AUTHOR=Zhang Hongming , Zhou Xiang , Tao Zui , Lv Tingting , Wang Jin TITLE=Deep learning–based turbidity compensation for ultraviolet-visible spectrum correction in monitoring water parameters JOURNAL=Frontiers in Environmental Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.986913 DOI=10.3389/fenvs.2022.986913 ISSN=2296-665X ABSTRACT=
Ultraviolet-visible spectroscopy is an effective tool for reagent-free qualitative analysis and quantitative detection of water parameters. Suspended particles in water cause turbidity that interferes with the ultraviolet-visible spectrum and ultimately affects the accuracy of water parameter calculations. This paper proposes a deep learning method to compensate for turbidity interference and obtain water parameters using a partial least squares regression approach. Compared with orthogonal signal correction and extended multiplicative signal correction methods, the deep learning method specifically utilizes an accurate one-dimensional U-shape neural network (1D U-Net) and represents the first method enabling turbidity compensation in sampling real river water of agricultural catchments. After turbidity compensation, the