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The new modality of inter-regional joint prevention and control is increasingly

important to the integrated process of collaborative governance of air

pollutants. Therefore, it has become necessary to analyze the degree of

interaction among air pollutants within and between cities, master the

dynamics of their spatiotemporal distribution and its influencing factors, and

diagnose the primary obstacle factors. Long-termdata on the concentrations of

six air pollutants among 16 cities of Anhui province from 2015 to 2020 were

analyzed using harmonic regression, the coupling coordination degree model,

the obstacle degree model, the logarithmic mean Divisia index (LMDI), and

exploratory spatial data analysis (ESDA). Over all, the annual mean

concentrations of five of these pollutants (NO2, SO2, CO, PM10, and PM2.5)

decreased to a certain extent over time, whereas O3 concentrations increased.

The biggest decrease was observed in BZ city, where SO2 decreased by 80.60%

(halving time: −2.03 ± 0.02 years), and the biggest increase was observed in CZ

city, where O3 increased by 113.85% (doubling time: 1.74 ± 0.01 years). The O3

concentrations inmost cities reached their break points starting in 2018, but the

break points of other air pollutants appeared earlier than that of O3, mostly

before 2018. With the exception of NO2 and O3, the halving times of other air

pollutants were basically shorter than the doubling times. The high degree of

interaction among air pollutants within and between cities contrasted sharply

with the low degree of coordination. An analysis of hotspot evolution revealed

that particulate matter (PM10 and PM2.5) migrated to northern Anhui, NO2 and

O3 agglomerated to central Anhui, and CO eventually gathered in the Wanjiang

City Belt. The primary obstacle factors of air pollutants in Anhui were particulate

matter, SO2 and NO2. The seasonal differences in primary obstacle factors were

most evident in 2020: NO2 dominated in winter (in 10 cities), SO2 dominated in

southern Anhui, and particulatematter dominated in northern and central Anhui

in spring. Other seasons were almost entirely dominated by particulate matter.

Industrial structure was found to bemore effective in reducing industrial carbon

emissions, and technological improvement was found to be more
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advantageous in reducing industrial particulate matter, NOx and SO2. Finally,

the policy implications of these results and suggestions for strengthening the

inter-city joint prevention and control of air pollutants are discussed.
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Introduction

As a result of China’s ongoing transfer of its economic

structure and industrial layouts in an effort to cut

overcapacity, the Yangtze River Delta (YRD) has become a

new mega-urban agglomeration and a hub for industrial

transfer (Hao Li et al., 2017; Wang et al., 2019; Yu et al.,

2020; Chen et al., 2022). The YRD accounted for 24.3% of

China’s GDP in 2020 (National Bureau of Statistics of China,

2021).

Anhui province can be considered the economic hinterland

of the YRD. Its provincial capital Hefei has become one of the

YRD’s urban sub-centers, and its Wanjiang City Belt region has

been designated a Demonstration Zone for the national

industrial transfer strategy. Anhui is home to 16 of the YRD’s

26 cities, along with 68 national air pollutionmonitoring stations,

accounting for nearly 30% of the YRD’s air quality monitoring

capacity.

In 2020, Anhui’s air quality excellence rate was 82.9%, lower

than the YRD’s rate of 85.2%. Its annual mean concentrations of

SO2, PM10, and PM2.5 were also higher than those of the YRD

(Anhui: 8 μg/m3 SO2, 61 μg/m
3 PM10, and 39 μg/m

3 PM2.5; YRD:

7 μg/m3 SO2, 56 μg/m
3 PM10, and 35 μg/m3 PM2.5). The other

three air quality indicators were almost equal to those of the YRD

(29 μg/m3 NO2, 1.1 μg/m
3 CO, and 152 μg/m3 O3) (Ministry of

Ecology and Environment the Peoples Republic of China, 2021).

In light of this, we must be aware that the relocation of heavily

polluting enterprises from large cities to small and medium-sized

cities, as well as the remarkable changes in the distribution

pattern of emission sources, pose new challenges to the

effective implementation of the inter-regional joint prevention

and control of air pollution. Strengthening inter-city joint

prevention and control, undertaking targeted measures

specific to each city, co-managing, and avoiding partial

governance that applies only to individual cities are

particularly important in this regard.

The studies that form the existing literature on air pollution

have examined many different geographical areas, including

YRD, the Pearl River Delta (PRD), the Beijing-Tianjin-Hebei

region (BTH), individual cities, and the entire country (Zheng

et al., 2009; Gong et al., 2021; Zhou et al., 2021; Deng et al., 2022;

Sun et al., 2022). These studies have focused on temporal and

spatial distributions (Zheng et al., 2009; Deng et al., 2022; Su

et al., 2022; Zhang and Cheng, 2022), composition and source

apportionment (Xue et al., 2019; Zhou et al., 2021; Xu et al.,

2022), influencing factors and health effects (Geng et al., 2021;

Zhao et al., 2022), and air quality and transport models

(Sulaymon et al., 2021; Li et al., 2022; Qin et al., 2022), so as

to reveal the distribution features, composition forms, transport

characteristics, and health risks of air pollutants. The studies on

inter-city joint prevention and collaborative governance of air

pollutants have the most practical significance. The studies we

reviewed made use of a variety of methods, including exploratory

spatial data analysis (ESDA) (Mi et al., 2019), community multi-

scale air quality models (Qin et al., 2022), nested air quality

prediction model systems (Wang et al., 2013), life cycle inventory

models (Chang et al., 2016), the long short-term memory neural

network technique (Xiang Li et al., 2017), and social network

analysis methods (Du et al., 2021). The latter focusedmore on the

interactive characteristics of the static measurement of air

pollution, ignoring the dynamic evolution characteristics, as

well as the diagnostic analysis of the primary obstacle factors

in the tracking of air pollutants. Given the highly complex nature

of the inter-regional air pollution joint prevention and control

system and its strong focus on timeliness and regionalism, in-

depth explorations of scale selection, method application, and

mechanism analysis are needed.

Following China’s implementation of the Air Pollution

Prevention and Control Action Plan in 2013, the nationwide

air quality excellence rate has improved significantly and the

PM2.5 concentration has decreased continuously. This was

followed in 2018 by a 3-Year Action Plan designed to fight air

pollution in keeping with the constraint targets set out by the

13th Five-Year Plan, further clarify the specific requirements for

optimizing the industrial structure, promote technological

improvement, and strengthen inter-regional joint prevention

and control. Nevertheless, monitoring the concentrations of

various air pollutants remains difficult, due to the variation in

their break points and halving times (or doubling times)

caused by imbalances among cities in terms of economic

development levels, industrial structure layouts, and

technical improvements. Fortunately, there is a promising

method for identifying the break points of various air

pollutants: a combination of the harmonic regression

method first proposed by Salamova et al. (2016) to examine

the temporal trends of six organophosphate esters in the

atmospheric particulate of the North American Great Lakes

basin, followed by the use of Microsoft Excel’s Solver feature

to identify any statistical difference in the annual change rate

before and after the break point (Hites, 2019).
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More recently, some studies found a marked improvement in

PM2.5 as a constraint indicator (Li et al., 2019), even as a

simultaneous increase in O3 concentration was also noted

(Deng et al., 2022). This result might reflect the low

coordination degree between air pollutants within and

between cities. Therefore, it is essential to comprehensively

understand the interaction degree of air pollutants by

quantifying the coupling coordination degree of air pollutants

within and between cities for feedback policy regulation. The

coupling degree is often used to appraise the interrelation

between several systems (Bai et al., 2022; Wu et al., 2022),

and the coordination degree is a comprehensive evaluation of

the whole system (Dong and Li, 2021). For example, prior

research has examined the interrelation between resource

allocation schemes and ecological–economic–social

subsystems (Wu et al., 2022), water resource spatial

equilibrium systems (Bai et al., 2022), urbanization and

atmospheric/terrestrial ecosystems (Liu et al., 2018; Xiao

et al., 2020), and socio-economic and infrastructure

development (Tomal, 2020) by quantifying the coupling

coordination degree. Additionally, the obstacle degree model

has been introduced to allow a deeper exploration of the primary

factors that constrain the collaborative governance of inter-city

air pollution. Xu et al. (2021) diagnosed the primary obstacle

factors restricting the sustainable development of cities and their

dynamic trends in the YRD. Bai et al. (2022) employed the

obstacle degree model to identify the primary obstacle factors in

Anhui’s water resource spatial equilibrium system.

The air quality of a city is closely associated with the

emission of industrial pollutants (SO2, NOx, particulate

matter, and carbon emissions). Hence, quantifying the

contributions to emission reductions made by, e.g.,

economic growth, technological improvements, industrial

structure, and population size may help to reflect accurately

the effects of policies targeting industrial pollutant emissions

and potentially facilitate more targeted measures. LMDI is a

factor decomposition model developed in 1998 on the basis of

the index decomposition method (Ang, 2015). This model

allows the measurement of changes in the factors

corresponding to net effects during any period of time. It

does not contain residual terms, thus overcoming the zero-

value issue (Ang, 2015). LMDI has been widely used in the

carbon emissions (Jing Liu et al., 2022), energy (Lin and Long,

2016), and environmental fields (Geng et al., 2021; Pei et al.,

2022). Therefore, the present study employs LMDI models to

quantitatively analyze the factors influencing industrial

pollution emissions in 16 cities of Anhui.

For the present study, we first determined the temporal

trend and break point of air pollutants by combining

harmonic regression with the Solver feature of Excel,

established a measurement model for the coupling

coordination degree of these air pollutants, and

quantitatively analyzed the trends in coupling and

coordination degree changes within and between the cities

of Anhui province. We then diagnosed primary obstacle

factors and plotted the spatial dynamic evolution of the air

pollutants under study using ESDA. Finally, we explored the

driving factors (economic growth, technological

improvement, industrial structure, and population size)

affecting industrial pollutant emission (SO2, NOx,

particulate matter, and carbon emissions) using LMDI, and

we offer relevant suggestions to strengthen inter-city air

pollutant joint prevention and control.

Materials and methods

Study area and data sources

A detailed description of the study area is presented in

Supplementary Text S1 (see Supplementary Material). The

study area is shown in Figure 1.

The daily mean concentration data of six air pollutants

were recorded from the real-time air quality release platform

(https://sthjt.ah.gov.cn/) of Anhui province’s Department of

Ecology and Environment. (CO was measured in mg/m3, and

the other five air pollutants were measured in μg/m3.) Data

between 1 January 2015 and 31 December 2020 were collected.

Each year was divided into four seasons: spring (March to

May), summer (June to August), autumn (September to

November), and winter (December to February of the

following year). The population, industrial GDP and overall

GDP data of each city in Anhui, and industrial pollution

emission levels (NOx, SO2, and particulate matter) were

recorded from the Anhui Statistical Yearbook (http://tjj.ah.

gov.cn/).

Break point identification and prediction
approach

The six air pollutants’ inter-annual variation trends were

studied using the harmonic regression equation. First, the

concentration data for the six pollutants were converted into

the corresponding natural logarithm concentration data, and

then the relationship between concentration and time was

plotted using Eq. 1 (Salamova et al., 2016).

ln(Ct) � a0 + a1 sin(zt) + a2 cos(zt) + a3t (1)

where Ct is the observed concentration of air pollutants at time t;

and z = 2π/365.25, which sets 1 year as a periodic cycle. The value

range of t starts from the calendar day 1 January 2015. The

intercept is a0; a1 and a2 are harmonic coefficients; and a3 is the

first-order rate constant, which can be used to calculate the

halving time [t1/2 � −ln (2)/(365.25a3)] and doubling time

[t2 � ln (2)/(365.25a3)] of air pollutants.
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For this study, we simplified the break point identification

approach established by Hites (2019) into the following steps:

Step 1 Determine break points. In combination with the

trends in the annual mean concentrations of each air

pollutant, annual mean concentration variation trend of air

pollutants (Supplementary Figure S1), a significant increase or

decrease was observed before or after a certain point. Step 2

Identify break points. As shown in Eq. 2, Microsoft Excel’s

Solver feature was used to calculate SRmin values before and

after the break point to make the determined break point more

objective.

SR min � ∑[ln(Ct) − ̂ln (Ct)]
2

(2)

where ̂ln (Ct) is the predicted concentration of air pollutants at

time t. The minimum value of SR was fixed via the Solver feature

to automatically match the values of a0, a1, a2 , and a3. Step 3

Validate break points. The t-test was used for break point

validations depending on a statistically significant difference

between the doubling and halving times.

The coupling coordination degree and
obstacle degree models

The coupling degree can be used to evaluate the interaction

and influence of two or more socio-economic systems. On this

basis, a method for analyzing the coupling coordination degree

was developed as a way to judge the degree of coordinated

development between each system. In this study, the coupling

coordination degree was used to reflect the intra-city interactions

and level of coordinated development among the six air

pollutants. The air quality index (AQI) was also used to

measure the coupling coordination degree and to reflect the

six pollutants’ inter-city interactions and levels of coordinated

development. For more details on the calculation of AQI, please

refer to our previous work (Xue et al., 2019).

The calculation and related equations for the coupling

coordination degree were as follows:

Step 1. The coefficient of variation method was used to

objectively weight air pollutants within each city, as well as

FIGURE 1
A sketch map of the study area.
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the AQI between cities. As shown in Eqs 3, 4, the objectivity of

this weighting method was based on the differences within the

data samples, rather than on the theoretical importance of

specific indicators.

CVij � δij
�Aij

(3)

Wij � CVij∑n
j�1CVij

(4)

Where CVij denotes the coefficient of variation; Wij denotes

weight; δij denotes the standard deviation of the j-th indicator in

the i-th city; and �Aij denotes the mean value of the j-th indicator

in the i-th city. Note that, where the six air pollutants were

replaced by AQI as the measurement indicators, the

corresponding i and j denoted the i-th region (such as

northern Anhui, central Anhui, or southern Anhui) and the

j-th city, respectively.

Step 2. The coupling coordination degree, as a non-dimensional

parameter, should be calculated using data converted from the

corresponding indicators; otherwise, these data cannot be added.

Here, the extremummethod was employed for data standardization

(see Eq. 5), and then the standardized value was put into Eq. 6 to

obtain the corresponding individual index for each air pollutant.

These indices were then incorporated into Eq. 7 to obtain the

coupling degree. Following that, the coordination index was

obtained by using Eq. 8, which allowed the coordination degree

to be obtained by calculating the square root of the product of the

coupling degree and the coordination index (see Eq. 9).

Aij
′ � Aij −Min ij

Max ij −Min ij
(5)

AIij �
Wij∑n

j�1Aij
′

n
(6)

C �
(∏ n

j�1AIij) 1
n

∑n

j�1AIij
n

, C ∈ [0, 1] (7)

T � ∑ n

j�1(Wij × AIij) (8)
D � ������

C × T
√

(9)

where Aij
′ is ANO2

′ , ASO2
′ , ACO

′ , AO3
′ , APM10

′ , and APM2.5
′ (or AAQI

′ ) in

the i-th city, denoting the corresponding standardized values.

The variables Aij, Max ij, and Min ij denote the corresponding

concentration and the maximum and minimum values of NO2,

SO2, CO, O3, PM10, and PM2.5 (or maximum and minimum

values of AQI), respectively. AIijis AINO2, AISO2,AICO , AIO3,

AIPM10 , and AIPM2.5 (or AIAQI) in the i-th city, denoting the

corresponding individual index. C denotes the coupling degree,

and the value of the function is between 0 and 1. The greater the

C, the higher the coupling degree, indicating that the dispersion

degree between AINO2, AISO2,AICO, AIO3, AIPM10 , and AIPM2.5

(or AIAQI) is smaller, which can better reflect the interaction

degree between air pollutants and effectively avoid a zero-value

issue.

In addition, the division standard of the coupling degree is an

important basis for determining the degree of interaction

between target objects. Cong (2019) found that the existing

two kinds of coupling models were of zero-order

homogeneity, and that when there were more than three

targeting objects (n ≥ 3), two measurement results had

differences in overestimates or underestimates. Therefore,

dividing the coupling degree interval was largely subjective.

Cong (2019) suggested that the standard interval should be

established based on target objects and the coupling degree

measurement approach. Dong and Li (2021) divided the

coupling degree interval according to the coupling degree

measurement results in their research on the up-middle-

downstream relationships of China’s wind power industrial

chain. T denotes the coordination index, reflecting the

contribution of the air pollutants within a city (or the

inter-city AQI) to the coordination degree. In this study,

the coupling degree interval was divided into seven grades

according to the coupling degree measurement results in

different seasons; the coordination degree interval was

divided into 10 grades (Supplementary Table S1) (Dong

and Li, 2021).

Step 3. The primary obstacle factors were analyzed and

diagnosed using the factor contribution degree, index

deviation degree, and obstacle degree. The factor contribution

degree was measured using the weight of the individual

indicators. The index deviation degree denoted the gap

between the individual indicators and the environmental air

quality of the city, that is, the gap between the standardized

value of the individual indicators and 100%. The obstacle degree

denoted the influence degree of the j-th air pollutant in the i-th

city. The maximum obstacle degree of the individual indicators

was selected in the same criteria layer as the primary obstacle

factor. Further, Eqs 10, 11 were used,

Uij �
Wij × (1 − Aij

′)
∑n

j�1(Wij × (1 − Aij
′))

× 100% (10)

U max � {Uij} (11)

where Uij denotes the individual indicator obstacle degree and

Umax denotes the primary obstacle factors.

Exploratory spatial data analysis

ESDA was used to analyze the spatial pattern of pollutants,

which mainly included global spatial autocorrelation and local
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TABLE 1 Halving times (negative numbers) and doubling times (positive numbers) times, in years, for air pollution concentrations in Anhui Province during the period 2015–2020.

NO2 SO2 CO O3 PM10 PM2.5

DTe HTf t-test DT HT t-test DT HT t-test DT HT t-test DT HT t-test DT HT t-test

BB 9.96 ±
0.36

−16.03 ±
0.73

31.64b — −5.03 ±
0.07

— — −8.25 ±
0.20

— 15.96 ±
0.59

−16.10 ±
0.68

35.65c — −12.64 ±
0.74

— — −7.25 ±
0.26

—

BZ — −6.91 ±
0.22

— — −2.03 ±
0.02

— 4.48 ±
0.07

−5.02 ±
0.08

87.47a 6.03 ±
0.11

−26.62 ±
3.39

9.63b — −22.06 ±
2.41

— — −9.56 ±
0.53

—

FY 9.33 ±
0.30

−9.41 ±
0.28

45.86a — −2.37 ±
0.02

— 4.90 ±
0.10

−8.70 ±
0.20

60.16a 8.97 ±
0.30

−81.44 ±
20.63

4.38d 4.59 ±
0.09

−6.57 ±
0.24

44.42b 8.54 ±
0.46

−6.87 ±
0.33

27.21b

HB 6.52 ±
0.17

−4.83 ±
0.11

54.75a — −2.76 ±
0.03

— — −6.44 ±
0.13

— 26.57 ±
3.13

−6.25 ± 0.14 10.46d — −23.32 ±
2.57

— — −15.79 ±
1.36

—

SZ 3.86 ±
0.05

−3.23 ±
0.05

94.82c — −2.66 ±
0.03

— 20.44 ±
1.44

−5.89 ±
0.12

18.24a 6.26 ±
0.15

−20.37 ±
1.51

17.52c — −27.92 ±
3.76

— — −7.84 ±
0.34

—

HN 3.10 ±
0.03

−34.91 ±
5.32

7.15a — −5.83 ±
0.10

— 10.15 ±
0.36

−9.43 ±
0.25

44.80a 4.93 ±
0.01

−25.72 ±
2.50

12.23b 9.67 ±
0.35

−9.59 ±
0.34

39.32b 9.01 ±
0.44

−6.07 ±
0.18

31.49b

CZ 4.48 ±
0.07

−5.85 ±
0.15

63.21b 3.89 ±
0.05

−4.03 ±
0.05

118.45a 9.52 ±
0.26

−8.58 ±
0.22

53.78c 1.74 ±
0.01

−8.20 ± 1.15 17.30b — −9.47 ±
0.42

— — −6.88 ±
0.24

—

HF 2.30 ±
0.02

−9.19 ±
0.34

34.04b — −3.34 ±
0.04

— — −8.61 ±
0.20

— 4.59 ±
0.09

−8.34 ± 0.28 43.46c — −7.64 ±
0.27

— — −5.52 ±
0.16

—

LA 2.15 ±
0.02

−6.52 ±
0.18

48.90b −3.27 ±
0.03

19.71 ±
1.05

−10.56 ±
0.41

26.86b 3.17 ±
0.04

−31.00 ±
5.84

5.85c — −12.92 ±
0.78

— — −7.64 ±
0.31

—

AQ 3.05 ±
0.04

−8.87 ±
0.28

42.46a 8.49 ±
0.20

−2.81 ±
0.02

56.83a — −13.24 ±
0.64

— 4.62 ±
0.08

−18.99 ±
1.04

22.75c 25.21 ±
6.28

−4.68 ±
0.11

4.76b — −7.28 ±
0.29

—

CHZ 6.43 ±
0.17

−3.13 ±
0.03

56.81c — −4.05 ±
0.06

— — −44.73 ±
6.12

— 6.39 ±
0.19

−52.35 ±
12.66

4.64c 3.06 ±
0.05

−6.06 ±
0.15

56.93b 2.74 ±
0.05

−4.76 ±
0.11

60.66b

HS 2.46 ±
0.02

−11.66 ±
0.47

29.89a 1.19 ±
0.004

−2.80 ±
0.32

207.63a 1.12 ±
0.005

−6.30 ±
0.10

74.88b 9.13 ±
0.25

— — — −10.01 ±
0.47

— — −6.64 ±
0.24

—

MAS 18.46 ±
1.30

−29.05 ±
3.33

13.28b — −5.00 ±
0.09

— — −5.97 ±
0.10

— 3.65 ±
0.06

−10.60 ±
0.39

36.31b — −8.95 ±
0.34

— — −6.74 ±
0.23

—

TL 3.99 ±
0.06

−24.14 ±
1.87

15.05b — −2.67 ±
0.02

— — −7.07 ±
0.15

— 17.50 ±
1.27

−42.38 ±
6.41

9.17c — −12.38 ±
0.66

— — −5.19 ±
0.16

—

WH 3.77 ±
0.05

−18.27 ±
1.45

15.24b 5.06 ±
0.12

−4.61 ±
0.08

67.08a — −18.87 ±
0.99

— 2.42 ±
0.02

−9.59 ± 0.46 26.18b — −7.14 ±
0.23

— — −7.52 ±
0.30

—

XC 3.23 ±
0.03

−21.96 ±
1.95

12.90a — −2.66 ±
0.02

— — −15.56 ±
0.88

— 9.20 ±
0.23

−48.94 ±
7.53

7.71b — −6.61 ±
0.20

— −8.88 ±
0.36

Break points:
a2016.
b2017.
c2018.
d2019.
edoubling times (t2 ± SD2).
fhalving times (t1/2 ± SD1/2).

For example, t-test = ABS(t2 –t1/2)/SQRT( SD2
2̂ + SD1/2

2̂).
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spatial autocorrelation. An introduction to ESDA methods is

provided in Supplementary Text S2.

Index decomposition model

This study selected four indices—technological

improvement, industrial structure, economic growth, and

population size—and analyzed the influence of each on the

emission of industrial air pollution (NOx, SO2, particulate

matter, and carbon). Carbon emissions released by energy

consumption in the industrial sector were calculated using the

IPCC, 2006 Guidelines for National Greenhouse Gas Inventories

provided by the Intergovernmental Panel on Climate Change.

The total carbon emission measurement and the decomposition

of the LMDI model equation are shown in Supplementary

Text S3.

Results

Identification of break points and air
pollutants’ inter-annual trends

The inter-annual trends of six air pollutants (NO2, SO2, CO,

O3, PM10, and PM2.5) in Anhui province from 2015 to 2020 are

shown in Supplementary Figures S1A–C. After applying the

break point identification method, it was found that the break

point of NO2 in central Anhui (CZ, HF, and LA) was 2017, and

the halving time (−5.85 ± 0.15 years to −9.19 ± 0.34 years) was

about two to three times the doubling time (2.15 ± 0.02 years to

4.48 ± 0.07 years) (Table 1). The observed and predicted values

are shown in Supplementary Figure S2A–C. The break points of

NO2 in northern Anhui were concentrated in 2016, and they

were located in FY, HB, and HN. The doubling time for HN was

3.10 ± 0.03 years, and the halving time was −34.91 ± 5.32 years, a

difference of more than 10 times (Table 1). However, the

doubling time and halving time for SZ were 3.86 ± 0.05 years

and −3.23 ± 0.05 years, respectively, and its break point was in

2018 (t = 94.82, p < 0.001). The break point of NO2 in several

cities, including AQ, HS, and XC, was in 2016, and the halving

time in these cities was about three to seven times the doubling

time (Table 1). Three cities along the Yangtze River (MAS, TL,

and WH) had consistent break points, all in 2017. The halving

time of NO2 in CHZ was −3.13 ± 0.03 years, which was faster

than that of the remaining six cities (AQ, HS, MAS, TL, WH, and

XC) in southern Anhui.

Compared with central and southern Anhui, SO2 in northern

Anhui (BB, BZ, FY, HB, SZ, and HN) did not show a break point

and continued to decrease (Table 1). The SO2 halving time was

the fastest in BZ, at only −2.03 ± 0.02 years. In four cities (CZ,

AQ, HS, and WH), the break point of SO2 was uniform,

occurring in 2016 (Supplementary Figure S1; Table 1). The

most significant difference before and after the break point

was seen in AQ (t = 56.83, p < 0.001); the halving time

(−2.81 ± 0.02 years) was only one third of the doubling time

(8.49 ± 0.20 years).

The break points of CO appeared in 2016 (BZ, FY, SZ, and

HN), 2017 (LA andHS), and 2018 (CZ), respectively (Table 1). In

BZ, the doubling time and halving time of CO were relatively

close, with a significant difference before and after the break

point (t = 87.47, p < 0.001). In addition, CHZ, as one of several

cities that did not show a break point, had a relatively slow CO

halving time (−44.73 ± 6.12 years).

Beginning in 2018, most cities had O3 break points, though

northern Anhui lagged behind central and southern Anhui

(Table 1). The shortest doubling times of O3, from north to

south, are as follows: 4.93 ± 0.01 years (HN in northern Anhui),

1.74 ± 0.01 years (CZ in middle Anhui), and 2.42 ± 0.02 years

(WH in southern Anhui). Each city’s respective halving time,

however, was not among the shortest. In BZ, in northern Anhui,

O3 break point appeared relatively early (2017). In HF, in central

Anhui, the O3 break point was delayed to 2018, and its halving

time was about −8.34 ± 0.28 years. In southern Anhui, only HS

did not show an O3 break point; its doubling time was 9.13 ±

0.25 years (Table 1).

The average halving time of particulate matter displayed a

gradual increase from north to south: −12.96 years in northern

Anhui, −8.35 years in central Anhui, and −7.35 years in southern

Anhui. PM10 and PM2.5 showed a break point in a few cities,

almost all of which occurred in 2017 (Table 1).

Analysis of the coupling coordination
degree of air pollutants

The coupling degree of air pollutants in Anhui from 2015 to

2020 was between 0.890 and 0.985, with a running-in stage in

most cities (Table 2). The annual mean coupling degree of air

pollutants, from north to south, was 0.963 (0.942–0.985), 0.953

(0.901–0.976), and 0.952 (0.890–0.985), respectively, and the

number of cities in the antagonistic stage gradually increased.

Furthermore, the analysis of the coupling degree of air pollutants

in different seasons revealed that the coupling degree, from high

to low, was as follows: spring (0.965), winter (0.960), autumn

(0.955), and summer (0.943) (Supplementary Table S3). On

balance, the air pollutants in most cities of Anhui were in the

running-in stage in spring, winter and autumn, and in the

antagonistic stage in summer. It should be pointed out that

very few cities had a coupling degree lower than 0.85, a very low

level; they are AQ in the winter of 2015, HS and XC in the

summer of 2016, and FY in the autumn of 2018 (Supplementary

Table S3).

The annual mean coupling degree measured using AQI was

0.987 (0.966–0.995). The coupling degrees of AQI in spring

(0.984) and summer (0.981) were below the mean, while those
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in autumn (0.990) and winter (0.992) were above the mean

(Table 3). As shown in Table 3, the AQI coupling degree had a

good-level coupling in spring, summer, and autumn, and a high-

level coupling in winter. The coupling degree of AQI in different

regions of Anhui is shown in Supplementary Table S4. The mean

coupling degrees of AQI in three regions were 0.992 (northern

Anhui), 0.994 (central Anhui), and 0.991 (southern Anhui),

indicating that they had a high-level coupling.

The coordination degree of air pollutants in Anhui between

2015 and 2020 was in the range of 0.245–0.275, and all cities were

in a moderate state of maladjustment (Table 2). The annual mean

coordination degrees, arranged from north to south, were 0.260,

0.266, and 0.261, respectively, with the highest value in central

Anhui. In addition, the annual mean coordination degree

displayed a trend of increasing year over year. The

corresponding values for each year were 0.256 (0.245–0.271)

in 2015, 0.260 (0.247–0.269) in 2016, 0.263 (0.252–0.268) in

2017, 0.261 (0.254–0.273) in 2018, 0.264 (0.252–0.272) in 2019,

and 0.266 (0.258–0.275) in 2020. The seasonal distribution of the

air pollutant coordination degree in Anhui is shown in

Supplementary Table S3. The seasonal variations in the

annual mean coordination degree, arranged from highest to

lowest, were summer (0.266), autumn (0.262), winter (0.260),

and spring (0.259). At the same time, the annual mean

coordination degree showed an ascending trend in all seasons

from 2015 to 2020.

The coordination degree range of the AQI was between

0.146 and 0.172, with severe maladjustment (Table 3). The

seasonal difference was not significant. The coordination

degree of AQI was significantly different between the three

regions (Supplementary Table S4), largely caused by the

difference between central Anhui and northern and southern

Anhui. The coordination degree of AQI among the three cities of

central Anhui ranged from 0.341 to 0.409, which was between

mild maladjustment and on the verge of maladjustment.

Northern and southern Anhui were in moderate

maladjustment, and their coordination degrees of AQI were

0.221–0.280 and 0.224–0.268, respectively.

Exploratory spatial data analysis of air
pollutants

The global spatial autocorrelation was analyzed based on

Global Moran’s I and General G measured using ArcGIS

10.3.1 software. The spatiotemporal evolution characteristics

of the hot and cold spots of six air pollutants in Anhui

between 2015 and 2020 were measured using the Getis-Ord

Gi* formula. According to Global Moran’s I (Table 4), the z-score

ranges of air pollutants in Anhui were 79.01–371.51 (2015),

58.53–354.46 (2016), 60.77–273.43 (2017), 60.00–333.50

(2018), 54.71–410.15 (2019), and 26.34–360.81 (2020).

Generally, if the z-score is greater than 1.96, it is significant;

and if the z-score is greater than 2.58, it is extremely significant.

In this study, the z-scores were all greater than 2.58, and the I

values were all greater than 0 (the range of I was 0.02–0.38, as

shown in Table 4). This indicates that the six air pollutants had a

significant positive spatial autocorrelation, namely, that spatial

dependence existed. Meanwhile, the p-values of the air pollutants

for each year were lower than 0.01 (Table 4), which also indicated

a significant spatial agglomeration distribution of air pollutants

among the 16 cities of Anhui. In addition, the General G test

(Table 4) found that G (d) values in all years were greater than 0,

with p-values lower than 0.01. According to this test, the z-score

of the six air pollutants ranged from 23.88 to 410.17, indicating a

high level of agglomeration. Furthermore, the seasonal division

of the results of the two tests (Supplementary Tables S5–S8)

indicated that the air pollutants in Anhui showed significant

positive spatial autocorrelation and high agglomeration in each

season (z-score > 2.58, I ∈ [0.01, 0.64], p < 0.01).

On the whole, between 2015 and 2020, the hotspot evolution

of six air pollutants in Anhui mainly experienced the following

(Figures 2, 3): agglomeration to central Anhui (NO2 and O3) and

migration to northern Anhui (PM10 and PM2.5). The NO2 andO3

hotspots formed gradually near central Anhui from 2015 to 2020

(Figure 2). The distribution of NO2 hotspots gradually evolved

from BB, BZ, FY, HB, HF, MAS, WH, TL, and XC in 2015 to BB,

CZ, HF, MAS, WH, and TL in 2020, with high agglomeration.

The number of cold spot cities also increased significantly, with

XC city evolving from a hotspot city in 2015 to a not-significant

city in 2020 (Figure 2). From the seasonal change point of view,

the hotspot evolution of NO2 showed a trend of agglomeration to

central Anhui between 2015 and 2020 (Supplementary Figure

S3). In the summer and autumn of 2015, the hotspot distribution

of NO2 was basically the same as that of the whole year, and a

hotspot distribution thread ran through Anhui from north to

south. Ultimately, across the four seasons of 2020, the NO2

hotspot distribution extended to the periphery with HF as the

center, including CZ, HF, MAS, WH, TL, and others.

In 2015, O3 hotspots were concentrated in northern Anhui

(BB, BZ, FY, HB, and SZ) and southern Anhui (CHZ and XC),

with not-significant cities including HN, HF, AQ, MAS, and TL;

only CZ, LA, HS, and WH were cold spot cities. Until 2018, the

number of O3 hotspot cities increased to 10, covering northern

Anhui (BB, BZ, HB, HN, and SZ), central Anhui (CZ and LA),

and southern Anhui (AQ, MAS, andWH). However, the hotspot

distribution of O3 in 2020 showed a trend of agglomeration to

central Anhui; that is, no hotspot city existed in southern Anhui,

one hotspot city was added to central Anhui, and northern Anhui

lost two hotspot cities (Figure 2). The hotspot evolution trend of

O3 showed significant seasonal variation (Supplementary Figure

S3). Every spring from 2015 to 2019, the number of hotspot cities

of O3 increased gradually from north to south. By spring 2020,

the number of hotspot cities had decreased significantly, and

most of them had converged in northern Anhui. During the

summers of 2015–2020, O3 hotspots underwent a shift from
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displaying a north-south distribution to gathering in central

Anhui and then extending to northern Anhui. In autumn, O3

hotspot cities were relatively few and scattered, and by 2020, the

only O3 hotspot cities were CZ and LA. In winter, O3 hotspot

cities were mainly distributed in northern and southern Anhui

prior to 2017, and after 2017, most of them were distributed in

central and southern Anhui.

As shown in Figure 3, the hotspot evolution trend of PM10

and PM2.5 demonstrated a significant migration to northern

Anhui. In 2015, PM10 hotspots were concentrated in northern

Anhui (BB, BZ, HB, HN, and SZ), central Anhui (CZ, HF, and

LA), and southern Anhui (MAS,WH, and TL). Subsequently, the

hotspot cities in central and southern Anhui gradually

transitioned to not-significant cities or cold spot cities

between 2016 and 2020, until only a cluster within northern

Anhui remained (BB, BZ, FY, HB, HN, and SZ). The cold and hot

spot evolution trend of PM2.5 was basically in line with that of

PM10, and the hotspot cities of PM2.5 were eventually assembled

in northern Anhui. The seasonal variation in the hotspot

evolution of PM10 and PM2.5 was roughly consistent

(Supplementary Figure S4). PM10 and PM2.5 hotspot cities

were all concentrated significantly in northern Anhui for three

seasons of the year, with the exception of summer.

Although the hotspot evolution trend of SO2 and CO was

not clear at first glance, it was found that SO2 showed a trend

of decreasing hotspot cities and increasing cold spot cities year

after year, whereas the CO hotspots were eventually

concentrated in six of the nine cities in the Wanjiang City

Belt (CZ, LA, MAS, WH, TL, and CHZ) (Figure 4). The

seasonal variation in the hotspot evolution of SO2 and CO

is shown in Supplementary Figure S5. In spring, SO2 hotspots

kept in step with those of winter; before 2018, SO2 hotspot

TABLE 2 Coupling and coordination degrees of air pollutants in Anhui province, 2015–2020 between 2015 and 2020.

City Coupling degree Coordination degree

2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

BB 0.955 0.961 0.972 0.976 0.974 0.958 0.267 0.266 0.266 0.264 0.266 0.270

BZ 0.967 0.969 0.963 0.964 0.966 0.971 0.259 0.256 0.259 0.258 0.259 0.272

FY 0.948 0.961 0.968 0.953 0.953 0.947 0.254 0.262 0.252 0.259 0.261 0.264

HB 0.968 0.970 0.968 0.956 0.970 0.969 0.260 0.264 0.264 0.257 0.260 0.263

SZ 0.942 0.958 0.985 0.968 0.955 0.955 0.251 0.253 0.254 0.257 0.252 0.258

HN 0.964 0.960 0.975 0.948 0.961 0.967 0.259 0.264 0.260 0.263 0.262 0.265

CZ 0.929 0.968 0.972 0.976 0.957 0.939 0.255 0.264 0.268 0.266 0.268 0.268

HF 0.966 0.943 0.949 0.973 0.969 0.954 0.271 0.269 0.266 0.264 0.272 0.270

LA 0.951 0.935 0.965 0.961 0.939 0.901 0.256 0.263 0.260 0.262 0.269 0.267

AQ 0.969 0.977 0.965 0.952 0.956 0.952 0.256 0.255 0.268 0.260 0.263 0.275

CHZ 0.963 0.958 0.973 0.956 0.943 0.946 0.245 0.247 0.264 0.261 0.265 0.266

HS 0.890 0.892 0.932 0.892 0.915 0.911 0.247 0.256 0.264 0.273 0.269 0.266

MAS 0.967 0.963 0.979 0.977 0.973 0.975 0.261 0.267 0.266 0.261 0.262 0.261

TL 0.975 0.966 0.985 0.984 0.976 0.965 0.261 0.261 0.267 0.262 0.265 0.267

WH 0.960 0.949 0.966 0.975 0.967 0.944 0.248 0.257 0.261 0.254 0.259 0.263

XC 0.915 0.928 0.926 0.960 0.945 0.926 0.247 0.254 0.261 0.260 0.266 0.268

TABLE 3 Coupling and coordination degrees of AQI in Anhui province, 2015–2020.

Season Coupling degree Coordination degree

2015 2016 2017 2018 2019 2020 2015 2016 2017 2018 2019 2020

Spring 0.974 0.988 0.983 0.991 0.988 0.983 0.155 0.150 0.146 0.159 0.160 0.170

Summer 0.966 0.981 0.988 0.990 0.977 0.985 0.155 0.157 0.160 0.168 0.172 0.153

Autumn 0.988 0.988 0.990 0.990 0.989 0.991 0.161 0.157 0.157 0.156 0.152 0.164

Winter 0.992 0.986 0.993 0.991 0.994 0.995 0.152 0.157 0.159 0.154 0.156 0.161
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cities were mostly concentrated in northern Anhui, but after

2018, they significantly decreased and dispersed. The SO2

trends in summer and autumn were basically the same;

namely, in 2018, SO2 hotspot cities were mostly distributed

in northern and southern Anhui, and after 2018, they also

significantly decreased and dispersed. It is worth noting that

TABLE 4 Global spatial correlation of air pollutants, as calculated via the Moran’s I and General G tests.

Date Indicators Global Moran’s I test General G test

I z-score P Characteristic G(d) z-score P Characteristic

2015 NO2 0.19 199.91 <0.01 Agglomeration 0.06 199.92 <0.01 High agglomeration

SO2 0.35 371.51 <0.01 Agglomeration 0.07 371.52 <0.01 High agglomeration

CO 0.24 256.32 <0.01 Agglomeration 0.07 256.35 <0.01 High agglomeration

O3 0.16 175.60 <0.01 Agglomeration 0.06 175.60 <0.01 High agglomeration

PM10 0.10 108.68 <0.01 Agglomeration 0.06 108.69 <0.01 High agglomeration

PM2.5 0.07 79.01 <0.01 Agglomeration 0.06 79.02 <0.01 High agglomeration

2016 NO2 0.12 123.70 <0.01 Agglomeration 0.06 123.72 <0.01 High agglomeration

SO2 0.33 354.46 <0.01 Agglomeration 0.07 354.47 <0.01 High agglomeration

CO 0.24 250.79 <0.01 Agglomeration 0.07 250.81 <0.01 High agglomeration

O3 0.06 58.53 <0.01 Agglomeration 0.06 58.53 <0.01 High agglomeration

PM10 0.06 64.32 <0.01 Agglomeration 0.06 64.33 <0.01 High agglomeration

PM2.5 0.06 59.91 <0.01 Agglomeration 0.06 59.91 <0.01 High agglomeration

2017 NO2 0.17 179.53 <0.01 Agglomeration 0.06 179.55 <0.01 High agglomeration

SO2 0.26 273.43 <0.01 Agglomeration 0.07 237.44 <0.01 High agglomeration

CO 0.14 143.82 <0.01 Agglomeration 0.06 143.83 <0.01 High agglomeration

O3 0.06 60.77 <0.01 Agglomeration 0.06 60.78 <0.01 High agglomeration

PM10 0.08 89.67 <0.01 Agglomeration 0.06 89.67 <0.01 High agglomeration

PM2.5 0.08 84.76 <0.01 Agglomeration 0.06 84.77 <0.01 High agglomeration

2018 NO2 0.16 167.27 <0.01 Agglomeration 0.06 167.30 <0.01 High agglomeration

SO2 0.31 333.50 <0.01 Agglomeration 0.07 333.51 <0.01 High agglomeration

CO 0.11 112.59 <0.01 Agglomeration 0.06 112.61 <0.01 High agglomeration

O3 0.08 83.00 <0.01 Agglomeration 0.06 83.00 <0.01 High agglomeration

PM10 0.09 98.15 <0.01 Agglomeration 0.06 98.15 <0.01 High agglomeration

PM2.5 0.06 60.00 <0.01 Agglomeration 0.06 60.00 <0.01 High agglomeration

2019 NO2 0.14 149.36 <0.01 Agglomeration 0.06 149.38 <0.01 High agglomeration

SO2 0.38 410.15 <0.01 Agglomeration 0.07 410.17 <0.01 High agglomeration

CO 0.12 130.50 <0.01 Agglomeration 0.06 130.52 <0.01 High agglomeration

O3 0.11 121.18 <0.01 Agglomeration 0.06 121.17 <0.01 High agglomeration

PM10 0.10 107.98 <0.01 Agglomeration 0.06 107.98 <0.01 High agglomeration

PM2.5 0.05 54.71 <0.01 Agglomeration 0.06 54.72 <0.01 High agglomeration

2020 NO2 0.12 125.13 <0.01 Agglomeration 0.06 125.15 <0.01 High agglomeration

SO2 0.34 360.81 <0.01 Agglomeration 0.07 360.84 <0.01 High agglomeration

CO 0.13 139.17 <0.01 Agglomeration 0.06 139.19 <0.01 High agglomeration

O3 0.02 26.34 <0.01 Agglomeration 0.06 26.33 <0.01 High agglomeration

PM10 0.14 148.14 <0.01 Agglomeration 0.06 148.14 <0.01 High agglomeration

PM2.5 0.07 76.97 <0.01 Agglomeration 0.06 76.97 <0.01 High agglomeration

Frontiers in Environmental Science frontiersin.org10

Wang et al. 10.3389/fenvs.2022.984879

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.984879


TL has always been a hotspot city in all seasons. Compared

with northern Anhui, central and southern Anhui were more

likely to experience a convergence of CO hotspot cities,

especially the Wanjiang City Belt, which became a CO

hotspot region in all seasons except winter (Supplementary

Figure S5).

Diagnosis of air pollutant obstacle degrees

The diagnostic results of each air pollutant’s obstacle degree

levels during 2015–2020 are shown in Figure 5.We detected year-

by-year changes in the air pollutants that became primary

obstacle factors: PM2.5, SO2, CO, and O3 (2015); PM2.5 and

FIGURE 2
Hotspot evolution of NO2 and O3 in Anhui province.

FIGURE 3
Hotspot evolution of PM10 and PM2.5 in Anhui province.
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PM10 (2016); PM2.5, PM10, and SO2 (2017); PM2.5, PM10, SO2,

and NO2 (2018 and 2019); and PM2.5, PM10, and NO2 (2020).

In 2015, the cities with SO2 as the primary obstacle factor

included HB, LA, MAS andWH; the city with CO as the primary

obstacle factor was HS; and the city with O3 as the primary

obstacle factor was AQ. PM2.5 became the primary obstacle factor

in the remaining cities. In 2016, the primary obstacle factor of

each city was PM2.5, except forWH, where PM10 was the primary

obstacle factor. In 2017, SO2 was the primary obstacle factor for

TL, PM10 was the primary obstacle factor for BB and SZ, and

PM2.5 was the primary obstacle factor for the remaining 13 cities.

Since 2018, NO2 has become one of the most prominent obstacle

factors in Anhui, appearing in AQ (2018 and 2019), SZ (2020),

and CZ (2020). In 2018 and 2019, SO2 was a primary obstacle

factor only in SZ andWH, respectively; particulate matter (PM10

or PM2.5) was the primary obstacle factor for all other cities

between 2018 and 2020.

We then explored the seasonal variation in the levels of air

pollutants representing primary obstacle factors. The results are

shown in Supplementary Table S9. In winter 2020, NO2 was the

primary obstacle factor in 10 cities of Anhui: BB, BZ, FY, HB,

HN, CZ, LA, CHZ, MAS, and TL. By spring 2020, the primary

obstacle factors in southern Anhui were SO2 (MAS, TL,WH, and

XC), particulate matter (PM10 in AQ and PM2.5 in HS), and NO2

(CHZ), with SO2 being overwhelmingly dominant. In summer

and autumn, particulate matter (PM10 or PM2.5) dominated as

the primary obstacle factor, involving more than 10 cities. PM10

and PM2.5 became the primary obstacle factor in most cities,

whereas SO2 and NO2 were the primary obstacle factors in only a

few cities between 2015 and 2019. CO and O3 emerged as

primary obstacle factors in a very few cities throughout

2015 and parts of 2016 (autumn and winter), 2017 (winter),

and 2019 (winter).

Discussion

The spatiotemporal patterns of air
pollutants

In terms of temporal trends, the overall annual mean

concentration of most air pollutants in Anhui decreased to a

certain extent over time, whereas the trend of O3 was the

opposite. This significant difference was directly reflected in

its halving time and doubling time (Supplementary Figure S1).

In combination with the break point identification (Table 1), it

was observed that, although O3 maintained a trend of first

increasing and then decreasing, its halving time was

significantly longer than the doubling time in most cities. The

O3 levels in most cities reached their break point starting in 2018,

which might be related to the 3-Year Action Plan to fight air

pollution implemented in 2018 (Zhao et al., 2022). The break

points of the other air pollutants appeared earlier than that of O3,

mostly before 2018, which might be attributed to the fact that

NOx, SO2, and PM2.5 were set as constraint indicators in the

government’s 13th Five-Year Eco-Environmental Protection

Plan, implemented in 2016. With the exceptions of NO2 and

O3, the halving times of the other air pollutants were basically

shorter than the doubling times. Additionally, the results of the

coupling degree analysis indicated that the air pollutants in

FIGURE 4
Hotspot evolution of SO2 and CO in Anhui province.
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Anhui were mainly in the running-in stage, and that the seasonal

differences were significant. The seasonal variation in the

coupling degrees mainly originated in summer, and the

coupling degrees in most cities were in an antagonistic stage,

especially after 2019. Sulaymon et al. (2021) had employed the

Pearson correlation analysis method, revealing a significantly

positive correlation between air pollutants within three cities of

Anhui (HF, FY, and SZ) in all four seasons, along with a

significant negative correlation between O3 and NO2, SO2,

and CO. Moreover, O3 was significantly positively correlated

with particulate matter (PM10 and PM2.5) in summer, but

negatively correlated with them during the other seasons. The

coordination degree fell within moderate maladjustment, and all

seasons were similar in this regard. Therefore, irrespective of the

season, the coordination degree of the air pollutants within each

city of Anhui was in moderate maladjustment. To put it another

way, the interaction degree between air pollutants within each

city of Anhui was relatively large on the whole, but they did not

reach a satisfactory coordinated development level.

From the perspective of spatiotemporal patterns, the results

of the AQI coupling degree analysis also verified that the

interaction degree of air pollutants between cities was still

large. The inter-city AQI coupling degree was at a high level

in winter, whereas other seasons had a good-level coupling

(Table 3). However, the results of the AQI coordination

degree indicated that the coordinated development level

between cities was weaker than that within cities, and all

seasons were at a severe maladjustment level. Therefore,

spatial agglomeration of air pollutants in Anhui was possible.

Thus, the coupling coordination degree of the AQI in the

three regions (northern Anhui, central Anhui, and southern

Anhui) was explored further. (See Supplementary Table S4 for

the results.) In all seasons, the interaction degree of air pollutants

in each region was large, and above the good coupling level.

These results indicate that the inter-city movement of air

pollutants within the region was more frequent (Sulaymon

et al., 2021). Nevertheless, a significant difference was found

in the AQI coordination degree between the three regions,

mainly between central and northern Anhui and southern

Anhui (Supplementary Table S4). The AQI coordination

degree in central Anhui was mostly at the upper limit of mild

maladjustment, verging on moderate maladjustment, while the

AQI coordination degree in northern and southern Anhui was at

a moderate maladjustment level.

Spatial associations and policy
implications of air pollutants

Whether the coupling coordination degree was measured

using intra-city or inter-city AQI, we observed a sharp contrast

between high coupling degree scores and low coordination

degree scores. These results indicate an increase in the spatial

associations and interaction degrees within the regions studied.

FIGURE 5
Obstacle degree levels of air pollutants in Anhui, 2015–2020. (* = primary obstacle factor).
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Two main trends have emerged from the hotspot evolution of air

pollutants in Anhui between 2015 and 2020: agglomeration in central

Anhui (NO2 and O3) and migration to northern Anhui (PM10 and

PM2.5). Three of the six cities in northern Anhui (HB, SZ, and HN)

were previously coal-based cities. Over the past 40 years, the

development model of these cities has been dominated by high

energy consumption, high pollution, and high-emission industries.

Even though local governments have undertaken a series of

substantive measures (such as HB’s decision in 2016 to completely

stop the use of coal-fired heating in winter), and the proportion of

particulate matter (PM10 and PM2.5) meeting the grade 2 standard of

GB3095-2012 has also increased, northernAnhui was still a hotspot of

particulate matter agglomeration during 2015–2020 (Figure 3). The

hotspot evolution of particulate matter (PM10 and PM2.5) showed a

northwardmigration trend in all seasons. This result seems consistent

with the long-term severe PM2.5 pollution in northern YRD (Dong

et al., 2022).

Meanwhile, the importance of industrial emissions as a

source of particulate matter should not be ignored. Previous

studies have confirmed that industrial and power plant sources

are major contributors to particulate matter emissions,

accounting for about 70% and 60% of the total PM10 and

PM2.5 emissions, respectively (Zheng et al., 2009). As an

example, the source apportionment of atmospheric particulate

matter in HF city from 2016 to 2017 showed that coal

combustion and high-tech manufacturing were the main

emission sources of particulate matter (Xue et al., 2019).

Subsequently, the source identification of nitrogen-containing

species in PM2.5 (HF city, 2018–2019) indicated that inorganic

nitrogen ( NH4
+-N, 54% and NO3

−-N, 33%) and organic nitrogen

accounted for 88% and 12%, respectively, of the total nitrogen in

the PM2.5, and mainly came from combustion and industrial

emissions (Zhou et al., 2021).

Therefore, LMDI models were employed to decompose the

factors influencing industrial pollution emission in the 16 cities

under study (Figure 6). Technological improvement and industrial

structure are the driving factors that reduce industrial particulate

matter emissions. The influence of these two factors was found to be

most significant in central and southern Anhui. This suggests that

the technologies and industrial structures in northern Anhui should

be continuously upgraded.

The evolution of NO2 hotspots showed a gradual agglomeration

to central Anhui. As NO2 is one of the main precursors of O3

formation, this indicates a high potential for O3 formation in this

region. Most of the O3 break points occurred slightly after those of

NO2, and the hotspot evolution of O3 was similar to that of NO2.

However, it should also be noted that O3 formation is complex and

includes various factors, such as the species, the contributions of

various precursors (Li et al., 2022), inter-city transport, and

meteorological conditions (Sulaymon et al., 2021). One study on

the influence of atmospheric oxidation capacity on the dependence

of PM2.5–O3 relationships in the YRD showed that, when the

atmospheric oxidation capacity was relatively high, the

correlation between PM2.5 and O3 was strong, and vice versa

(Qin et al., 2022). A diagnosis of O3 pollution in the summer of

2020 in Nanjing (Li et al., 2022) found that NOx and volatile organic

compounds (VOCs) contributed to O3 concentration (accounting

for about 70% and 30%, respectively). Inter-city transport and intra-

city emissions (from transportation and industry) accounted for

46% and 38% respectively, of the fluctuations in daily O3

concentration, with alternating contributions from physical

(vertical mixing and wind direction) and chemical

(photochemical reactions) factors. Given that CZ, MAS, and WH

are adjacent to Nanjing, and given the close connections between

their respective economic development histories, the mutual

migration of air pollutants among them was bound to occur.

Figure 6C shows that the economic growth of these three cities

(CZ, MAS, and WH) contributed the most to industrial NOx

emissions.

By 2020, the CO hotspot was concentrated in the

Wanjiang City Belt. Figure 6 also shows that the change in

total industrial carbon emissions in the Wanjiang City Belt

(comprising CZ, HF, LA, AQ, CHZ, MAS, TL, WH, and XC)

from 2015 to 2020 was positive (with the exception of MAS).

Previous studies on VOCs in different functional areas of HF

city (Wang et al., 2021) confirmed that industrial areas

contributed the most to the VOC concentration. Notably,

technological improvements have contributed significantly to

reducing industrial carbon emissions ( in HF and TL

(Figure 6).

As the first Demonstration Zone for undertaking industrial

transfer in Anhui province, the Wanjiang City Belt has gradually

developed into new mega-urban agglomerations within the YRD

and is now known as a hub for industrial transfer. For example, in

HF city, we can see that population size has an effect on the growth

of industrial pollutant emissions (Figure 6). Clearly, economic

growth has significantly contributed to emissions of carbon and

industrial pollutants (Wang et al., 2022), even as technological

improvements and industrial structures have significantly

inhibited industrial pollutant emissions (Figure 6). Geng et al.

(2021) employed the LMDI model to examine the relative

influence of four factors (economic growth, economic structure,

energy-climate policy, and end-of-pipe control policy) on pollutant

emissions (NOx, SO2, and PM2.5) in China. They found that

economic growth was the main driving force behind pollutant

emissions, with the remaining three factors having different

degrees of inhibitory effects. This is consistent with the results of

the present study. In this study, industrial structure was found to be

more effective in reducing industrial carbon emissions, and

technological improvement was found to be more advantageous

in reducing industrial particulate matter, NOx, and SO2 (Figure 6).

The obstacle degree analysis showed that particulate

matter (PM10 and PM2.5), SO2, and NO2 were the primary

obstacle factors. The seasonal differences in primary obstacle

factors were most evident in 2020, including the dominance

of NO2 in winter (observed in 10 cities), SO2 in southern Anhui,
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and particulate matter in northern and central Anhui in spring.

Other seasons were almost entirely dominated by particulate matter.

Meanwhile, in the winter of 2020, all the corresponding air quality

indexes pointed to PM2.5, even though 10 cities had NO2 as their

primary obstacle factor. This suggested that AQI did not always

match the primary obstacle factor; that is to say, AQI alone could

only reflect the primary pollutant, which was not necessarily the

same as the primary obstacle factor. Moreover, it should be noted

that the homogeneity of the primary obstacle factor on an annual

scale may cover up any seasonal differences, and this discrepancy

may pose difficulties for the accurate and effective formulation of air

pollution prevention and control measures. The accurate diagnosis

of obstacle degrees can therefore help optimize and quantify the

primary obstacle factors among regional air pollutants, which is

potentially of crucial practical significance for inter-regional joint

prevention and control.

The mobility of air makes pollutants a highly externalized

issue, and therefore the use of inter-regional collaborative

governance to manage air pollution was an inevitable choice.

The air quality of any city is affected by the dynamic

superposition of air pollutants inside and outside the region

(Gong et al., 2021). Simultaneously, air pollution has an obvious

superposition effect because of the overall interaction

relationship among the pollutants. Therefore, it is necessary to

strengthen inter-regional joint prevention and control, undertake

targeted measures specific to each city, co-manage, and avoid

partial governance that applies only to individual cities.

First, the collaborative governance of air pollution prevention

and control in the YRD should be seen as an impetus to

strengthen the cooperative effects of inter-regional air

pollution prevention and control. Although the collaborative

governance of regional air pollution has obvious advantages in

reducing the cost of emission reduction (Xiao Liu et al., 2022), the

long-term effectiveness of the YRD’s regional air pollution policy

is obviously insufficient (Wang and Zhao, 2021). Moreover, the

collaborative governance of air pollutants (such as NOx-VOC)

has benefits for human health and crop production (Ding et al.,

2022). Therefore, it is necessary to strengthen the

implementation of the integrated process of collaborative

governance of air pollutants in the YRD; fully understand the

importance of negotiation, shared responsibility, information

sharing, and joint prevention and control; and form an inter-

regional joint prevention and control mechanism with the same

orientation but with a more specific focus.

Whether the coupling coordination degree was measured using

intra-city air pollutants or inter-city AQI, we observed a sharp

FIGURE 6
The contributions of factor decomposition to changes in industrial pollutant emissions, plotted against the changes in total emissions as of
2020. (Note: 2015 is the base year. Data on industrial NOx are missing for 2015.). (A) Carbon emission. (B) Particulate matter. (C) NOx. (D) SO2.
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contrast between high coupling degree scores and low coordination

degree scores. This result strongly supports the fact that a large degree

of interaction between air pollutants, and obvious maladjustment,

exists within and between cities. Second, the effects of the imbalances

in economic growth level and industrial structure layout among the

cities studied suggest that policies targeted to the specific causes of, and

extent of, air pollution in different regions are likely the bestmethod of

managing these pollutants. For instance, in this study, technological

improvement and industrial structure played a significant role in the

decrease of industrial particulate matter emission; the inhibitory effect

on industrial particulate matter emission in central and southern

Anhui was better than that in northern Anhui (Figure 6B). Combined

with the evolution of particulate matter hotspots (i.e., migration to

northernAnhui), it was suggested that the technological improvement

and industrial structure in northern Anhui should be continuously

upgraded.Moreover, in theWanjiangCity Belt, where theCOhotspot

eventually settled (matching the increase in total industrial carbon

emissions), the industrial structure was more effective in reducing

industrial carbon emissions (Figure 6A). Finally, the combined use of

the primary obstacle factor and theAQImight help in the formulation

of targeted measures to alleviate air pollution, thereby effectively

reducing the cost of regional collaborative governance and

clarifying the division of responsibilities.

Conclusion

The spatiotemporal dynamic evolution evaluation of air

pollutants, combined with break point identification, coupling

coordination degree model, obstacle degree model, and the

ESDA, provides favorable technical support for

implementation of regional joint prevention and control.

Meanwhile, the LMDI model was applied to quantify the

influence of economic growth, population size, technological

improvement, and industrial structure on industrial pollutant

emissions. The following conclusions were drawn:

(1) An objective approach to determining the break point might

be helpful for timely feedback on the intensity of air pollution

policy regulation. The O3 levels in most cities reached their

break point starting in 2018, but the break points of other air

pollutants appeared earlier than that of O3, mostly

before 2018.

(2) The degree of interaction between air pollutants within each

city of Anhui was relatively large, but these interactions did

not reach a good level of coordinated development.

(3) Twomain trends emerged from the evolution of air pollutant

hotspots: agglomeration to central Anhui (NO2 and O3) and

migration to northern Anhui (PM10 and PM2.5). CO

eventually concentrated in the Wanjiang City Belt.

(4) The primary obstacle factors were particulate matter (PM10

and PM2.5), SO2, and NO2, with great seasonal differences.

Meanwhile, industrial structure was more effective in

reducing industrial carbon emissions, and technological

improvement was more advantageous in reducing

industrial particulate matter, NOx, and SO2. The

diagnosis of primary obstacle factors can be an effective

complement to AQI in undertaking targeted measures for

the alleviation of air pollution.
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