AUTHOR=Sahoo Samaresh , Mukhopadhyay Prabir , Mowrer Jake , Maity Pragati Pramanik , Maity Aniruddha , Sinha A.K. , Sow Prodipto , Rakesh S TITLE=Tillage and N-source affect soil fertility, enzymatic activity, and crop yield in a maize–rice rotation system in the Indian Terai zone JOURNAL=Frontiers in Environmental Science VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2022.983973 DOI=10.3389/fenvs.2022.983973 ISSN=2296-665X ABSTRACT=
A field experiment (2017–2019) was undertaken to study the short-term effects of tillage [zero tillage (ZT), conventional tillage (CT), and alternate tillage (AT)] and sources of organic and mineral fertilizer N [NS0—control, NS1—recommended doses of fertilizer (160:50:100), NS2—recommended level of fertilizer and crop residue (6 Mg·ha−1), NS3—75% of recommended N as fertilizer (120 kg·ha⁻1) and 25% N (40 kg·ha⁻1) as farm yard manure (FYM), and NS4—75% of recommended N as fertilizer and 25% N as vermicompost] on yield and soil quality under a maize–rice rotation system. Among N sources, NS4 produced the highest maize grain yield (10 Mg·ha⁻1). Residual effects of N sources on mean rice grain yield were evident only in crop residue (NS2)- and vermicompost (NS4)-treated plots. After the harvest of two complete maize–rice crop cycles, higher content of dehydrogenase activity (DHA) and urease activity (UR) were observed in the soil under AT as compared to ZT and CT at 0–10 cm (