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Cultivated land is an important prerequisite and guarantee for food production

and security, and the change of cultivated land resources in China has always

been concerned. National land survey is an effective way to accurately grasp the

area and distribution of cultivated land resources. However, due to the

differences in technical means and statistical standards at different stages,

there are obvious breakpoints among the cultivated land area data of the

three land surveys in China, which hinders the in-depth study of the spatio-

temporal distribution of cultivated land resources in long-time series. The

Autoregressive Integrated Moving Average model is used to reconstruct and

mine the cultivated land area data from 1996 to 2019 based on the data of the

third land survey in China. The spatio-temporal variation characteristics of

cultivated land area are explored by using Geographic Information System

spatial analysis, and the driving factors of cultivated land change are analyzed

based on Geographical Detector (GeoDetector) from the perspective of social,

economic, agricultural and natural. The results show that the area of cultivated

land in China decreased continuously from 1996 to 2019, with a sharp decrease

from 1996 to 2004 and a slow decrease from 2005 to 2019. From 1996 to 2019,

there were obvious spatial differences in the change of cultivated land area in

31 provincial units. From 1996 to 2008, the cultivated land area in 29 provinces

showed a downward trend, especially in the central and northern regions such

as Shaanxi, Sichuan and Inner Mongolia. From 2008 to 2019, the cultivated land

area in the underdeveloped areas of Heilongjiang, Jilin, Liaoning, Xinjiang,

Gansu and Tibet increased significantly, while the rest showed a downward

trend. Factor detection found that the q values of population, regional gross

domestic product grain output, the proportion of the added value of the primary

industry and average slope were all more than 0.5, which had an important

impact on the change of cultivated land area. The explanatory power of the

interaction between factors on the change of cultivated land area is enhanced in

different degrees compared with the single factor effect, which is manifested in

the enhancement of bilinear or nonlinear enhancement, and the interaction of
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different factors promotes the change of cultivated land area. The change of

cultivated land area is the result of complex interaction between factors, and is

closely related to the land policy in the same period.
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Introduction

Cultivated land is an important prerequisite and guarantee for

food production, and food security is an important part of national

security (Liu et al., 2018; Wang et al., 2020; Yang et al., 2021).

Cultivated land provides the main living guarantee for the rural

population and is the main source of living materials for urban

residents (Zou et al., 2020). China is a large agricultural country, and

cultivated land is the main carrier to maintain population growth

(Xu et al., 2021). However, China only has about 0.2 acres of

cultivated land per citizen, accounting for less than 40% of cultivated

land per citizen in the world (Cui and Shoemaker, 2018). With the

development of social economy, the process of urbanization and

industrialization in China is constantly advancing, the construction

land is expanding rapidly, the cultivated land resources are

constantly changing, and the protection of cultivated land is

facing great challenges (Zhao et al., 2006; Kong, 2014; Wang

et al., 2020). Therefore, much attention has been paid to the

change of cultivated land resources in China (Anderson and

Strutt, 2014; Liu et al., 2017; Tan et al., 2017). The change of

cultivated land is the result of the comprehensive action of multiple

factors, which is closely related to economic, social, ecological,

political and other factors (Lin and Ho, 2003; Song et al., 2012;

Cao Y. et al., 2013). Studying the spatio-temporal change law and

influencing factors of cultivated land resources is conducive to

comprehensively grasping the current situation of cultivated land

use, revealing the driving mechanism of cultivated land change, and

providing a scientific basis for rational use of land resources, policy

formulation and trend prediction.

Since the 1990s, scholars have begun to study and discuss the

changes of cultivated land resources from different perspectives

(Deng et al., 2006; Ge et al., 2018; Ramankutty et al., 2018).

Relevant research involves cultivated land change (Valbuena

et al., 2010), influencing factor (Chen and Wang, 2021),

influencing factor model and driving mechanism (He et al.,

2005), etc. There are two main sources of cultivated land

resources data: the data obtained by remote sensing image

interpretation or model classification and the official land

survey data. The rapid development of remote sensing

technology provides long-time dynamic data for the study of

cultivated land change. Currently, the widely used remote

sensing land use datasets include Global Land Cover

Characterization Database (GLCC) (Loveland et al., 2000)、

Global Land Cover 2000 project data (GLC 2000)

(Bartholome and Belward, 2005)、University of Maryland

land cover product (UMd) (Hansen et al., 2000)、Global

Land Cover Product (GlobCover) (Arino et al., 2007) and

GlobeLand30 (Jun et al., 2014). Scholars have studied the

spatio-temporal change of cultivated land in China by using

remote sensing data (Liu et al., 2003; Xu et al., 2017; Wang et al.,

2020). Xu et al. found that from 1990 to 2010, the net increase of

cultivated land in China was 1.30 × 106 ha (Xu et al., 2017). The

research results of Wang et al. show that from 1990 to 2000, the

area of cultivated land increased by 1.62%, and then continuously

decreased during 2000–2015, resulting in a national total growth

rate of 0.80% from 1990 to 2015 (Wang et al., 2020). Due to the

influence of the spatial-temporal resolution of remote sensing

images, the phenomenon of different spectrum of the same object

and the same spectrum of foreign objects, as well as the

limitations of the algorithm, the accuracy of remote sensing

classification in large-scale is generally not high, and there is

still a certain gap with the accuracy of the official land survey data

(Liu and Xia, 2010; Shao and Lunetta, 2012; Gómez-Chova et al.,

2015; Cheng et al., 2020). Since 1996, China has completed three

national land surveys. Based on the land survey data, the natural

resources bureaus of each province will organize the land change

survey every year, and the final summary will be released by the

National Bureau of Statistics (NBS). In August 2021, the NBS of

China released the data of the third national land survey, which is

mainly based on remote sensing images or Unmanned Aerial

Vehicle (UAV) images with a resolution better than 1m,

combined with professional manual interpretation and field

sampling verification to obtain high-precision land use data

(Jiang et al., 2022). After statistical analysis, the difference

between the cultivated land area of China in the commonly

used remote sensing datasets and the data published in the third

land survey is more than 10%. Therefore, the official land survey

data can more accurately and truly reflect the status of cultivated

land resources. However, there are obvious breakpoints in

China’s cultivated land area data in 2008 and 2018 due to

differences in technical means and statistical standards

adopted in different stages of the national land survey. Most

scholars avoid the transition years with obvious changes in data,

and focus on the changes of cultivated land area from 1996 to

2008 and 2009–2018 (Jin, 2014; Tan et al., 2017). At present,

there are few studies on the spatio-temporal changes and driving

forces of cultivated land area in the whole cycle of three land

surveys. The ARIMA model does not depend on external

variables and can effectively overcome the problem of

insufficient model accuracy caused by external parameters.
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The performance of the model has been better than that of the

complex structure model in short-term prediction, and has been

widely used in the prediction of crop yield, climate change,

economic trend and so on (Fattah et al., 2018; Singh and

Mohapatra, 2019; Zheng et al., 2020).

Based on the data of the third land survey in China, the

ARIMA model is used in this study to reconstruct and mine the

cultivated land area data from 1996 to 2019 in order to

scientifically grasp the current situation of cultivated land use

in different periods. The spatio-temporal change characteristics

of cultivated land in China are studied by using GIS spatial

analysis. The driving factors of cultivated land change are

explored from the social, economic, agricultural and natural

dimensions based on GeoDetector to provide scientific

support for the intelligent management and precise protection

of cultivated land.

Materials and methods

Study area

China (Figure 1) is located in eastern Asia, on the west coast

of the Pacific Ocean. It starts from the center of the Heilongjiang

River near Mohe River in the north and the Zengmu Reef in the

Nansha Islands in the south. The land area is 9.6 million km2, and

the land boundary is more than 20,000 km (Wang et al., 2021). In

this study, 31 provinces, cities and autonomous regions except

Taiwan Province, Hong Kong and Macao Special Administrative

region were selected as the study area.

Data

Comprehensively considering the development status of

China and the availability of data, and referring to previous

literature (Wang et al., 2015; Arowolo and Deng, 2018),

12 indicators related to the change of cultivated land area are

selected: 1) social factors: population (Ⅰ1, unit: ×104 people); 2)
Economic factors: regional GDP (Ⅱ1, unit: ×108 yuan), per capita
GDP (Ⅱ2, unit: yuan/person), proportion of added value of

primary industry (Ⅱ3, unit: %), proportion of added value of

secondary industry (Ⅱ4, unit: %), proportion of added value of

tertiary industry (Ⅱ5, unit: %), added value of agriculture,

forestry, animal husbandry and fishery (Ⅱ6, unit: ×108 yuan);

3) Agricultural factors: grain output (Ⅲ1, unit: ×10
4 tons), total

power of agricultural machinery (Ⅲ2, unit: ×10
4 kW); 4) Natural

factors: average altitude (Ⅳ1, unit: m), terrain relief (Ⅳ2, unit: m);

average slope (Ⅳ3, unit: degrees). The cultivated land resources

data come from the website of the Ministry of Natural Resources

(http://www.mnr.gov.cn)), and the data related to population

and socio-economic development come from the website of the

NBS of China (http://www.stats.gov.cn). Table 1 shows the

official statistics of China’s cultivated land area from 1996 to

2019. Table 2 shows the descriptive statistical characteristics of

social, economic and agricultural factors from 1996 to 2019.

FIGURE 1
Location of study area.
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Based on the 30-m resolution SRTM DEM data (http://gdex.cr.

usgs.gov/gdex), the average elevation, terrain relief and average

slope of each province are calculated by Google Earth Engine

cloud computing platform (Gorelick et al., 2017).

ARIMA model

ARIMA is a time series data analysis and prediction model

proposed by Box and Jenkins (Gilbert, 2005). Its main principle is

to establish a corresponding model to describe or simulate its

past behavior from the time series itself, so as to predict and infer

the future value. The model can combine the dynamic and

persistent characteristics of time series to reveal the

relationship between past and present, future and present of

time series (Lai and Dzombak, 2020).

The ARIMA(p, d, q) model consists of three parts: AR(p)

represents the autoregressive process, that is, the current value of

a time series can be expressed as a linear combination of delayed

p-period observations; I(d) represents the difference, d is the

number of differences required when the time series becomes

stationary; MA(q) represents the moving average process, that is,

TABLE 1 Official statistics of cultivated land area in China from 1996 to 2019.

Year Area/×104 hm2 Year Area/×104 hm2 Year Area/×104 hm2

1996 13,003.92 2004 12,244.43 2012 13,515.85

1997 12,990.31 2005 12,208.27 2013 13,516.34

1998 12,964.21 2006 12,177.59 2014 13,505.73

1999 12,920.55 2007 12,173.52 2015 13,499.87

2000 12,824.31 2008 12,177.68 2016 13,492.10

2001 12,761.58 2009 13,538.46 2017 13,488.12

2002 12,593.00 2010 13,526.83 2018 13,480.00

2003 12,339.22 2011 13,523.86 2019 12,786.19

TABLE 2 Descriptive statistical characteristics of social, economic and agricultural factors from 1996 to 2019.

Factor Minimum Maximum Mean Standard deviation

Ⅰ1 (×104) 122,389.00 141,212.00 132,752.64 5,748.05

Ⅱ1 (×108 yuan) 71,813.60 1,015,986.20 406,730.43 315,650.85

Ⅱ2 (yuan/person) 5,898.00 72,000.00 29,833.60 22,231.92

Ⅱ3 (%) 7.00 19.30 11.23 3.57

Ⅱ4 (%) 37.80 47.60 44.33 3.04

Ⅱ5 (%) 33.60 54.50 44.44 5.92

Ⅱ6 (×108 yuan) 14,014.70 81,103.90 37,792.23 22,005.20

Ⅲ1 (×104 tons) 43,069.53 66,949.15 55,420.84 8,156.62

Ⅲ2 (×104 kW) 38,546.92 111,728.07 78,943.96 23,853.29

TABLE 3 Judgment basis of the interaction detector.

Comparison Interaction

q(X1 ∩ X2)<Min[q(X1), q(X2)] Nonlinear weakening

Min[q(X1), q(X2)]< q(X1 ∩ X2)<Max[q(X1), q(X2)] Single factor nonlinear weakening

q(X1 ∩ X2)>Max[q(X1), q(X2)] Bilinear enhancement

q(X1 ∩ X2) � q(X1) + q(X2) Independent

q(X1 ∩ X2)> q(X1) + q(X2) Nonlinear enhancement

Frontiers in Environmental Science frontiersin.org04

Li et al. 10.3389/fenvs.2022.983289

http://gdex.cr.usgs.gov/gdex
http://gdex.cr.usgs.gov/gdex
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2022.983289


the model value can be expressed as a linear function of the

q-order residual term. The expression of the model is as follows:

xt � ϕ0 + ϕ1xt−1 + . . . + ϕpxt−p + εt − θ1εt−1 − . . .

− θqεt−q, (ϕp ≠ 0, θq ≠ 0) (1)

Where, xt is the actual value, ϕi and θj are coefficients, p is the

order of the autoregressive model, q is the moving average order,

εt represents the random error at t.

Figure 2 shows the modeling process of ARIMAmodel. Firstly,

the stationarity of the time series data is tested. If it is a non-

stationary time series, the d-order difference operation is required to

convert it into a stationary time series. Then, white noise test is

carried out on the data. If it is non-white noise, the best level p and

order q are determined by autocorrelation function (ACF) and

partial autocorrelation function (PACF) analysis. Finally, the white

noise test is performed on the residual. Through the test, the

modeling can be established to predict the future trend.

GeoDetector

GeoDetector is a group of statistical methods to detect spatial

differentiation and explain its driving force, including the factor

detector, the interaction detector, the risk detector and the

ecological detector (Wang et al., 2010). The main principle of

the GeoDetector is to assume that the study is divided into several

sub-regions. If the sum of the variance of the sub-region is less

than the total variance of the region, there is a spatial difference; if

the spatial distribution of the two variables tends to be consistent,

there is a statistical correlation between the two variables.

Geographic detector can evaluate spatial differentiation, detect

explanatory factors and analyze the interaction between

variables, and have been widely used in nature, environmental

science, human health and other fields (Wang et al., 2010; Cao F.

et al., 2013; Liu et al., 2020).

The factor detector is used to detect the spatial differentiation

of the dependent variableY and the explanatory power of a factor

X to the dependent variable Y, which is measured by the q value.

The formula of q is:

q � 1 − ∑L
h�1Nhσ2h
Nσ2

� 1 − SSW

SST
(h � 1, 2 . . .) (2)

Where: L is the stratification of variable Y or factor X, i.e.

classification or partition; Nh and N are the number of units

in layer h and the whole area respectively; σ2h and σ2 are the

variances of the Y values of the layer h and the whole region

respectively, and SSW and SST are the sum of the intra layer

variance and the sum of the whole region variance respectively.

The interaction detector is used to evaluate the interaction

between factors Xi and Xj, reflecting that the explanatory power

of the two factors on variable Y is enhanced, weakened or

independent. The interaction detector usually first calculates

the interpretation force q(X1) and q(X2) of the two influence

factors Xi and Xj on attribute Y, then calculates the value

q(X1 ∩ X2) when they interact, and finally compares q(X1),
q(X2) and q(X1 ∩ X2). There are five cases (Table 3).

Results

Reconstruction of cultivated land data
based on ARIMA model

Figure 3A shows the change trend of cultivated land area in

China according to official data. It can be seen from the figure

FIGURE 2
Modeling process of ARIMA.
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that there are obvious breakpoints in China’s cultivated land area

data in 2008 and 2018, which is mainly due to the differences in

the technical means adopted in different stages of the national

land survey. 2008 is the dividing point between the first national

land survey and the second national land survey, and 2018 is the

dividing point between the second national land survey and the

third national land survey. The technical means adopted in the

first survey are backward, rely on manual operation, and the

result data are stored in paper form, which is not conducive to

land change investigation. However, the second survey is

completed based on 3S (GIS, RS, GPS) technology, which

greatly improves the accuracy and efficiency of land survey,

and replenishes the previously uncounted cultivated land area

due to underreporting or omission. Therefore, there was a sharp

increase in the area of cultivated land in 2009. Compared with the

second survey, the third survey is based on satellite images or

UAV images with a resolution better than 1m, combined with

professional manual interpretation and machine learning, big

data and cloud computing technology to further improve the

accuracy of the data. The sharp decline in the area of cultivated

land in 2019 is mainly due to the elimination of the false positives

in the second survey. The two obvious breakpoints make the

original cultivated land data lack of coherence and accuracy.

To study the dynamic characteristics of cultivated land area

in China from 1996 to 2019, it is necessary to correct the data to

improve the rationality and comparability. The cultivated land

area data published in the third survey in 2019 were used as the

basis for sectional correction based on the ARIMAmodel. Firstly,

the 2009–2018 data were used to predict the 2019 data. After the

augmented Dickey–Fuller (ADF) test, it is determined that the

data remains stable after the second-order difference. The model

was determined to be ARIMA (1,2,0) (R2 = 0.922) after ACF and

PACF analysis. The ratio of predicted data to actual data was

determined to be 0.9488, and then the data from 2009 to

2018 were corrected. Secondly, the 1996–2008 data were used

to predict the 2009 data. After analysis, ARIMA (1, 2, 0) (R2 =

0.908) was selected as the model, and the ratio between the

predicted data and the corrected data was determined to be

1.0543, and then the data from 1996 to 2008 were corrected.

Figure 3B shows the change trend of cultivated land area after

correction. It can be seen from the figure that the corrected

cultivated land data has stronger continuity and integrity, which

is conducive to the dynamic analysis of long-time series.

Characteristics of spatio-temporal
variation of cultivated land area in long-
time series

As can be seen from Figure 3B, China’s cultivated land area

showed a continuous decrease from 1996 to 2019. From 1996 to

2004, the cultivated land area showed a sharp decrease trend,

with a total decrease of 8.01 × 106 hm2 and a reduction rate of

5.84%. From 2005 to 2019, the cultivated land area decreased

slowly by 8.50 × 105 hm2, with a reduction rate of 0.66%.

To further analyze the spatial distribution differences of

cultivated land from the perspective of provincial units, the

ARIMA model was used to reconstruct the cultivated land data of

31 provinces, cities and autonomous regions. Figure 4 shows the

amount and rate of change in cultivated land in China from 1996 to

2008 and 2008 to 2019. The change rate is the ratio of the difference

between the cultivated land area at the end of the study and the initial

stage of the study to the cultivated land area at the initial stage of the

study. It can be seen from the figure that there are obvious spatial

differences in the change of cultivated land area in 31 provincial units

from 1996 to 2019. From 1996 to 2008, the cultivated land area of

29 provincial units showed a downward trend, accounting for more

than 90%, especially in Shaanxi, Sichuan, Inner Mongolia and other

central and northern regions, with a reduction of more than 1 ×

107 hm2, with a reduction rate of more than 10%. The change rate of

FIGURE 3
(A) is the change trend of the original cultivated land area. (B) is the change trend of cultivated land area after correction by ARIMA model.
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Beijing is the highest, reaching -33%, and the change rate in most

areas is maintained at -10–0%. Only Heilongjiang and Xinjiang have

seen a small increase in cultivated land area. It can be seen that the

rapid progress of industrialization and urbanization has undoubtedly

led to the occupation of a large amount of cultivated land. From

2008 to 2019, there are significant differences in cultivated land area

changes in different regions. The cultivated land area in

underdeveloped areas such as Heilongjiang, Jilin, Liaoning, Inner

Mongolia, Xinjiang, Gansu and Tibet has increased significantly,

especially in Xinjiang and InnerMongolia, where the growth rate has

exceeded 50%. The other regions showed a downward trend, and the

decrease in central and southern provinces exceeded 1 × 107 hm2. In

developed regions such as Beijing, Shanghai, Guangdong and

Zhejiang, the decline rate exceeded 30%. During this period,

China began to implement the cultivated land occupation-

compensation balance and cultivated land protection system.

Although the decline rate of cultivated land area slowed down

compared with 1996–2008, some provinces still face a severe

situation of cultivated land reduction.

Driving force analysis of cultivated land
area change

The factor detector results reflect the explanatory power of

each factor on the change of cultivated land area in China, and

the results are shown in Figure 5A According to the analysis, the

order of explanatory power of each factor on the change of

cultivated land area in China is as follows: population (Ⅰ1) >
regional GDP (Ⅱ1) > grain output (Ⅲ1) > proportion of added

value of the primary industry (Ⅱ3) > average slope (Ⅳ3) > added

value of agriculture, forestry, animal husbandry and fishery

FIGURE 4
(A) and (C) are the amount of changes of cultivated land area in 1996–2008 and 2008–2019, respectively. (B) and (D) are the change rates of
cultivated land area in 1996–2008 and 2008–2019, respectively.
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(Ⅱ6) > per capita GDP (Ⅱ2) > proportion of added value of the

tertiary industry (Ⅱ5) > proportion of added value of the

secondary industry (Ⅱ4) > average altitude (Ⅳ1) > total power

of agricultural machinery (Ⅲ2) > terrain relief (Ⅳ2). The q values

of the five factors, namely population, regional GDP, grain

output, the proportion of the added value of the primary

industry and average slope, exceeded 0.5, which had an

important impact on the change of cultivated land area. With

the continuous increase of population and the rapid rise of

urbanization rate in China since 1996, the demand for

residential land, living land and other construction land has

increased sharply, resulting in the pressure of cultivated land

being occupied to a certain extent. The regional GDP reflects the

level of economic development of the region, and the increase in

demand for construction land brought about by economic

development is an important reason for the non-

agriculturalization of cultivated land. Cultivated land is the

most basic material condition of agricultural production, and

the change of its quantity and quality will directly affect the grain

yield. The qualitative and quantitative changes in the process of

economic development are both characterized by the evolution

and advancement of the industrial structure, which are mainly

manifested in the continuous decline of the proportion of the

primary industry and the increase in the proportion of the

secondary and tertiary industries. The primary industry

generally includes agriculture, forestry, fishing, animal

husbandry and gathering. When the economic development

enters the industrialization stage, the dominant factors of land

use change are the market supply and demand of land products

or services and the comparative benefits of land use. The land

flows to the more efficient secondary and tertiary industries, and

the agricultural land is rapidly non-agricultural. Slope is an

important factor affecting the quality of cultivated land and

the safety of cultivation. There is a positive correlation

between slope and soil and water loss. With the increase of

the slope, the runoff and scouring amount will increase

accordingly. In order to control soil erosion and improve the

ecological environment, China has implemented the conversion

of cultivated land with large slopes to forests. Therefore, the slope

has strong explanatory power to the change of cultivated

land area.

The interaction detector can reflect the interaction between

different types of factors, which is helpful to further study the

driving mechanism of cultivated land area change. Figure 5B

shows the results of the interaction detector. It can be seen from

the figure that the interaction detecor results between factors are

both bilinear enhancement or nonlinear enhancement, and there

is no independence or weakening. The q value of interaction

between different types of factors are significantly larger than that

of single factor. The q values of most of the interactions between

factors are more than 0.8, accounting for more than 84%. The

interaction q value of the average altitude and the total power of

agricultural machinery is the smallest, which is close to the

maximum value of the single factor q value. The interaction

between regional GDP and other factors has a strong explanatory

power to the change of cultivated land area, with an average value

of more than 0.97. The experimental results show that the

explanatory power of the interaction between factors on the

change of cultivated land area is enhanced to varying degrees

compared with the single factor effect, and the interaction

between different factors will have varying degrees of impact

on the change of cultivated land area. At the same time, it

confirms that the change of cultivated land area is the result

of complex interaction between factors.

FIGURE 5
(A) is the result of factor detector. (B) is the result of the interaction detector.
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Discussion

Analysis of driving forces in different
geographical regions

China is generally divided into seven geographical regions:

North China (Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia),

Northeast China (Liaoning, Jilin, Heilongjiang), East China

(Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong),

South China (Guangdong, Guangxi, Hainan), Central China

(Henan, Hubei, Hunan), Southwest China (Chongqing, Sichuan,

Guizhou, Yunnan, Tibet) and Northwest China (Shaanxi, Gansu,

Qinghai, Ningxia, Xinjiang) (He et al., 2008). Figure 6 shows the

amount and rate of change in cultivated land in seven geographical

regions of China from 1996 to 2019. As can be seen from the figure,

the area of cultivated land decreased in all areas except Northeast

and North China from 1996 to 2009. The area of cultivated land in

East China and Southwest China decreased greatly, both exceeding

FIGURE 6
(A) is the amount of changes of cultivated land area in seven geographical regions of China from 1996 to 2019. (B) is the change rates of
cultivated land area in seven geographical regions of China from 1996 to 2019.

FIGURE 7
(A) is the factor detector results of cultivated land area change in seven geographical regions of China. (B) is the interaction detector results of
cultivated land area change in seven geographical regions of China.
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5×107 hm2. The decline rate of cultivated land area in South China is

the largest, exceeding 30%. On the other hand, there has been a

substantial increase in the Northeast China, with an increase rate of

more than 30%.

Figure 7A shows the factor detector results of cultivated land

area change in seven geographical regions of China. It can be seen

from the figure that the order of the explanatory power of each factor

on the change of cultivated land area in the seven geographical

regions of China is: proportion of added value of the primary

industry (Ⅱ3) > population (Ⅰ1) > regional GDP (Ⅱ1) > per capita

GDP (Ⅱ2) > grain output (Ⅲ1) > average slope (Ⅳ3) > proportion of

added value of the secondary industry (Ⅱ4) > added value of

agriculture, forestry, animal husbandry and fishery (Ⅱ6) > terrain

relief (Ⅳ2) > average altitude (Ⅳ1) > proportion of added value of

the tertiary industry (Ⅱ5) > total power of agricultural machinery

(Ⅲ2). Except for terrain relief, average altitude, the proportion of

added value of the tertiary industry and the total power of

agricultural machinery, the q value of other factors exceeded 0.7,

which have an important impact on the change of cultivated land

area in seven geographical regions of China. The q value of the

proportion of added value of the primary industry and the

population are both more than 0.9, which has a strong

explanatory power to the change of cultivated land area in the

seven geographical areas. The q value of the total power of

agricultural machinery is the lowest, only 0.289. The total power

of agricultural machinery reflects the level of agricultural

modernization. The progress of agricultural science and

technology has improved the total power of agricultural

machinery, promoted the increase of grain yield per unit area

and the output rate of cultivated land, thus alleviating the

pressure of cultivated land production and food security, but did

not directly affect the change of cultivated land area.

Figure 7B shows the interaction detector results of cultivated

land area change in seven geographical regions of China. It can be

seen from the figure that the interaction detecor results between

factors are both bilinear enhancement or nonlinear

enhancement, and there is no independence or weakening,

which is consistent with the results of provincial cultivated

land area. The q values of most of the interactions between

factors are 1, accounting for more than 85%. The interaction q

value between the proportion of added value of the tertiary

industry and the terrain relief is the smallest, which is 0.6935.

The average q value of interactive detection of all factors is

0.9839. The results show that the interaction between different

factors has a strong explanatory power for the change of

cultivated land area in seven geographical regions of China.

Policy factors of cultivated land area
change

Land not only has natural attribute, but also has social-

economic attribute (Verburg et al., 2015). For a long time, due to

the influence of social, economic, policy and technical means, it is

difficult to carry out long-time series analysis of cultivated land

resource changes from the perspective of land survey statistics.

The existing studies on cultivated land change based on land

survey statistics are mainly concentrated in the two periods of

1996–2008 and 2009–2018 (Jin, 2014; Tan et al., 2017). However,

there is an obvious gap in accuracy between large-scale cultivated

land area data obtained by remote sensing data and land survey

data (Manandhar et al., 2009; Liu et al., 2015). In this study, the

ARIMA model is used to reconstruct and mine the cultivated

land area data from 1996 to 2019, which eliminates the problem

of time series data fracture caused by differences in technical

means, and improves the rationality and integrity of the data. GIS

spatial analysis is used to explore the spatio-temporal change

characteristics of cultivated land area based on the corrected data,

and the GeoDetector is used to analyze the driving mechanism of

cultivated land change from the perspective of single factor and

factor interaction. GeoDetector has obvious advantages in

explaining the spatial heterogeneity of geographical

phenomena, and can make up for the weakness that

conventional methods cannot explain the interaction

mechanism (Hu et al., 2020; Li et al., 2021; Xiang et al., 2021).

The cultivated land area is not only affected by social, economic,

agricultural and natural factors, but also closely related to national

policies in the same period (Wang et al., 2012; Wang et al., 2018).

Since the 1990s, China has entered a stage of rapid urbanization and

industrialization (Liu et al., 2010). Driven by the national macro

policy, the demand for construction land increases sharply, which

leads to the occupation of a large number of cultivated land

resources. Since 1999, in order to control soil erosion and

improve the ecological environment, China has implemented the

policy of returning farmland to forests, grasslands and lakes,

resulting in a further rapid reduction in the area of cultivated

land (Bi et al., 2021). In 2004, the government revised the land

management law, emphasizing the need to strengthen the protection

of cultivated land and implement the balance policy of occupation

and compensation, which has played a positive role in the change of

cultivated land area (Liu et al., 2014). Under the condition that the

balance between occupation and compensation has been strictly

implemented for the cultivated land occupied by non-agricultural

construction, the main reasons for the reduction of cultivated land

area are the adjustment of agricultural structure and land greening.

In 2008, China promoted rural reform, improved the strict and

standardized rural land management system, and adhered to the

strictest cultivated land protection system (Liu et al., 2017). In the

new urbanization and Rural Revitalization stage after 2014, China

implemented the strictest cultivated land protection system and

intensive and economical land use system to optimize the land use

structure and improve the land use efficiency (Liu et al., 2017). The

implementation of these policies has effectively slowed down the

decline of cultivated land.

At present, China is in the “three peaks” period of

population, industrialization and urbanization. Social
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development is faced with major problems, such as maintaining

high-quality green economic development, ensuring ecological

construction, protecting cultivated land resources and food

security, and achieving the goal of carbon peak and carbon

neutralization. At the same time, the international situation is

complex and changeable, the epidemic situation of COVID-19 is

intertwined with the war, and the food crisis in many countries

has intensified. Therefore, the protection of cultivated land

resources is facing unprecedented pressure. Looking forward

to the future, the protection of cultivated land resources in

China should turn to quantity, quality and ecology. On the

basis of ensuring the red line of 0.3 billion acres of cultivated

land, we should ensure the safety of China’s cultivated land

resources and food production by increasing land use control and

balanced management of cultivated land, improving the

incentive mechanism for cultivated land use, adjusting

agricultural production methods, increasing investment in

agricultural production, optimizing agricultural policies

according to local conditions, changing land use patterns and

reserving flexible cultivated land.

Conclusion

Based on the data of three land surveys in China, this

study deeply analyzes the reasons for the obvious fracture of

cultivated land area data in 2008 and 2018, and uses ARIMA

model to reconstruct the cultivated land area data from

1996 to 2019. Combined with GIS spatial analysis and

GeoDetector, the spatio-temporal change characteristics

and driving factors of cultivated land area are analyzed.

The results show that the area of cultivated land in China

decreased continuously from 1996 to 2019, with a sharp

decrease from 1996 to 2004 and a slow decrease from

2005 to 2019. From 1996 to 2019, there were obvious

spatial differences in the change of cultivated land area of

31 provincial units. From 1996 to 2008, the cultivated land

area of 29 provincial units showed a downward trend,

accounting for more than 90%, especially in the central

and northern regions such as Shaanxi, Sichuan and Inner

Mongolia. From 2008 to 2019, the cultivated land area in the

underdeveloped areas of Heilongjiang, Jilin, Liaoning,

Xinjiang, Gansu and Tibet increased significantly, while

the rest showed a downward trend. The factor detector

found that the q value of the five factors, namely

population, regional GDP, grain output, the proportion of

the added value of the primary industry and average slope,

exceeded 0.5, which had an important impact on the change

of cultivated land area. The explanatory power of the

interaction between factors to the change of cultivated

land area is enhanced in varying degrees compared with

that of single factor, which is characterized by bilinear

enhancement or nonlinear enhancement. The proportion

of interaction q greater than 0.8 is more than 84%, and the

interaction of various factors promotes the change of

cultivated land area. It can be inferred from the results

that the change of cultivated land area is the result of

complex interaction between factors, and is closely related

to the land policy in the same period.
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