku et al.,
2016) (Figure 2).

According to Madgwick et al. (2011), a wheat growth model
and a weather-based model were used for forecasting the dates of
wheat anthesis and Fusarium ear blight incidences, respectively,
in a research carried out in the United Kingdom. The projections
showed that the anthesis date will be earlier while disease
incidence will be more severe. Such relationships and
predictions are very important to improve the control of
disease incidence and formulation of adaptive measures to
ensure food security. The average annual wheat losses to
diseases in Australia were estimated at 913 million dollars or
$76.64 per hectare (Murray and Brennan, 2009).

According to Newlands (2018), in a study on the wheat stripe
rust disease, crop modeling had the ability to provide advice
about implementing some measure of control of crop diseases in
fields or on farms in record time such that it is an effective and
preventive measure using an integrated forecasting approach. It
is also important in helping reduce crop losses while reducing
financial costs and the effect on the environment. The study
concluded that crop modeling using a forecasting approach and
data from the satellite monitoring of disease inoculum in the air
when used by farmers could be a preventive approach against
multiple disease threats while protecting crops.

4.3 Crop growth models’ gaps, challenges,
and possible interventions

The purpose of a model or what the model aims to achieve
determines the data to be collected (Harou et al., 2021). A
constant challenge to crop model simulation, especially for
future crop performance projections and impact studies under
varied conditions, is the unavailability of reliable historical data
for model calibrations (Kephe et al., 2021). The historical data
available are also not consistent for different locations and crops,
and the same inconsistency is observed with the parameters
collected and the units in which they were collected. That
means that the amount of available input data may not be
sufficient, and the type of input data to drive the crop models
may also not be available (Lüke and Hack, 2017). For example,
apart from the fact that data units may be different from what the
modeler is used to, the modeler may not be able to do the
conversion from one unit to another. Furthermore, using
climate data as another example, if the climate data available
are coded in a programming language unfamiliar to the modeler,
then the data will be available but of no use to the modeler.

It is also clear that one model cannot solve all agricultural
challenges even though it has been a challenge as modelers
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sometimes are tempted to use a one-size-fit-all approach in modeling.
Therefore, to face the diversity in modeling, modelers will certainly
have to adopt some approaches that will be able to inculcate these
challenges, maybe not in one model but in several models
interconnected together (Boote et al., 1996; Gary et al., 1998). The
use of a particular model should depend on whether the complexity of
the model is able to answer the research question and whether the
model has been tested in diverse environments. As a result of this,
there should be need for both complex and simple models, and
depending on the research question, either complex or simple
models could be used or both could be coupled and integrated
(Ewert et al., 2015).

However, integration of models also has its own pros and cons.
Ewert et al. (2015) emphasized that crop models must link with other
sub-models by providing information and responding to information
needed by those sub-models in such a way that there is a feedback
mechanism between models. This could be done in such a way that the
output from a model is the input for another model and there must be
compatibility in terms of units and scales.

Furthermore, parameters should be in place and be agreed
upon to determine what makes a model simple or complex. This is
because, in some cases, simple models are not appropriate, as they
are not programmed to address the particular phenomenon in
question, which means they were programmed for other
phenomena. However, in other cases, complex models are not
appropriate because they may require more input data that are
not feasible to obtain in a field situation and so cannot be used to
run the simulation (Boote et al., 1996). It is also important that
modelers inform themselves on the capabilities of models, what the
models can do, what they cannot do, and the assumptions under
which the models can run. Even though minimum data are
advocated for crop models, these minimum data are also not
available and not accessible (Kasampalis et al., 2018).

Even though the study by Zinyengere et al. (2015) in South Africa
with minimum data was able to simulate crop yield in specific
locations using DSSAT, studies by Gaiser et al. (2010) using EPIC
and Raes et al. (2017) using Aquacrop observed that use of limited data
impacted the result from these models thereby assumed to be a
challenge for crop modeling.

It is also important to note that some public and private
companies, institutions, and organizations have done thorough
investigations, experiments, and data collection about several
crops; these data, if available to the public, can be used to
resolve the issues of qualitative and quantitative data in specific
locations and for specific crops. The use of databases is also
important, and acknowledgement of the use for the data from
the original depositor should be encouraged, especially with private
establishments (Kephe et al., 2021).

Furthermore, the use of spatial data over regions may also be
another solution even though it is thought to be an arduous task, and
there are different limitations to coupling it with crop models, which
include the low spatial resolution of satellites and missing information
from the collected data because of the frequency of using remote
sensing. Spatial data can be used where, due to poor growth
conditions, plant models are not able to identify a solution
(Kumari, 2020).

It is worth noting that because weather data are not available in
every location where crops are grown, the Geographical Information
System (GIS) approach has opened a whole field of crop modeling

applications at the spatial scale—from the field level for site-specific
management to the regional level for productivity analysis and food
security (Hoogenboom, 2000; Murthy, 2004; Resop et al., 2012).

Furthermore, using the examples of models such as APSIM (Al-
Azri et al., 2015) and DSSAT with examples of crop disease
simulations underway, there should be more disease models for
different crop diseases which can then be coupled with any of the
wheat growth models having numerical weather forecasting. These
disease models should consider seasonalities as well as the climate
suitability for such wheat diseases.

Using the example of wheat blast, a new wheat model has been
created in DSSAT which is under validation in Brazil and Bangladesh,
and can predict the yield in the presence or absence of the wheat blast
disease (Krupnik, 2019; Molero Milan et al., 2019).

4.4 Future perspective using crop disease
models

The use of a decision support system has been ongoing to predict
future crop yield and agricultural productivity in the face of
environmental factors that can enhance the onset of crop disease.
To forestall the wastage of resources and prevent disease progression,
disease forecasting and integration of decision support systems for
managing plant diseases are important (Figure 3).

Crop disease modeling and forecasting involve predicting the
occurrence of a plant disease in a specified area, location, or region
ahead of time, so that suitable preventive and control measures can be
undertaken in advance to avoid losses (Martinelli et al., 2015; Charaya
et al., 2021).

Because of advancements in computer technology, it is now
possible to create computer programs that simulate outbreaks of
plant diseases. Some of the crop disease models that have been
developed and used previously include BLITECAST (for late blight
of potato), TOM-CAST (for tomato early blight), PLASMO (for
downy mildew of grapes), EPIBLAST (for rice blast), and “Indian
Stem Rust Rules”, JHULSACAST (Charaya et al., 2021).

Other computer simulation models that were created that have
helped to produce an immense understanding of mechanisms
affecting disease epidemics include EPIDEM (early blight of tomato
and potato), CERCOS (Cercospora blight of celery), MYCOS
(Mycosphaerella blight of chrysanthemum), EPICORN (Southern
corn leaf blight), and EPIVEN (apple scab). These models were all
created to fit into different locations to prevent an outbreak of plant
diseases (Charaya et al., 2021).

Some of the crop disease models that have been developed for
wheat are black stem rust of wheat, brown rust of wheat in India,
and EPIDEMIC for stripe rust of wheat. It is worth noting that
crop disease modeling is location-specific based on the
environmental and climatic factors in such areas (Newbery
et al., 2016; Donatelli et al., 2017). Even though there are no
such models for wheat diseases in South Africa yet, with data
collection of pathogen, plants, and environment, the emergence
of new information and communication technologies (ICT) such
as Internet of Things (IoT), remote sensing, Geographic
Information Systems (GIS), and Global Positioning Systems
(GPS), which have revolutionized precision farming in the last
few decades, can be a new research area in precision agriculture in
South Africa.
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5 Conclusion

The use of crop modeling to forecast crop diseases is a new and
upcoming field of research that should be embraced, as it will
work on the principle of “prevention is better than cure.” This is
because this concept will help predict the impact and effect of the
different climatic factors on the different growth stages, with
application to wheat production as a pilot, then later to other
crops in general. Furthermore, it will help predict which favorable
conditions for microbe growth and development have been
activated as a result of the climatic factors.

Under the current advances in technology and modeling
expertise, it is now possible to incorporate the template of a
calibrated crop and disease model to use the current weather
forecast as an input to the combined models, following an update
to the current time position in the growing season so as to provide
an outlook for possible disease infestations in the following
10–14 days for a current weather forecast, etc. This
combination will also make it possible for other modules to be
incorporated, such as a module on the effect of weather
conditions on pesticide and fungicide spray activities. This will
be possible when parameters such as heat, wind, and humidity are
available in the model to give advice for when and when not to
spray the field.

Ultimately, farmers and stakeholders can be advised on the
impacts of this chain reaction on crop yield and crop productivity.
They can also be advised on the timing of management practices that
can reduce the creation of favorable conditions for pathogenic
microbial growth, development, and spread.

Furthermore, data collection for crop disease modeling can be
carried out systematically, considering the use of artificial intelligence
(AI) techniques, machine learning (ML), and deep learning (DL)
techniques, as they are playing a pivotal role in the analysis of big data

in order to confer useful findings that can help chart the way forward
in crop disease modeling.
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