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Ultraviolet-visible spectroscopy is an effective tool for reagent-free qualitative

analysis and quantitative detection of water parameters. Suspended particles in

water cause turbidity that interferes with the ultraviolet-visible spectrum and

ultimately affects the accuracy of water parameter calculations. This paper

proposes a deep learning method to compensate for turbidity interference and

obtain water parameters using a partial least squares regression approach.

Compared with orthogonal signal correction and extended multiplicative

signal correction methods, the deep learning method specifically utilizes an

accurate one-dimensional U-shape neural network (1D U-Net) and represents

the first method enabling turbidity compensation in sampling real river water of

agricultural catchments. After turbidity compensation, the R2 between the

predicted and true values increased from 0.918 to 0.965, and the RMSE

(Root Mean Square Error) value decreased from 0.526 to 0.343 mg.

Experimental analyses showed that the 1D U-Net is suitable for turbidity

compensation and provides accurate results.
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1 Introduction

Due to economic growth and global climate change, the effects of environmental

pollution, particularly water pollution, are becoming increasingly serious (Ukaogo et al.,

2020). Indeed, studies have reported an increase in water pollution because of industrial

development, agricultural activities, and incomplete domestic sewage treatment

(Englande et al., 2015; Sasakova et al., 2018). Total organic carbon (TOC) is a

measure of the total amount of carbon in a water system or contaminants in purified

water (Otson et al., 1979). The United States Pharmacopoeia, Japanese Pharmacopoeia,

and European Pharmacopoeia have chosen TOC as the quality standard test for water

purity and water standard for injection (Richard and Nissan, 2017). Both chemical and
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physical technologies are widely used to monitor water

parameters (Park et al., 2020; Yaroshenko et al., 2020).

Chemical detection methods have many disadvantages, such

as time-consuming sample preparation and operation steps,

secondary pollution due to chemical reagents, requirements

for expensive instrumentation, and complex training

requirements for technicians (Zulkifli et al., 2018).

Ultraviolet-visible spectroscopy, a physical method based on

Lambert-Beer’s law, is a rapid and cost-effective measurement

method (Guo et al., 2020). Combined with other advantages such

as high precision, high efficiency, and no secondary chemical

pollution, ultraviolet-visible spectroscopy has been widely

studied since its development by Langergraber’s group

(Langergraber et al., 2004). Johnson and Coletti developed a

reflection-mode in situ ultraviolet spectrophotometer that can be

immersed in ocean water to a depth of 400 m to measure nitrate,

bisulfide, and bromide with high measurement efficiency

(Johnson and Coletti, 2002). More recently, a variety of

ultraviolet-visible sensors have become commercially available

employing multiple types of detectors, light sources, and optical

light paths (O’Grady et al., 2021). In addition, the inversion

model of the ultraviolet-visible method has progressed from

single wavelength and dual wavelength to the current multi-

wavelength algorithm.

Although use of the multi-wavelength algorithm has

resulted in a marked improvement in accuracy, turbidity-

related interference still limits the accuracy of measurements,

especially with regard to actual environmental water samples.

Various turbidity compensation methods have been

developed to decrease or nearly eliminate turbidity

interference resulting from suspended particles in water

components (Zhang et al., 2020). In methods using the

single-wavelength inversion algorithm, the numerical value

of the minimum point, such as 350 nm, is subtracted from the

full absorption spectrum (Li et al., 2019). Dual-wavelength

method have also been proposed to predict turbidity values

(Zhang et al., 2020). Smoothing methods using the orthogonal

signal correction (OSC) algorithm can remove some variation

from data matrix X that is orthogonal to the response matrix

Y. Combined with Savitzky-Golay (SG), OSC-based methods

can be used to correct additional spectral information

associated with turbidity (Wang et al., 2019). Hu et al.

(2020) from Zhejiang University used a fourth-derivative

method to eliminate particle interference. Fourth-derivative

spectra with different turbidities have peaks and valleys at the

same wavelength position, so turbidity interference can be

eliminated. The Mie scattering method uses a visible-

wavelength spectrum to first calculate the particle spread

distribution and then estimate the extinction spectrum of

particles in the ultraviolet region with inversion of the

particle spread distribution (Chen et al., 2021), followed by

turbidity compensation using the original spectrum and

spectrum data inverted with particle distribution.

The Mie extinction (ME) extended multiplicative scatter

correction (EMSC) method is a state-of-the-art powerful

preprocessing tool that isolates or removes the light scattering

effect to recover pure absorbance spectra (Solheim et al., 2019).

The algorithm is part of an iterative method that is approximated

by a reference spectrum with a series of components. These

components can be calculated based on the particles size and

refractive indexes of the sample. However, computations using

the ME-EMSC model require adequate knowledge of the sample

in order to obtain a sufficient number of parameters. In addition,

the ME-EMSC algorithm is computationally intensive and

therefore may require weeks for model training.

Tremendous progress has been made in the development of

deep learning technologies, which has resulted in noticeable

success in various areas such as imaging, healthcare, robotics,

autopiloting, and semantic recognition (Lee et al., 2017;

Masubuchi et al., 2020). Deep learning methods can be used

to construct complex relationships between input and output

data without prior knowledge of the samples. In each of these

areas, networks are trained with low-quality and high-quality

pairs to learn the relationships between them and enable

reconstruction of high-quality output data from low-quality

inputs. We built a one-dimensional (1D) U-shaped CNN

network based on U-Net and trained the model using input

data and ME-EMSC–corrected data. We then tested the model

using another group of data.

After turbidity compensation, multivariate regression or

deep learning methods can be used to determine water

parameters. For example, partial least squares regression

(PLSR) methods are used to determine chemical oxygen

demand (Ye et al., 2018). Ultraviolet-visible

spectrophotometry utilizing artificial neural networks

represents an alternative approach for determining water

quality indexes (Alves et al., 2018).

This review compares several types of turbidity

compensation methods with application of PLSR regression to

determine the TOC concentration.

2 Materials and Methods

The Beer-Lambert law relates the absorption of light to the

properties of water through which light travels. The absorption of

light is defined in Eq. 1 by the incident intensity I0 and

transmitted intensity I (Bustamante and Maestre, 1988).

A � log10(I0I ) � ϵlc (1)

Eq. 1 is the common form of the Beer-Lambert law, where A

represent the absorption, I0 represents the incident intensity, I

represents the transmitted intensity, ε is a constant value known

as molar absorptivity, l represents the optical length, and c

represents concentration. If the optical length is constant,
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concentration is proportional to the absorption. Ultraviolet-

visible spectroscopy can be used to measure the absorption of

a water sample, and water parameters can be calculated using a

regression formula or deep learning methods. In this paper, we

focus on the parameter TOC.

Bow Brook runs through an agricultural catchment in

Hampshire, United Kingdom. Monitoring and sampling

equipment were placed close to the confluence of Bow Brook

and the Loddon River near Sherfield-on-Loddon. All samples

were acquired using ISCO 6712 autosamplers and stored in a

refrigerator at 4°C on the return to the laboratory. Daily water

quality samples for laboratory analysis were taken at 09.00 am

GMT on 08/09/2017 to 08/09/2018. Samples were scanned using

a Jenway 7315 spectrophotometer before and after filtering with a

0.7-µm filter. In order to reduce the background noise associated

with the use of cuvettes, a baseline scan was performed before

sample measurements. In order to avoid possible negative values

resulting from subtraction of total inorganic carbon (TIC) from

total carbon (TC), the non-purgeable organic carbon (NPOC)

method was used.

Turbidity, the primary indicator of pollution associated with

rain runoff, can decrease the intensity of absorption spectra

(Mullins et al., 2018). In this paper, we propose an analytical

approach based on a deep learning method to compensate for

turbidity interference.

OSC is a spectral preprocessing method that removes from

the spectral matrix data unrelated to the dependent variable. The

removal portion of the operation is mathematically orthogonal or

nearly orthogonal to the dependent variable (Cheng et al., 2008).

The procedure is carried out by suppressing information

unrelated to the dependent variable in the spectral matrix,

thus guaranteeing preservation of information that will be

useful for calibration.

EMSC is frequently used to correct for various types of

scattering (Kohler et al., 2005; Martens and Stark, 1991). The

main frame of EMSC is based on a least-square fit, so the method

is efficient and adaptive. EMSC is a useful tool for correcting for

baseline and Mie-distorted interference effects (Rasskazov et al.,

2019; Bassan et al., 2010).

The MSC model is given by an additive effect, as shown in

Eq. 2:

A(~υ) � a + �x(~υ)·b + e(~υ) (2)

where A(~υ) defines the absorbance, a represents the additive

baseline, b is a multiplicative constant, �x(~υ) represents the

reference spectrum, usually chosen as a mean spectrum or

scatter-free standard spectrum, and e(~υ) represents the

residual vector related primarily to chemical effects of the

sample. The parameters a and b can be calculated using a

least-squares fitting method. The corrected absorbance

spectrum can be calculated according to Eq. 3:

AC(~υ) � (A(~υ) − a − e(~υ))/b (3)

where AC(~υ) represents the corrected spectrum. EMSC

represents an advanced version of MSC extended by terms for

polynomials or principal components, as indicated by Eq. 4:

A(~υ) � a + �x(~υ)b + d1~υ + d2~υ
2 + . . . + dn~υ

n + e(~υ) (4)

where ~υn represents the polynomial expansions of the wavenumbers

with corresponding parameters. After calculating unknown

parameters via least-squares estimation or another method, the

absorbance spectrum can be corrected using Eq. 5:

AC(~υ) � A(~υ) − a − d1~υ − d2~υ
2 − . . . − dn~υ

n)/b (5)

Polynomials up to quadratic order are used in the basic

EMSC model. Further extension of the EMSC model would have

the potential to remove other interference effects. In this study, a

basic EMSC correction model was used to remove interference

effects caused by suspended particles, with the average spectra

serving as the reference spectrum. The EMSC tutorial and

methodology have been described in many research studies,

and the source code is freely available (Solheim et al., 2019).

In this study, we used an open-source code to compensate for

turbidity interference. The minimum and maximum radii were

3 and 9 μm, and the maximum number of iterations was 5. If the

chosen parameter range does not fit the spectral dataset, the

EMSC model cannot calculate the Mie scattering of the spectral

data, and the correction may be insufficient. In addition, the

corrected spectra will exhibit artifacts that render it dissimilar to

any of the absorbance spectra. Final regression of unsuccessfully

corrected spectra will result in a significantly large RMSE that

readily identifies an abnormal correction. The RMSE value is

compared to that for uncorrected spectra data and can be used as

an indicator to find the proper parameter range. Figure 1

schematically illustrates the flow of the descattering method

based on deep learning (i.e., 1D U-Net). A training dataset

with spectra corrected using ME-EMSC is used to train the

1D U-Net, and then the trained network model is used to

correct new spectra data in the testing routine.

FIGURE 1
Schematic illustration of the deep learning–based
descattering method.
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In this study, we exploited the advantages of deep learning

networks to remove turbidity interference from absorbance

spectra. A CNN-based 1D U-shaped network was constructed

on the basis of U-Net. In order to construct the model, we

considered the turbidity interferential absorbance spectra as the

input and the ME-EMSC–corrected spectra as pure absorbance

spectra. The model was trained to correct for Mie-scattering

effects and reconstruct non-corrupted absorbance spectra that

should be similar to the pure absorbance.

Figure 2 illustrates the structure of the U-Net that we used to

transform the input corrupted spectra to generate corrected

absorbance spectra. The network was inspired by U-Net, which

consists of two paths: a contracting path and an expansive path with

residual connections (Ronneberger et al., 2015). The input spectra

contains 256 data points, which are halved by a “maxpooling” layer

in the contracting path and doubledwith a “upsampling” layer in the

expansive path. The active function “ReLu” is used after each

convolutional operation with a kernel size of 3 and padding size

of 1. Data augmentation procedures may be used to improve the

training efficiency with random shift and offset components (Wu

et al., 2021; Ma et al., 2022). A total of 232 samples are used to train

the U-Net model, and 94 samples are used as the test data. The

training of the network is performed with a batch size of 256 and

adaptive learning rate for the Adam algorithm of 0.0001.

3 Results

Full-spectrum data were preprocessed via different

methods, and the results are shown in Figure 3. Figure 3A

shows the raw absorbance spectra, whereas Figure 3B shows the

preprocessed spectra with SG-filter smoothing and OSC

correction, and Figure 3C shows the spectra preprocessed via

ME-EMSC. The SG-filter width was 5, and the polynomial

order was 3. The aim of the filtering operation was to eliminate

turbidity-associated noise without removing inherent useful

information regarding TOC absorption. The processed

spectra shown in Figures 3B,C were plotted after removing

turbidity interference components.

Figure 4 shows the loss changes of the network on the

training and validation sets within 1200 epochs. The curve in

the figure indicates that the loss declines markedly before epoch

50 and then declines slowly after epoch 300. The loss gradually

converges with the increase in epochs and eventually stabilizes.

Epoch 964 is used when the loss function value is at the

minimum.

Figure 5 shows a comparison of results corrected using the

ME-EMSC versus 1D U-Net model. The black line shows the

preprocessed absorbance spectrum corrected via EMSC, whereas

the red line shows the spectrum processed using the 1D U-Net,

and the blue line shows the residual. With up to 5 ME-EMSC

iterations, the residual of the two correct methods was very small,

indicating that the 1DU-Net can learn the function ofME-EMSC

and outperform it.

Figure 6 shows the correlation between real data and

predicted results calculated by PLS regression and various

preprocessing techniques. Figure 6A shows the PLS regression

analysis of raw spectral data. Figure 6B shows the results of

PLS regression with SG-filter smoothing and OSC. Figure 6C

shows the results of PLS regression with ME-EMSC. Figure 6D

shows the results of PLS regression with 1D U-Net

preprocessed correction. The R2 of the regression on test

data with raw spectra, SG-filter smoothing and OSC, ME-

EMSC, and 1D U-Net correction were 0.918, 0.937, 0.958, and

0.965, respectively. From these data, it is clear that the PLS

regression with 1D U-Net correction resulted in the best

results. A detailed comparison of these methods is provided

in Table 1.

It can be seen from Table 1 that the PLS regression method

with ME-EMSC and 1D U-Net correction provided optimal

correlation coefficients and minimum RMSE values. R2c and

RMSEc are the determination coefficient and Root Mean

Square Error of training data. R2p and RMSEp are the

determination coefficient and Root Mean Square Error of

FIGURE 2
Structure of the 1D U-Net.
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test data. Deep learning methods run much faster than EMSC

methods (Raulf et al., 2020). In our study, the 1D U-Net

correction method ran in 1.29 s and the ME-EMSC in 13.3 s

on aWindows 10 platform with an i7 CPU and RTX 2070 GPU.

4 Discussion

The work in this study illustrates how 1D U-Net deep

learning method may implement turbidity compensation

before regression. With PLS regression method, the

Ultraviolet-visible spectroscopy may obtain water

parameters with accurate results. Deep learning methods

are flexible and may learnt the physical or chemical property

of the samples. As mentioned in section 3, EMSC method

framework may minimize or eliminate unwanted turbidity

interference effects. Several versions of EMSC packages are

available on website as a standard tool for preprocessing of

spectra dataset. ME-EMSC is a state-of-the-art powerful

preprocessing tool that isolates or removes the light

scattering effect to recover pure absorbance spectra.

However, ME-EMSC model is computationally

intensive and therefore may require long time to train the

FIGURE 3
Raw spectra and spectra preprocessed using the SG filter and
ME-EMSC.

FIGURE 4
Curves showing loss change versus number of epochs.

FIGURE 5
Residual values of absorbance spectra preprocessed using
EMSC or the 1D U-Net model.
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model. 1D U-Net model in this study may behave better

performance than ME-EMSC and SG-OSC filter, but

calculate much faster.

We describe here a deep learning–based descattering method

to remove turbidity interference and recover pure absorbance

spectra for water parameter analysis. It was shown that

absorbance spectra preprocessing using the 1D U-Net method

not only removes noise information but also retains the chemical

information better than the state-of-the-art ME-EMSC method.

The 1DU-Net method provided even better PLS regression results

than the ME-EMSC method with consideration of different

turbidity interference patterns and spectral differences between

FIGURE 6
Correlation between real and predicted values obtained using different correction models and PLS regression.

TABLE 1 Comparison of turbidity compensation methods with PLS regression.

Water parameter Method R2c RMSEc R2p RMSEp

TOC PLS 0.921 0.405 0.918 0.526

PLS + SG-filter, OSC 0.949 0.324 0.937 0.461

PLS + ME-EMSC 0.981 0.199 0.958 0.375

PLS + 1D U-Net 0.985 0.177 0.965 0.343
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the training data and test data. In other words, the 1D U-Net

model was trained to incorporate the rules of physics with the

descattering procedure. Because the training data are preprocessed

using the ME-EMSC method based on Mie formalism, the trained

model is not expected to work for any type of water spectra. In

order to achievemuch better prediction outcomes, it is necessary to

classify the water type first and allocate each type of water to a

special model. For a new application or to measure a new

parameter, the model must be retrained. This work verifies the

potential possibility to monitor water quality in places where there

is no infrastructure construction to take the task with a

conventional method. Deep learning method may remove

turbidity interference with precision and computation speed. In

the future work, other deep learning method may be used to

investigate the turbidity compensation of river water.
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